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Abstract: In this paper, we apply the differential Galoisian approach to investigate the meromorphic
non-integrability of a class of 3D equations in mathematical physics, including Nosé–Hoover
equations, the Lü system, the Rikitake-like system and Rucklidge equations, which are well known in
the fields of molecular dynamics, chaotic theory and fluid mechanics, respectively. Our main results
show that all these considered systems are, in fact, non-integrable in nearly all parameters.
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1. Introduction

One important problem in the qualitative theory of nonlinear differential dynamic systems
is understanding its complexity and chaotic properties. Integrability can be regarded as a good
breakthrough. Roughly speaking, a system is integrable if it possesses such a number of first integrals
that it is solvable by quadratures. Using a first integral of the considered system, we can reduce the
dimension of that by one. Enough functionally independent first integrals can help us get general
solutions analytically in an “explicit” way and understand the topological structure. The non-existence
of first integrals can allow us to expect that the system is complex and admits chaotic behavior.

We note that non-integrability of systems is a first step towards proving that this system is chaotic.
To deal with the issue, one should show that the system has positive Lyapunov exponents or metric
entropy, heteroclinic connections, and so on (see for instance [1–3]). There is much literature on the
complex behavior and non-integrability of dynamical systems. For example, Bolsinov and Taimanov [4]
constructed a geodesic flow on a real-analytic Riemannian manifold MA which is integrable with
C∞ first integrals but has positive topological entropy. Yagasaki [5] obtained a equivalent condition
between the existence of a simple zero for the Melnikov function of a class of two degree-of-freedom
Hamiltonian systems with saddle centers and the non-commutativity of the differential Galois group
of corresponding normal variational equations.

There is no general approach to detect the existence of first integrals for the considered differential
system. Many scholars have devoted themselves to this topic and developed a lot of ways to study
the existence of first integrals for given systems, such as the Lax pairs [6], the Painlevé analysis [7],
the Lie symmetries [8] and the Darboux integrability theory [9]. Inspired by Ziglin’s works [10],
Morales-Ruiz et al. [11–16] applied the differential Galois theory to the non-integrability of Hamiltonian
systems with great success. Roughly speaking, the Morales–Ramis theory shows that if the Hamiltonian
system with n degrees of freedom admits n meromorphic first integrals which are in involution and
independent, then the identity component of the differential Galois group of the normal variational
equation should be commutative. Since then, Morales–Ramis theory has been considered as a powerful
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tool for the meromorphic non-integrability of the Hamiltonian system, and has been successfully
applied by many scholars to large numbers of physical models, such as by the authors of [17–20].

For non-Hamiltonian system, the authors [21,22] proposed two analogous forms of the
Morales–Ramis theory for general dynamical systems both in the form of vector fields and mappings,
which can be, in fact, viewed as a natural generalization of the Ziglin theorem and Morales–Ramis
theory to non-Hamiltonian systems. The main idea behind these results is that the number of
functionally independent meromorphic first integrals of given differential equations implies the
structure of the identity component of the differential Galois group of the normal variational equations
along some non-equilibrium solution. In addition, there are some other results on the Galoisian
obstruction to the integrability of non-Hamiltonian systems (see [23,24]).

It is very interesting to note that, for 3D differential systems, there are a large number of
applications of the non-existence of first integrals in some given function spaces such as polynomial,
analytic, rational, and algebraic first integral applications, etc. However, to our knowledge, there are
few applications for the non-existence of meromorphic first integrals of 3D differential systems (see
the Arnold–Beltrami–Childress(ABC) flow [25,26] and the steady Stokes flow [27]).

In this work, given a three-dimensional differential system depending on some parameters, we
will present a systematic approach to recognize the values of parameters for which equations have
meromorphic first integrals or not. Then we will apply our results to several 3D differential systems,
including Nosé–Hoover equations [28], the Rikitake-like system [29], Lü system [30] and Rucklidge
equations [31]. Moreover, the tools we use to study the meromorphic non-integrability can be applied
to other three-dimensional differential systems.

This paper is organized as follows. In Section 2, we present some preliminary results that will be
used later and give a systematic approach to study the non-existence of meromorphic first integrals for
three-dimensional differential systems. In Section 3, we study several three-dimensional systems and
obtain some results about the meromorphic non-integrability of them.

