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Abstract: In this paper, we provide an entropy inference method that is based on an objective
Bayesian approach for upper record values having a two-parameter logistic distribution. We derive
the entropy that is based on the i-th upper record value and the joint entropy that is based on
the upper record values. Moreover, we examine their properties. For objective Bayesian analysis,
we obtain objective priors, namely, the Jeffreys and reference priors, for the unknown parameters of
the logistic distribution. The priors are based on upper record values. Then, we develop an entropy
inference method that is based on these objective priors. In real data analysis, we assess the quality
of the proposed models under the objective priors and compare them with the model under the
informative prior.
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1. Introduction

Shannon [1] proposed information theory for quantifying information loss and introduced
statistical entropy. Baratpour et al. [2] obtained the entropy of a continuous probability distribution
using upper record values. Moreover, they obtained several bounds for this entropy using the
hazard rate function. Abo-Eleneen [3] suggested an efficient computation method for the entropy in
progressively Type-II censored samples. Kang et al. [4], using maximum likelihood estimators (MLE)
and approximate MLE (AMLE), derived estimators of the entropy of a double-exponential distribution
that are based on multiply Type-II censored samples. Seo and Kang [5], using estimators of the shape
parameter in the generalized half-logistic distribution, developed methods for estimating entropy that
are based on Type-II censored samples.

In this paper, we provide an entropy inference method that is based on an objective Bayesian
approach for upper record values having the two-parameter logistic distribution. The cumulative
distribution function (cdf) and probability density function (pdf) of a random variable X with this
distribution are given by

F(x) =
1

1 + e−(x−µ)/σ

and

f (x) =
e−(x−µ)/σ

σ
[
1 + e−(x−µ)/σ

]2 , x ∈ R, µ ∈ R, σ > 0, (1)
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respectively, where µ is the location parameter and σ is the scale parameter.
The paper is organized as follows: In Section 2, we obtain the Jeffreys and reference priors and

derive an entropy inference method that is based on the two non-informative priors. In Section 3,
we analyze a real data set in order to demonstrate the validity of the proposed method. Section 4
concludes this paper.

2. Objective Bayesian Analysis

2.1. Entropy

The entropy of f (x) is defined by

H( f ) = −
∫ ∞

−∞
f (x) log f (x)dx.

Then, the entropy based on the i-th upper record value XU(i) is

HU(i) = −
∫ ∞

−∞
fXU(i)

(x) log
[

fXU(i)
(x)
]

dx,

where fXU(i)
(x) is the marginal density function of XU(i), defined as

fXU(i)
(x) =

1
Γ(i)

[− log(1− F(x))]i−1 f (x). (2)

Assuming that XU(i) is the i-th upper record value from the logistic distribution with pdf f (x) as
in (1), the marginal density function (2) is given by

fXU(i)
(x) =

1
Γ(i)

[
x− µ

σ
+ log

(
1 + e−(x−µ)/σ

)]i−1 e−(x−µ)/σ

σ
(
1 + e−(x−µ)/σ

)2 .

Then, the corresponding entropy is given by

HU(i) = log Γ(i) + log σ + i− (i− 1)ψ(i) +
∞

∑
j=1

1
j(j + 1)i . (3)

This only depends on the scale parameter σ and it is clear that it is an increasing function of σ.
Therefore, as σ increases, less information is provided by the distribution.

Remark 1. We can obtain the following relationship between the entropies corresponding to two consecutive
record times:

lim
i→∞

[
HU(i) − HU(i−1)

]
= lim

i→∞

[
log(i− 1)− ψ(i− 1) +

∞

∑
j=1

(
1

j(j + 1)i −
1

j(j + 1)i−1

)]

= lim
i→∞

{
∞

∑
j=0

[(
1

i− 1 + j

)
− log

(
1 +

1
i− 1 + j

)]}
= 0.

