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Abstract:



In this paper, we provide an entropy inference method that is based on an objective Bayesian approach for upper record values having a two-parameter logistic distribution. We derive the entropy that is based on the i-th upper record value and the joint entropy that is based on the upper record values. Moreover, we examine their properties. For objective Bayesian analysis, we obtain objective priors, namely, the Jeffreys and reference priors, for the unknown parameters of the logistic distribution. The priors are based on upper record values. Then, we develop an entropy inference method that is based on these objective priors. In real data analysis, we assess the quality of the proposed models under the objective priors and compare them with the model under the informative prior.
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1. Introduction


Shannon [1] proposed information theory for quantifying information loss and introduced statistical entropy. Baratpour et al. [2] obtained the entropy of a continuous probability distribution using upper record values. Moreover, they obtained several bounds for this entropy using the hazard rate function. Abo-Eleneen [3] suggested an efficient computation method for the entropy in progressively Type-II censored samples. Kang et al. [4], using maximum likelihood estimators (MLE) and approximate MLE (AMLE), derived estimators of the entropy of a double-exponential distribution that are based on multiply Type-II censored samples. Seo and Kang [5], using estimators of the shape parameter in the generalized half-logistic distribution, developed methods for estimating entropy that are based on Type-II censored samples.



In this paper, we provide an entropy inference method that is based on an objective Bayesian approach for upper record values having the two-parameter logistic distribution. The cumulative distribution function (cdf) and probability density function (pdf) of a random variable X with this distribution are given by


[image: there is no content]








and


f(x)=e−(x−μ)/σσ1+e−(x−μ)/σ2,x∈R,μ∈R,σ>0,



(1)




respectively, where [image: there is no content] is the location parameter and [image: there is no content] is the scale parameter.



The paper is organized as follows: In Section 2, we obtain the Jeffreys and reference priors and derive an entropy inference method that is based on the two non-informative priors. In Section 3, we analyze a real data set in order to demonstrate the validity of the proposed method. Section 4 concludes this paper.




2. Objective Bayesian Analysis


2.1. Entropy


The entropy of [image: there is no content] is defined by


[image: there is no content]











Then, the entropy based on the i-th upper record value [image: there is no content] is


[image: there is no content]








where [image: there is no content] is the marginal density function of [image: there is no content], defined as


[image: there is no content]



(2)







Assuming that [image: there is no content] is the i-th upper record value from the logistic distribution with pdf [image: there is no content] as in (1), the marginal density function (2) is given by


[image: there is no content]











Then, the corresponding entropy is given by


[image: there is no content]



(3)







This only depends on the scale parameter [image: there is no content] and it is clear that it is an increasing function of [image: there is no content]. Therefore, as [image: there is no content] increases, less information is provided by the distribution.



Remark 1.

We can obtain the following relationship between the entropies corresponding to two consecutive record times:


limi→∞HU(i)−HU(i−1)=limi→∞log(i−1)−ψ(i−1)+∑j=1∞1j(j+1)i−1j(j+1)i−1=limi→∞∑j=0∞1i−1+j−log1+1i−1+j=0.













Theorem 1.

The joint entropy that is based on [image: there is no content] from the logistic distribution with pdf as in (1) is


[image: there is no content]



(4)







This is an increasing function of σ, as is the case with [image: there is no content].





Proof. 

The joint entropy based on the upper record values [image: there is no content] is defined by Park [6] as


HU(1),…,U(k)=−∫−∞∞⋯∫−∞xU(2)fXU(1),…,XU(k)(xU(1),…,xU(k))×logfXU(1),…,XU(k)(xU(1),…,xU(k))dxU(1),…,dxU(k),








where [image: there is no content] is the joint density function of [image: there is no content]. In addition, it is simplified to a single integral by Rad et al. [7] as follows


[image: there is no content]



(5)







Let [image: there is no content] be the upper record values from the logistic distribution with pdf as in (1) and


[image: there is no content]











Then, the integral term in (5) is given by


1Γ(i)∫−∞∞−log(1−F(x))i−1f(x)logf(x)dx=−logσ−2∫0∞yie−ydy+∫0∞yi−1e−ylogey−1dy.











Finally, using the series expansion


logzz−1=∑j=1∞1jzj,z≤−1 or z>1,








we can complete the proof.  ☐





Remark 2.