2. Preliminaries

Consider the following n-dimensional analytic differential system:

Ẋ = F(X), X ∈ M, (1)

where the dot is the derivation with respect to t ∈ C,M is a n-dimensional complex analytic manifold
and F is a vector-valued analytic function. Let U be an open set in the manifoldM. A non-constant
function Φ : U → C is called a first integral of (1) if it is constant along any solution curve of system (1).
If system (1) admits n− 1 functionally independent first integrals F1(x), · · · , Fn−1(x), then we say that
system (1) is completely integrable, which can help us to get the global dynamical information of (1).
In this case, the orbits of this system are contained in the curves:

{x|F1(x) = c1, · · · , Fn−1(x) = cn−1},

where c1, · · · , cn−1 are constants, and its general solutions can be obtained analytically in an “explicit”
way. Moreover, the topological structure of a completely integrable system is also simple. Indeed, if
system (1) admits n− 1 functionally independent first integrals of class Cr with r > 2, then it is Cr−1

orbitally equivalent to a linear differential system, for more details see [32].
If system (1) admits 0 < m < n− 1 first integrals, i.e., “partially integrable”, then we can replace

the considered system with an n−m-dimension reduced one. The non-existence of first integrals for
(1) may always push people to investigate the complex phenomena.
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Let ϕ(t) be a non-equilibrium analytic solution of system (1). Denote by Γ the Riemann surface
corresponding to this particular solution ϕ(t). The variational equations along Γ are given by:

ξ̇ = A(t)ξ, A(t) =
∂F
∂X

∣∣∣∣
X=ϕ(t)

, ξ ∈ TΓM, (2)

where TΓ is the vector bundle of TM restricted on Γ. Let the mapping π be the nature projection from
the TΓ to the normal bundle TΓ/TΓ. Then, the variational Equation (2) can be reduced to the normal
variational equations:

η̇ = π∗
(
TF(π−1η)

)
, η ∈ TΓ/TΓ. (3)

Since (3) is a linear differential equation, we can consider the differential Galois group
corresponding to (3). Generally speaking, the differential Galois group G of (3) is a matrix subgroup
of GL(n− 1,C) acting on the fundamental solutions of (3) such that it dose not change polynomial
and differential relations between them. To be more precise, the differential Galois group G of (3) is
the group of all differential automorphisms of the field K

(
η1(t), · · · , ηn−1(t)

)
such that any element

of the field K is fixed, where K is the differential field consisting of all meromorphic functions over
TΓ/TΓ and

(
η1(t), · · · , ηn−1(t)

)
is a fundamental solution matrix of (3). For any σ ∈ G, there exists a

non-singular (n− 1)× (n− 1) matrix Mσ such that:

(σ(η1), · · · , σ(ηn−1)) = (η1, · · · , ηn−1)Mσ.

Therefore, G is isomorphic to a subgroup of GL(n− 1,C). Moreover, it can be shown that G is a
linear algebraic group [33] and has a unique connected component G0 containing the identity which is
called the identity component of G. For basic notions and results of the differential Galois theory, one
can consult the book [33].

Now we state our results in [21,22] which reveal that the number of meromorphic first integrals
of given systems is reflected by the properties of the identity component G0.

Theorem 1. Assume that system (1) has m(1 ≤ m < n) functionally independent meromorphic first integrals
in a neighborhood of Γ. Then, the Lie algebra G of the differential Galois group G of Equation (3) has m
meromorphic invariants, and the identity component G0 of G has at most (n−m− 1)(n− 1) generators, i.e.,

G0 = {(eT1t1 · eT2t2 · · · eTktk )s | (t1, · · · , tk) ∈ Ṽ ⊂ Ck, s ∈ N},

where {T1, · · · ,Tk} is a basis of G with k ≤ (n−m− 1)(n− 1), Ṽ is a neighborhood of the original element
in Cl . In particular,

(1) If m = n− 1, i.e., system (1) is completely integrable, then G = {0}, G0 = {1}, where 1 denotes the
identity element of G.

(2) If m = n− 2, then G, G0 has at most n− 1 generators.
(3) If n = 3 and m = 1, then G, G0 are solvable.

As the identity component G0 is a normal subgroup of G with finite index, G0 is the trivial
subgroup {1} if and only if G is a finite group. Then, we have the following simple conclusion which
will be used in this paper.