Theorem 1. The joint entropy that is based on XU(1), . . . , XU(k) from the logistic distribution with pdf
as in (1) is

HU(1),...,U(k) = k (1 + log σ) +
k

∑
i=1

∞

∑
j=1

1
j(j + 1)i . (4)
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This is an increasing function of σ, as is the case with HU(i).

Proof. The joint entropy based on the upper record values XU(1), . . . , XU(k) is defined by Park [6] as

HU(1),...,U(k) =−
∫ ∞

−∞
· · ·

∫ xU(2)

−∞
fXU(1),...,XU(k)(xU(1),...,xU(k))

× log fXU(1),...,XU(k)(xU(1),...,xU(k))
dxU(1), . . . , dxU(k),

where fXU(1),...,XU(k)(xU(1),...,xU(k))
is the joint density function of XU(1), . . . , XU(k). In addition, it is

simplified to a single integral by Rad et al. [7] as follows

HU(1),...,U(k) =
k(1− k)

2
−

k

∑
i=1

1
Γ(i)

∫ ∞

−∞
[− log(1− F(x))]i−1 f (x) log f (x)dx. (5)

Let XU(1), . . . , XU(k) be the upper record values from the logistic distribution with pdf as in (1) and

Y = −
[

X− µ

σ
+ log

(
1 + e−(X−µ)/σ

)]
.

Then, the integral term in (5) is given by

1
Γ(i)

∫ ∞

−∞
[− log(1− F(x))]i−1 f (x) log f (x)dx =− log σ− 2

∫ ∞

0
yie−ydy

+
∫ ∞

0
yi−1e−y log (ey − 1) dy.

Finally, using the series expansion

log
(

z
z− 1

)
=

∞

∑
j=1

1
jzj , z ≤ −1 or z > 1,

we can complete the proof.

Remark 2. The entropies (3) and (4) can take negative values because of the term log σ. This is because the
marginal density function fXU(i)

(x) and the joint density function fXU(1),...,XU(k)(xU(1),...,xU(k))
can have values

greater than one for very small σ.

We present the values of the entropies HU(i) and HU(1),...,U(k) for various values of σ, i and k in
Tables 1 and 2 and Figure 1.

Table 1. Entropy based on the i-th upper record value XU(i).

HH
HHHσ

i 1 2 3 4 5 6 7 8 9 10

0.1 −0.303 −0.370 −0.302 −0.208 −0.115 −0.029 0.048 0.117 0.179 0.234
0.5 1.307 1.239 1.307 1.401 1.494 1.580 1.657 1.727 1.788 1.844
1 2.000 1.932 2.001 2.094 2.187 2.273 2.351 2.420 2.481 2.537
2 2.693 2.625 2.694 2.787 2.880 2.966 3.044 3.113 3.175 3.230
4 3.386 3.319 3.387 3.480 3.574 3.660 3.737 3.806 3.868 3.923
8 4.079 4.012 4.080 4.174 4.267 4.353 4.430 4.499 4.561 4.616
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Table 2. Joint entropy based on XU(1), . . . , XU(k).

HH
HHHσ

k 1 2 3 4 5 6 7 8 9 10

0.1 −0.303 −1.250 −2.400 −3.632 −4.900 −6.187 −7.481 −8.780 −10.080 −11.382
0.5 1.307 1.969 2.429 2.806 3.147 3.470 3.785 4.096 4.405 4.712
1 2.000 3.355 4.508 5.579 6.612 7.629 8.637 9.641 10.643 11.644
2 2.693 4.741 6.587 8.351 10.078 11.788 13.489 15.186 16.881 18.575
4 3.386 6.128 8.667 11.124 13.544 15.947 18.341 20.731 23.120 25.507
8 4.079 7.514 10.746 13.896 17.010 20.106 23.193 26.276 29.358 32.438
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Figure 1. Entropy of HU(i) (a) and HU(1),...,U(k) (b) for upper record values.