The entropies (3) and (4) can take negative values because of the term [image: there is no content]. This is because the marginal density function [image: there is no content] and the joint density function [image: there is no content] can have values greater than one for very small σ.





We present the values of the entropies [image: there is no content] and [image: there is no content] for various values of [image: there is no content], i and k in Table 1 and Table 2 and Figure 1.


Figure 1. Entropy of [image: there is no content] (a) and [image: there is no content] (b) for upper record values.



[image: Entropy 19 00208 g001]






Table 1. Entropy based on the i-th upper record value [image: there is no content].







	

	
i

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
[image: there is no content]

	






	
0.1

	
−0.303

	
−0.370

	
−0.302

	
−0.208

	
−0.115

	
−0.029

	
0.048

	
0.117

	
0.179

	
0.234




	
0.5

	
1.307

	
1.239

	
1.307

	
1.401

	
1.494

	
1.580

	
1.657

	
1.727

	
1.788

	
1.844




	
1

	
2.000

	
1.932

	
2.001

	
2.094

	
2.187

	
2.273

	
2.351

	
2.420

	
2.481

	
2.537




	
2

	
2.693

	
2.625

	
2.694

	
2.787

	
2.880

	
2.966

	
3.044

	
3.113

	
3.175

	
3.230




	
4

	
3.386

	
3.319

	
3.387

	
3.480

	
3.574

	
3.660

	
3.737

	
3.806

	
3.868

	
3.923




	
8

	
4.079

	
4.012

	
4.080

	
4.174

	
4.267

	
4.353

	
4.430

	
4.499

	
4.561

	
4.616










Table 2. Joint entropy based on [image: there is no content].







	

	
k

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	
8

	
9

	
10




	
[image: there is no content]

	






	
0.1

	
−0.303

	
−1.250

	
−2.400

	
−3.632

	
−4.900

	
−6.187

	
−7.481

	
−8.780

	
−10.080

	
−11.382




	
0.5

	
1.307

	
1.969

	
2.429

	
2.806

	
3.147

	
3.470

	
3.785

	
4.096

	
4.405

	
4.712




	
1

	
2.000

	
3.355

	
4.508

	
5.579

	
6.612

	
7.629

	
8.637

	
9.641

	
10.643

	
11.644




	
2

	
2.693

	
4.741

	
6.587

	
8.351

	
10.078

	
11.788

	
13.489

	
15.186

	
16.881

	
18.575




	
4

	
3.386

	
6.128

	
8.667

	
11.124

	
13.544

	
15.947

	
18.341

	
20.731

	
23.120

	
25.507




	
8

	
4.079

	
7.514

	
10.746

	
13.896

	
17.010

	
20.106

	
23.193

	
26.276

	
29.358

	
32.438










Table 1 shows that [image: there is no content] is an increasing function of [image: there is no content] for fixed i. Symmetrically, it is an increasing function of i for fixed [image: there is no content] and [image: there is no content]. Likewise, Table 2 shows that [image: there is no content] increases as [image: there is no content] and k increase, except for [image: there is no content].



We note that [image: there is no content] in (3) and (4) is an unknown parameter. Thus, it should be estimated when the upper record values are observed. The following theorem provides an estimator of the joint entropy [image: there is no content] in the Bayesian framework.



Theorem 2.

The Bayes estimator of [image: there is no content] is


[image: there is no content]



(6)




where the posterior expectation [image: there is no content] exists and is finite.





Proof. 

In the Bayesian framework, the entropy estimator that is based on [image: there is no content] is defined as


[image: there is no content]











Then, the estimator is given by


[image: there is no content]











This completes the proof.  ☐





In the following subsection we will provide a method for obtaining the term [image: there is no content] in (6).




2.2. Posterior Analysis Based on Objective Priors


Asgharzadeh et al. [8] proposed a subjective prior distribution for [image: there is no content] as follows


πIB(μ,σ)∝exp−(b+μ−μ0)/σσa+21+exp−(μ−μ0)/σ2,μ0∈R,a,b>0.











If one has sufficient prior information, the hyperparameters [image: there is no content] and [image: there is no content] can be easily determined; otherwise one should depend on objective or non-informative priors. In fact, it is not easy to elicit suitable prior information. We will not consider a method for eliciting the values of the hyperparameters, but rather an inference method that is based on objective priors. We will now obtain objective priors (the Jeffreys and reference priors) that are based on the Fisher information matrix for [image: there is no content]. See [8].