Corollary 1. Let n = 3. If the differential Galois group of (3) is not finite, then system (1) is not completely
integrable with meromorphic first integrals. Further, if the identity component G0 of (3) is not solvable, then
system (1) has no any meromorphic first integral.
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Based on the above results, one can easily conclude an unified approach to analyze the
meromorphic non-integrability in certain 3-dimensional nonlinear dynamical systems by means
of the differential Galois theory as follows.

Step 1. Find a non-equilibrium solution for the considered system.
Step 2. Get the normal variational equations along the obtained particular solution.
Step 3. Compute, or analyze the differential Galois group of the normal variational equations.

We remark that, to carry out above systematic steps, there are two key points one should pay
attention to. Firstly, in order to derive the normal variational equations easily, we should select a
proper particular solution of the considered differential equations. In many cases, the non-equilibrium
particular solution ϕ(t) of (1) can be a straight line solution. Secondly, there is no general approach to
calculate the differential Galois group of a linear differential equation. In some particular cases, one can
compute the differential Galois group by the property of the monodromy group or the solvability of
second-order linear differential equations, see for instance [17,18]. For second-order linear differential
equations with rational coefficients, the so-called Kovacic’s algorithm [34] is a very effective tool to
calculate the differential Galois group. In addition, we can also transform the normal variational
equations into some famous equations such as the Riemann P equation, Bessel equation and Whittaker
equation, for which their differential Galois group is well-known. See Appendixes A and B for more
details.

3. Non-Integrability

In what follows, we will apply the systematic Galoisian approach concluded in the previous
section to investigate the meromorphic non-integrability of several 3D systems, including
Noseé–Hoover equations, the Lü system, the Rikitake-like system and Rucklidge equations, which are
well known in the fields of molecular dynamics, chaotic theory and fluid mechanics, respectively.

3.1. Nosé–Hoover System

Consider the Nosé–Hoover equations for one-dimensional harmonic oscillator:
ẋ =− y− xz,

ẏ =x,

ż =α(x2 − 1),

(4)

where x represents momentum, y represents the oscillator coordinate and z represents the friction
coefficient [28]. This model describes the interaction of a particle with a heat-bath. The Nosé–Hoover
system plays an important role in molecular dynamics and can be used to compute phase space
integrals for the canonical Gibbs distribution. From the dynamical point of view, it was intensively
studied in [35–37].

When the parameter α vanishes, system (4) admits a first integral F1 = z, and can be reduced
into a linear system when it is restricted to the level set of F1. Hence, in this case, we can get its
general solutions analytically in an “explicit” way. Therefore, from the view of integrability, system (4)
with α = 0 is trivial, and we need only deal with system (4) with α 6= 0. Moreover, as pointed out
by Mahdi and Valls [37], system (4) can also be viewed as a completely integrable system with the
two functionally independent first integrals.

Assume α 6= 0. Then, it is easy to check that a non-equilibrium solution to (4) is expressed
as (x, y, z) = (0, 0,−αt). Let Γ1 be the phase curve associated with this particular solution. Taking
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(x, y, z) = (ξ, η,−αt + ζ) in (4) and neglecting quadratic terms of ξ, η, ζ, we obtain the variational
equations along Γ1,  ξ̇

η̇

ζ̇

 =

 −αt −1 0
1 0 0
0 0 0


 ξ

η

ζ

 ,

the corresponding normal variational equations are:(
ξ̇

η̇

)
=

(
−αt −1

1 0

)(
ξ

η

)
. (5)

Eliminating η leads to:

ξ̈ + αtξ̇ + (1 + α)ξ = 0. (6)

Making the change of variable ξ(t) = χ(t) exp (−αt2/4), we have:

χ̈ = r(t)χ, r(t) = (
α2t2

4
− α + 2

2
). (7)

Since (7) has no pole and the order at ∞ is 0− 2 = −2, by Theorem A2, case 3 in Theorem A1
cannot occur. Hence, the differential Galois group of (7) is not finite, namely, the identity component is
not the trivial subgroup, which implies the differential Galois group of (5) is also not finite. Therefore,
system (4) is not completely integrable with meromorphic first integrals by Corollary 1. Further, in
view of Theorem A4, we have:

a =
α

2
, b = 0, c = −α + 2

2
,

and,
4ac− b2

4a2 = −α + 2
α

.