Table 1 shows that HU(i) is an increasing function of σ for fixed i. Symmetrically, it is an increasing
function of i for fixed σ and i ≥ 3. Likewise, Table 2 shows that HU(1),...,U(k) increases as σ and k
increase, except for σ = 0.1.

We note that σ in (3) and (4) is an unknown parameter. Thus, it should be estimated when the
upper record values are observed. The following theorem provides an estimator of the joint entropy
HU(1),...,U(k) in the Bayesian framework.

Theorem 2. The Bayes estimator of HU(1),...,U(k) is

ĤB
U(1),...,U(k) = k

[
1 + Eπ|x (log σ)

]
+

k

∑
i=1

∞

∑
j=1

1
j(j + 1)i , (6)

where the posterior expectation Eπ|x (·) exists and is finite.

Proof. In the Bayesian framework, the entropy estimator that is based on XU(1), . . . , XU(k) is defined as

ĤB
U(1),...,U(k) =

∫
µ

∫
σ

HU(1),...,U(k)π(µ, σ|x)dµdσ.

Then, the estimator is given by

ĤB
U(1),...,U(k) = k + k

∫
µ

∫
σ

log σπ(µ, σ|x)dµdσ +
k

∑
i=1

∞

∑
j=1

1
j(j + 1)i .

This completes the proof.

In the following subsection we will provide a method for obtaining the term Eπ|x (log σ) in (6).



Entropy 2017, 19, 208 5 of 11

2.2. Posterior Analysis Based on Objective Priors

Asgharzadeh et al. [8] proposed a subjective prior distribution for π(µ, σ) as follows

πIB(µ, σ) ∝
exp [−(b + µ− µ0)/σ]

σa+2 [1 + exp (−(µ− µ0)/σ)]2
, µ0 ∈ R, a, b > 0.

If one has sufficient prior information, the hyperparameters a, b and µ0 can be easily determined;
otherwise one should depend on objective or non-informative priors. In fact, it is not easy to
elicit suitable prior information. We will not consider a method for eliciting the values of the
hyperparameters, but rather an inference method that is based on objective priors. We will now
obtain objective priors (the Jeffreys and reference priors) that are based on the Fisher information matrix
for (µ, σ). See [8].

Let XU(1), . . . , XU(k) be the upper record values of X1, . . . , Xn from the logistic distribution with
pdf as in (1). Then, the corresponding likelihood function is given by

L(µ, σ) = f
(

xU(k)

) k−1

∏
i=1

f
(

xU(i)

)
1− F

(
xU(i)

)
=

(
1
σ

)k exp
[
−
(

xU(k) − µ
)

/σ
]

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] .

In addition, the Fisher information matrix for (µ, σ) is given by

I(µ, σ) = −

 E
(

∂2

∂µ2 log L(µ, σ)

)
E
(

∂2

∂µ∂σ
log L(µ, σ)

)
E
(

∂2

∂σ∂µ
log L(µ, σ)

)
E
(

∂2

∂σ2 log L(µ, σ)

)


By the result in [8], all elements of the Fisher information matrix are proportional to 1/σ2.
Therefore, the Jeffreys prior is

πJ(µ, σ) ∝
1
σ2 , (7)

since it is proportional to the square root of the determinant of the Fisher information matrix. However,
the Jeffreys prior has some drawbacks in the multi-parameter case, such as the marginalization paradox
and the Neyman-Scott problem. Alternatively, Bernardo [9] introduced the reference prior. Moreover,
Berger et al. [10,11] provided a general algorithm for deriving the reference prior. Using this algorithm,
we can obtain the reference prior πR(µ, σ) as follows

πR(µ, σ) ∝
1
σ

, (8)

regardless of which parameter is of interest.
Under a joint prior π(µ, σ), the resulting posterior distribution is

π(µ, σ|x) ∝ π(µ, σ)

(
1
σ

)k exp
[
−
(

xU(k) − µ
)

/σ
]

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] .