Let [image: there is no content] be the upper record values of [image: there is no content] from the logistic distribution with pdf as in (1). Then, the corresponding likelihood function is given by


L(μ,σ)=fxU(k)∏i=1k−1fxU(i)1−FxU(i)=1σkexp−xU(k)−μ/σ1+exp−xU(k)−μ/σ∏i=1k11+exp−xU(i)−μ/σ.











In addition, the Fisher information matrix for [image: there is no content] is given by


I(μ,σ)=−E∂2∂μ2logL(μ,σ)E∂2∂μ∂σlogL(μ,σ)E∂2∂σ∂μlogL(μ,σ)E∂2∂σ2logL(μ,σ)











By the result in [8], all elements of the Fisher information matrix are proportional to [image: there is no content]. Therefore, the Jeffreys prior is


[image: there is no content]



(7)




since it is proportional to the square root of the determinant of the Fisher information matrix. However, the Jeffreys prior has some drawbacks in the multi-parameter case, such as the marginalization paradox and the Neyman-Scott problem. Alternatively, Bernardo [9] introduced the reference prior. Moreover, Berger et al. [10,11] provided a general algorithm for deriving the reference prior. Using this algorithm, we can obtain the reference prior [image: there is no content] as follows


[image: there is no content]



(8)




regardless of which parameter is of interest.



Under a joint prior [image: there is no content], the resulting posterior distribution is


[image: there is no content]











Unfortunately, it is impossible to express in closed forms the marginal distribution for [image: there is no content] and [image: there is no content] under the derived priors (7) and (8). In order to generate Markov chain Monte Carlo (MCMC) samples from the marginal distributions, it is necessary to obtain the full conditional posterior distributions for each parameter under the joint prior [image: there is no content] as follows


[image: there is no content]








and


[image: there is no content]








respectively.



Under both objective priors (7) and (8), the full conditional posterior distributions for [image: there is no content] are log-concave. Therefore, we can draw the MCMC samples μi(i=1,…,N) from these conditional posterior distributions using the method proposed by [12]. Moreover, we note that [image: there is no content], whereas [image: there is no content] and [image: there is no content]. Thus, it is not easy to find a suitable proposal distribution for drawing the MCMC samples σi(i=1,…,N) from the full conditional posterior distribution [image: there is no content]. Therefore, we employ the random-walk Metropolis algorithm that is based on a normal proposal distribution truncated at zero. Using the MCMC samples, the term [image: there is no content] in (6) can be approximated as follows


[image: there is no content]








where M is the number of burn-in samples.



The following section examines the validity of the provided objective Bayesian method by analyzing a real data set.





3. Application


Asgharzadeh et al. [8] analyzed the upper record values [image: there is no content] from the total annual rainfall (in inches) during March that was recorded at Los Angeles Civic Center from 1973 to 2006. To obtain Bayes estimates under the subjective prior [image: there is no content], we use the same values that [8] used (i.e., [image: there is no content] and [image: there is no content]). The MCMC samples are generated using the algorithm that is described in Section 2.1. To obtain the optimal acceptance rate under priors (7) and (8), the variances in a truncated normal proposal are set to 0.7 and 0.8, respectively [13]. Based on 5500 MCMC samples with 500 brun-in samples, the Bayes estimates under the square error loss function and the corresponding 95% HPD CrIs are computed in order to compare the MLE. The results are presented in Table 3. To verify the validity of the MCMC samples, we present their autocorrelation functions (ACF) and trace plots in Figure 2 and Figure 3.


Figure 2. (a) Autocorrelation functions (ACF) (left) and trace plot (right) of the Markov chain Monte Carlo (MCMC) samples under the prior [image: there is no content], (b) ACF (left) and trace plot (right) of the MCMC samples under the prior [image: there is no content] and (c) ACF (left) and trace plot (right) of the MCMC samples under the prior [image: there is no content].



[image: Entropy 19 00208 g002]





Figure 3. (a) ACF (left) and trace plot (right) of the MCMC samples under the prior [image: there is no content], (b) ACF (left) and trace plot (right) of the MCMC samples under the prior [image: there is no content] and (c) ACF (left) and trace plot (right) of the MCMC samples under the prior [image: there is no content].