Hence, the identity component of the differential Galois group of (7) is solvable if and only if
−(α + 2)/α is an odd integer, i.e., 1/α ∈ Z.

Thanks to Corollary 1, we have the following results.

Theorem 2. Nosé–Hoover Equation (4) is not meromorphic completely integrable when α 6= 0. Moreover, if
nα 6= 1 for any n ∈ Z, then Nosé–Hoover Equation (4) does not admit any meromorphic first integral in a
neighbourhood of Γ1.

When nα = 1 for some integer n, the above result does not tell whether Nosé–Hoover Equation (4)
admits meromorphic first integrals or not. However, if we can find another particular solution
of (4), then the remaining values may be removed. Similar techniques have been applied to the
non-integrability of the generalized spring-pendulum Hamiltonian system [19]. Indeed, assume α 6= 1,
then (4) has another straight-line solution x = k, y + kz = 0, i.e.,(

x(t), y(t), z(t)
)
= (k, kt,−t),

where k2 = 1− 1/α. Let Γ′1 be the phase curve associated with this particular solution.

Theorem 3. Assume nα = 1 for certain n ∈ Z and α /∈ {1, 1/2,−1/2}. Then Nosé–Hoover Equation (4)
does not admit any meromorphic first integral in a neighbourhood of Γ′1.
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Proof. Proceeding as above, the variational equations along Γ′1 reads: ξ̇

η̇

ζ̇

 =

 t −1 −k
1 0 0

2αk 0 0


 ξ

η

ζ

 .

Since we have x = k, y + kz = 0 along the phase curve Γ′1, then ξ1 = ξ and η1 = η + kζ can be
taken as coordinates in which the normal variational equations are given by:(

ξ̇1

η̇1

)
=

(
t −1

2α− 1 0

)(
ξ1

η1

)
, (8)

or,
ξ̈1 = tξ̇1 + (2− 2α)ξ1.

Making the change of variable ξ1(t) = χ1(t) exp(t2/4) yields:

χ̈1 = r(t)χ1, r(t) =
t2

4
+

3− 4α

2
. (9)

We claim that the differential Galois group of (9) is not solvable. Indeed, if the differential Galois
group of (9) is solvable, then it follows from Theorem A4 that 3− 4α = 3− 4/n is an odd integer,
which contradicts the assumption.

Therefore, the differential Galois group of (9) is not solvable. By Corollary 1, the conclusion
is proved.

Remark 1. When α = 1/2 or α = −1/2, (9) admits a solution:

χ1(t) = exp(t2/4) or χ1(t) = exp(t2/4)(t2 + 1),

and the differential Galois group of (9) is solvable, and we can not get the information on the integrability of (4)
from Corollary 1.

In view of the above results, we have the following corollary on the meromorphic first integrals
of Nosé–Hoover Equation (4).

Corollary 2. The following statements hold for Nosé–Hoover Equation (4):

(1) If α = 0, (4) has two functionally independent first integrals.
(2) If α ∈ {1, 1/2,−1/2}, (4) has at most one meromorphic first integrals.
(3) If α /∈ {0, 1, 1/2,−1/2}, (4) has no any meromorphic first integrals.

3.2. Chaotic Systems

Since the first chaotic Lorenz equations were derived, the chaos theory on dynamical systems
has been widely studied and applied in a variety of fields such as physics, economics, secure
communications, computer science, and so on. Roughly speaking, chaotic systems are dynamical
systems which are highly sensitive to initial conditions. In this subsection, we try to investigate the
non-integrability of the Rikitake-like system and the Lü system, both of which have been studied and,
with some particular parameters, they can develop the chaotic phenomena [29,30].
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Firstly, we consider the Rikitake-like system which reads:
ẋ =− kx + yz,

ẏ =− ky + (z− a)x,

ż =z− xy,

(10)

where the parameters k and a are positive. This system was proposed by Wu and Wang [29] in order
to study the fractional-order chaotic and projective synchronization. The Rikitake-like system (10)
exhibits a chaotic attractor for k = 2 and a = 5.