Unfortunately, it is impossible to express in closed forms the marginal distribution for µ and σ

under the derived priors (7) and (8). In order to generate Markov chain Monte Carlo (MCMC) samples
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from the marginal distributions, it is necessary to obtain the full conditional posterior distributions for
each parameter under the joint prior π(µ, σ) as follows

π(µ|σ, x) ∝ π(µ, σ)
exp (µ/σ)

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
]

and

π(σ|µ, x) ∝ π(µ, σ)

(
1
σ

)k exp
[
−
(

xU(k) − µ
)

/σ
]

1 + exp
[
−
(

xU(k) − µ
)

/σ
] k

∏
i=1

1

1 + exp
[
−
(

xU(i) − µ
)

/σ
] ,

respectively.
Under both objective priors (7) and (8), the full conditional posterior distributions for µ are

log-concave. Therefore, we can draw the MCMC samples µi (i = 1, . . . , N) from these conditional
posterior distributions using the method proposed by [12]. Moreover, we note that σ ∈ R+, whereas
µ ∈ R and XU(i) ∈ R. Thus, it is not easy to find a suitable proposal distribution for drawing the
MCMC samples σi (i = 1, . . . , N) from the full conditional posterior distribution π(σ|µ, x). Therefore,
we employ the random-walk Metropolis algorithm that is based on a normal proposal distribution
truncated at zero. Using the MCMC samples, the term Eπ|x (log σ) in (6) can be approximated as follows

Eπ|x (log σ) ≈ 1
N −M

N

∑
i=M+1

log σi,

where M is the number of burn-in samples.
The following section examines the validity of the provided objective Bayesian method by

analyzing a real data set.

3. Application

Asgharzadeh et al. [8] analyzed the upper record values 2.70, 3.78, 4.83, 8.02, 8.37 from the total
annual rainfall (in inches) during March that was recorded at Los Angeles Civic Center from 1973 to
2006. To obtain Bayes estimates under the subjective prior πI(µ, σ), we use the same values that [8]
used (i.e., a = b = 0.00001 and µ0 = 0). The MCMC samples are generated using the algorithm that is
described in Section 2.1. To obtain the optimal acceptance rate under priors (7) and (8), the variances in
a truncated normal proposal are set to 0.7 and 0.8, respectively [13]. Based on 5500 MCMC samples with
500 brun-in samples, the Bayes estimates under the square error loss function and the corresponding
95% HPD CrIs are computed in order to compare the MLE. The results are presented in Table 3.
To verify the validity of the MCMC samples, we present their autocorrelation functions (ACF) and
trace plots in Figures 2 and 3.

Table 3. Estimates of µ and σ and the corresponding 95% HPD CrIs.

µ̂IB µ̂JB µ̂RB σ̂IB σ̂JB σ̂RB

Estimate 3.225 3.196 3.209 1.234 1.010 1.096
HPD CrI (2.137, 4.465) (2.694, 3.904) (2.392, 4.122) (0.652, 2.287) (0.386, 1.635) (0.403, 1.935)

AR 0.389 0.438 0.439

From Figures 2 and 3, we can see that the MCMC samples are mixing and converge to the
stationary distribution well.

Table 3 shows that the length of the HPD CrIs under the objective priors πJ(µ, σ) and πR(µ, σ) is
smaller than it is under the subjective prior πI(µ, σ) with a = b = 0.00001 and µ0 = 0.
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Figure 2. (a) Autocorrelation functions (ACF) (left) and trace plot (right) of the Markov chain
Monte Carlo (MCMC) samples under the prior πI(µ, σ), (b) ACF (left) and trace plot (right) of the
MCMC samples under the prior πJ(µ, σ) and (c) ACF (left) and trace plot (right) of the MCMC samples
under the prior πR(µ, σ).
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Figure 3. (a) ACF (left) and trace plot (right) of the MCMC samples under the prior πI(µ, σ), (b) ACF
(left) and trace plot (right) of the MCMC samples under the prior πJ(µ, σ) and (c) ACF (left) and trace
plot (right) of the MCMC samples under the prior πR(µ, σ).