[image: Entropy 19 00208 g003]






Table 3. Estimates of [image: there is no content] and [image: there is no content] and the corresponding [image: there is no content] HPD CrIs.







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Estimate

	
3.225

	
3.196

	
3.209

	
1.234

	
1.010

	
1.096




	
HPD CrI

	
(2.137, 4.465)

	
(2.694, 3.904)

	
(2.392, 4.122)

	
(0.652, 2.287)

	
(0.386, 1.635)

	
(0.403, 1.935)




	
AR

	

	

	

	
0.389

	
0.438

	
0.439










From Figure 2 and Figure 3, we can see that the MCMC samples are mixing and converge to the stationary distribution well.



Table 3 shows that the length of the HPD CrIs under the objective priors [image: there is no content] and [image: there is no content] is smaller than it is under the subjective prior [image: there is no content] with [image: there is no content] and [image: there is no content].



Furthermore, we assess the quality of the Bayesian models under priors (7) and (8) based on the replications XU(i)rep(i=1,…,5) of the observed upper record values from the posterior predictive distributions that are given by


[image: there is no content]



(9)




and


[image: there is no content]



(10)




where [image: there is no content] is the marginal density function of [image: there is no content]. The replications are obtained as follows


XU(i)rep=1N−M∑j=M+1NXU(i)rep(j),i=1,⋯,k,








where [image: there is no content] is a sample from the marginal density function [image: there is no content]. The replications and their mean and standard deviation (std) are given in Table 4. The mean and standard deviation (std) of the observed upper record values are 5.54 and 2.541, respectively.



Table 4. Replications and their mean and standard deviation (std).







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
Mean

	
Std






	
[image: there is no content]

	
3.224

	
5.262

	
6.726

	
8.089

	
9.353

	
6.531

	
2.522




	
[image: there is no content]

	
3.195

	
4.846

	
6.046

	
7.176

	
8.204

	
5.894

	
2.064




	
[image: there is no content]

	
3.221

	
5.000

	
6.288

	
7.506

	
8.629

	
6.129

	
2.226










The model under the Jeffreys prior (7) exhibits better performance with respect to the replications XU(i)rep(i=1,2,3,5) and the mean, whereas, under the reference prior (8), it exhibits better performance with respect to the replication [image: there is no content]. However, there is no significant difference between the replications under the priors.



Finally, we present the estimation results for the joint entropy [image: there is no content] under the subjective prior [image: there is no content] with [image: there is no content] and [image: there is no content] and the objective priors [image: there is no content] and [image: there is no content] in Table 5. In addition, we present the kernel density of the joint entropy based on the MCMC samples in Figure 4.


Figure 4. (a) Kernel density of the joint entropy based on the MCMC samples under the prior [image: there is no content], (b) Kernel density of the joint entropy based on MCMC samples under the prior [image: there is no content] and (c) Kernel density of the joint entropy based on MCMC samples under the prior [image: there is no content].



[image: Entropy 19 00208 g004a][image: Entropy 19 00208 g004b]






Table 5. Estimates and the corresponding [image: there is no content] HPD CrI of the joint entropy [image: there is no content].







	

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
Estimate

	
7.407

	
6.431

	
6.803




	
HPD CrI

	
(4.910, 11.027)

	
(2.648, 9.417)

	
(3.455, 10.557)










Table 5 shows that the joint entropy under the informative prior distribution [image: there is no content] is larger than it is under the objective priors (7) and (8). In addition, Figure 4 shows that the tail of the kernel density under the subjective prior [image: there is no content] with [image: there is no content] and [image: there is no content] is heavier than it is under the objective priors [image: there is no content] and [image: there is no content]. This is due to the fact that [image: there is no content] is estimated to be larger than [image: there is no content] and [image: there is no content] (see Table 3).




4. Conclusions


In this paper, we proposed an entropy inference method that is based on an objective Bayesian approach for upper record values having the two-parameter logistic distribution. We first obtained non-informative priors, namely, the Jeffreys and reference priors, for the unknown parameters of the two-parameter logistic distribution. Subsequently, we derived the joint entropy based on the upper record values and examined its properties. We evaluated the objective Bayesian models under the two objective priors through the posterior predictive checking that was based on the replications of the observed upper record values. The proposed objective Bayesian approach is useful when there is not enough prior information.
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