Obviously, system (10) has a phase curve Γ2 = {(0, 0, et)|t ∈ C} and the norm variational equation
along Γ2 has the form: (

ξ̇

η̇

)
=

(
−k et

et − a −k

)(
ξ

η

)
, (11)

which can be rewritten as:

ξ̈ = (1− 2k)ξ̇ + (e2t − aet + k− k2)ξ. (12)

We make the time scale transformation τ = et to transform this equation into an equation with rational
coefficients, and so (12) is converted into:

ξ
′′
= −2k

τ
ξ
′
+

k− k2 − aτ + τ2

τ2 ,

where the prime is the derivation with respect to τ ∈ C. By Theorem A3, the above transformations
do not change the identity component of the differential Galois group of (11). Similarly, making the
change of dependent variable ξ(τ) = χ(τ)/τk to eliminate the first order term, we obtain:

χ′′ = rχ, r(τ) =
τ − a

τ
. (13)

Then, introducing the new independent variable z = 2τ, we transform (13) into the Whittaker equation:

d2χ

dz2 − (
1
4
− a

2z
)χ = 0. (14)

Set κ = a/2, µ = 1/2. Then,

κ − µ− 1
2
=

a
2
− 1,

κ + µ− 1
2
=

a
2

,

−κ − µ− 1
2
= − a

2
− 1,

−κ + µ− 1
2
= − a

2
.

Then, due to Theorem A5, the identity component of (14) is solvable if and only if a is an
even integer.

In addition, the only pole of (14) is at zero and the corresponding order is 1, and the order of r at
∞ is 0. It follows from Theorem A2 that case 3 cannot hold, which implies the differential Galois group
of (14) is not finite. Then, as the differential Galois group of (14) can be viewed as a normal subgroup
of the differential Galois group of (11), we obtain that the differential Galois group of (11) is not finite.
By Corollary 1, we trivially have the following result:
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Theorem 4. The Rikitake-like system (10) is not meromorphically completely integrable. Moreover, assuming
that the positive number a is not an even integrer, then system (10) does not admit any meromorphic first integral
in a neighborhood of Γ2.

Now, we turn to consider the Lü system,
ẋ =a(y− x),

ẏ =cy− xz,

ż =xy− bz,

(15)

which was first proposed in [30] and connected the Lorenz system with the Chen system. It is well
known that (15) admits a chaotic attractor for a = 36, b = 3 and c = 20. So far there have been a
large number of related studies on the Lü system such as dynamical behaviors, chaotic control, chaos
synchronization (see [38–40] and the references therein).

However, there are few results considering the integrability of (15). Llibre et al. [38,39] consider
the Darboux first integrals and polynomial first integrals. Here, we investigate the first integrals of the
Lü system in the category of meromorphic functions.

When a vanishes, the Lü system has two functionally independent first integrals and it is
completely integral (see [38]). Thus, in what follows, we assume a 6= 0. We also assume b 6= 0
to make sure that the particular solution (x, y, z) = (0, 0, e−bt) is not a equilibrium.

Let Γ3 be the associated phase curve. The norm variational equations along Γ3 are:(
ξ̇

η̇

)
=

(
−a a
−e−bt c

)(
ξ

η

)
. (16)

Then we transform (16) into a second order differential equation which gives:

ξ̈ + (a− c)ξ̇ − a(c− e−bt)ξ = 0.

Making the variable changes τ = e−bt, and ξ(τ) = χ(τ)τ
a−b−c

2b , we obtain the following equivalent
equations with rational coefficients:

χ′′ = r(τ)χ, r(τ) =
(
− a

b2τ
+

(a + c)2 − b2

4b2τ2

)
, (17)

where the prime denotes the derivative with respect to τ. Under a change of the independent variable
z = 2

√
aτ/b, then (17) becomes:

z2 d2χ

dz2 − z
dχ

dz
+ (z2 − (a + c)2 − b2

b2 )ξ = 0. (18)

Further, making the variable changes χ =
√

zχ̃(z), we transform (18) into the Bessel equation in
the reduced form:

d2χ̃

dz2 = (
4n2 − 1

4x2 − 1)χ̃, (19)

where n = (a + c)/b. Since (19) has two singular points 0 of order 1 and ∞ of order 2. It follows
that (19) could not fall in case 3. Hence, the differential Galois group of (19) is not finite. Further, thanks
to Theorem A6, the identity component of (19) is solvable if and only if 2(a + c)/b is an odd integer.