Furthermore, we assess the quality of the Bayesian models under priors (7) and (8) based on
the replications Xrep

U(i) (i = 1, . . . , 5) of the observed upper record values from the posterior predictive
distributions that are given by
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f J
Xrep(xrep|x) =

∫
µ

∫
σ

fXrep(xrep|µ, σ)πJ(µ, σ|x)dµdσ (9)

and

f R
Xrep(xrep|x) =

∫
µ

∫
σ

fXrep(xrep|µ, σ)πR(µ, σ|x)dµdσ, (10)

where fXrep(xrep) is the marginal density function of Xrep. The replications are obtained as follows

Xrep
U(i) =

1
N −M

N

∑
j=M+1

Xrep(j)
U(i) , i = 1, · · · , k,

where Xrep(j)
U(i) is a sample from the marginal density function f ·Xrep(xrep). The replications and their

mean and standard deviation (std) are given in Table 4. The mean and standard deviation (std) of the
observed upper record values are 5.54 and 2.541, respectively.

Table 4. Replications and their mean and standard deviation (std).

Xrep
U(1) Xrep

U(2) Xrep
U(3) Xrep

U(4) Xrep
U(5) Mean Std

πIB 3.224 5.262 6.726 8.089 9.353 6.531 2.522
πJB 3.195 4.846 6.046 7.176 8.204 5.894 2.064
πRB 3.221 5.000 6.288 7.506 8.629 6.129 2.226

The model under the Jeffreys prior (7) exhibits better performance with respect to the replications
Xrep

U(i) (i = 1, 2, 3, 5) and the mean, whereas, under the reference prior (8), it exhibits better performance

with respect to the replication Xrep
U(4). However, there is no significant difference between the

replications under the priors.
Finally, we present the estimation results for the joint entropy ĤB

U(1),...,U(k) under the subjective
prior πIB(µ, σ) with a = b = 0.00001 and µ0 = 0 and the objective priors πJ(µ, σ) and πR(µ, σ) in
Table 5. In addition, we present the kernel density of the joint entropy based on the MCMC samples
in Figure 4.

Table 5. Estimates and the corresponding 95% HPD CrI of the joint entropy ĤB
U(i),...,U(k).

Ĥ IB
U(i),...,U(k) Ĥ JB

U(i),...,U(k) ĤRB
U(i),...,U(k)

Estimate 7.407 6.431 6.803
HPD CrI (4.910, 11.027) (2.648, 9.417) (3.455, 10.557)
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Figure 4. Cont.
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Figure 4. (a) Kernel density of the joint entropy based on the MCMC samples under the prior πI(µ, σ),
(b) Kernel density of the joint entropy based on MCMC samples under the prior πJ(µ, σ) and (c) Kernel
density of the joint entropy based on MCMC samples under the prior πR(µ, σ).

Table 5 shows that the joint entropy under the informative prior distribution πIB(µ, σ) is larger
than it is under the objective priors (7) and (8). In addition, Figure 4 shows that the tail of the kernel
density under the subjective prior πI(µ, σ) with a = b = 0.00001 and µ0 = 0 is heavier than it is under
the objective priors πJ(µ, σ) and πR(µ, σ). This is due to the fact that σ̂IB is estimated to be larger than
σ̂JB and σ̂RB (see Table 3).

4. Conclusions

In this paper, we proposed an entropy inference method that is based on an objective Bayesian
approach for upper record values having the two-parameter logistic distribution. We first obtained
non-informative priors, namely, the Jeffreys and reference priors, for the unknown parameters of the
two-parameter logistic distribution. Subsequently, we derived the joint entropy based on the upper
record values and examined its properties. We evaluated the objective Bayesian models under the
two objective priors through the posterior predictive checking that was based on the replications of
the observed upper record values. The proposed objective Bayesian approach is useful when there is
not enough prior information.
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