By Corollary 1, we can trivially obtain the following non-integrable results.
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Theorem 5. Suppose ab 6= 0. Then the Lü system (15) is not meromorphically integrable. Moreover, if 2| a+c
b |

is not an odd number, then system (15) does not possess any meromorphic first integral in a neighborhood of Γ3.

Remark 2. When a = 36, b = 3 and c = 20, it is well known that system (15) has a strange attractor. Note
that in this case, 2| a+c

b | =
112
3 is not an odd number; using Theorem 5 we conclude that system (15) admits no

meromorphic first integrals. This fact can be seen as a new evidence of the connection between the chaos and the
non-integrability.

Remark 3. If 2| a+c
b | is an odd number, then system (15) may have a meromorphic first integral. For example,

for a = 1
2 , b = 1, c = −1, system (15) admits a meromorphic first integral:

Φ(x) =
2(x2 − z)2

y2 − 1 + 2x2z
.

Further, by Theorem 5, in this case, (15) has only one meromorphic first integral in a neighborhood of Γ4 in the
sense of functional independence.

3.3. Rucklidge System

Consider the following differential equations:
ẋ =− ax + by− yz,

ẏ =x,

ż =− z + y2,

(20)

which are introduced to describe two-dimensional convection in a horizontal layer of Boussinesq fluid
with lateral constants [31]. It is also one of three-dimensional chaotic systems, which is not topologically
equivalent to the Lorenz system. The chaotic behavior occurs when the parameter values are taken
as a = 2 and b = 6.7 with the initial condition (x0, y0, z0) = (1, 0, 4.5). The dynamical features
of the Rucklidge system have been investigated in the last decades. Hopf bifurcations and small
amplitude limit cycles of (20) were considered in [41]. The control of chaos of the Rucklidge system
was investigated in [42]. In view of the integrability, Lima et al. in [43] proved that the Rucklidge model
has no analytic first integrals. The aim of this subsection is to consider the meromophic integrability,
and the main result related to the integrability problem of (20) is summarized in the next result.

Theorem 6. The Rucklidge model is not meromorphic completely integrable. Moreover, it has no any
meromorphic first integral in the neighbourhood of Γ4 if one of the following conditions holds:

(1) b = 0, 2a /∈ Z;
(2) b 6= 0, 4(a2 + 4b) 6= (2n− 1)2 for all n ∈ N.

Here, Γ4 is the phase curve with the particular non-equilibrium solution (x, y, z) = (0, 0, e−t). The
linearized system of Equation (20) of variations in normal directions, i.e., normal variational equations,
is derived as follows: (

ξ̇

η̇

)
=

(
−a b− e−t

1 0

)(
ξ

η

)
, (21)

or equivalently,

ξ̈ =
e−t − ab + ae−t

b− e−t ξ̇ +
b2 − 2be−t + e−2t + ae−t

b− e−t ξ. (22)
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In an argument similar to the above models, we successively make the variable changes τ = e−t,
ξ = χ

√
τa−1(τ − b) and transform (22) into the confluent Heun equation in the reduced form:

χ′′ = rχ, r =
(a2b2 + 4b3 − b2) + (2ab− 2a2b− 12b2 + 4b)τ + (a2 − 2a + 12b)τ2 − 4τ3

4τ2(b− τ)2 , (23)

where the prime denotes the derivative with respect to τ. In what follows, we use the Kovacic
algorithm to study the differential Galois group of (23).

No matter the values of the parameters a and b, the order of ∞ is one. It follows from Theorem A2
that cases 1, 3 do not hold. By Corollary 1, the Rucklidge system (20) is not meromorphically completely
integrable. To complete Theorem 6, we apply Kovacic algorithm of case 2 to (23), and show that case 2

cannot hold if 2a /∈ Z when b = 0 or a2 + 4b 6= (2n−1)2

4 for any n ∈ N when b 6= 0.
When b = 0, (23) becomes:

χ′′ = rχ, r =
(

a(a− 2)
4τ2 − 1

τ

)
. (24)

It has only one pole at 0. Obviously, a(a− 2) 6= 0 as 2a /∈ Z. Let,

e0 ∈
{

2± 2|a− 1|
}
∩Z, e∞ ∈ {1}.

Then (e∞ − e0)/2 must be a non-negative integer to assure case 2 holds. Clearly, it is impossible
for 2a /∈ Z.

When b 6= 0, (23) becomes,

χ′′ = rχ, r =
a2 + 4b− 1

4τ2 +
3

4(τ − b)2 +
a− 2b + 1

2bτ
− 1 + a

2b(τ − b)
. (25)

If a2 + 4b = 1, then the poles of r are P = {0, b, ∞}, and the order at τ = 0, b and ∞ are 1, 2 and 1. Let,

E0 = {4}, Eb = {2,−2, 6}, E∞ = {1}

It is easy to check that d = 1
2 (e∞ − e0 − eb) is not a non-negative integer for all the families (ec)c∈P .

Thus case 2 should be excluded if a2 + 4b 6= 1. Proceeding as above, let

E0 = {2, 2 + 2
√

a2 + 4b, 2− 2
√

a2 + 4b} ∩Z, Eb = {2,−2, 6}, E∞ = {1}.

To make sure that there exist families (ec)c∈P such that d = 1
2 (e∞ − e0 − eb) ∈ N∪ {0}, we know that

4(a2 + 4b) should be the square of an odd number, which contradicts the assumption.
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Appendix A

Let us consider the following differential equation with rational coefficients:

d2ξ

dz2 + p(z)
dξ

dz
+ q(z)ξ(z) = 0, p(z), q(z) ∈ C(z). (A1)
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If we know a non-zero solution ξ1(z) of (A1), then another solution ξ2(z), linearly independent
from ξ1(z), is given by:

ξ2(z) = ξ1

∫ 1
ξ2

1
exp[−

∫
p].

Making the change of dependent variable,

ξ(z) = χ(z) exp(−
∫ 1

2
p), (A2)

the Equation (A1) is transformed to the reduced form:

d2χ

dz2 = r(z)χ, r(z) =
1
4

p(z)2 +
1
2

dp
dz
− q(z) ∈ C(z). (A3)

It should be pointed out that the above transformation does not affect the Liouvillian solvability
of (A1), and so the identity component G0 of (A3) is solvable if and only if that of (A1) is solvable.
Moreover, by the Galois correspondence, we see that the differential Galois group of (A3) can be
viewed as a normal subgroup of the differential Galois group of (A1) (for more details see Theorem 2.5
in [11]). Therefore, if the identity component G0 of (A3) is not finite (or abelian), then the identity
component G0 of (A1) is also not finite (or abelian). Let SL(2,C) be the set of 2× 2 matrices with
determinant one. Then, the differential Galois group G of (A3) is an algebraic group contained in
SL(2,C).

The following result gives a classification of the differential Galois group G of (A3), for the proof
see Lemma 1.4 in [34].

Theorem A1. There are four cases that can occur:

Case1. G is conjugate to a triangular group. Then (A3) has a solution of the form e
∫

ω with ω ∈ C(x).
Case2. G is not of case 1, but is conjugate to a subgroup of,

D = {
(

c 0
0 c−1

)
|c ∈ C, c 6= 0} ∪ {

(
0 c
−c−1 0

)
|c ∈ C, c 6= 0}.

Then (A3) has a solution of the form e
∫

ω with ω algebraic over C(x) of degree 2.
Case3. G is not of case 1 and case 2, but is a finite group. Then all solutions of (A3) are algebraic over C(x).
Case4. G = SL(2,C). Then (A3) is not integrable in Liouville sense.

Kovacic in [34] also gave some necessary conditions that should be satisfied by r(z) when cases 1,
2, 3 hold. Before their formulation, it is useful to fix some terminology. Let r(z) be the ratio s(z)/t(z)
of two relative polynomials s(z), t(z) ∈ C[z]. The order of a pole is defined as the multiplicity of the
corresponding root of t(z). The order of r at ∞ is deg t(z)–deg s(z).

Theorem A2. The following conditions are necessary for the respective cases of Theorem A1 to hold.

Case1. Every pole of r must have even order or else have order 1. The order of r at ∞ must be even or else be
great than 2.

Case2. r must have at least one pole such that either has odd order greater than 2 or else has order 2.
Case3. The order of a pole of r cannot exceed 2 and the order of r at ∞ must be at least 2. If the partial

fraction expansion of r is,

r = ∑
i

αi
(x− βi)2 + ∑

i

γj

x− di
,

then, √
1 + 4αi ∈ Q, ∑

j
γj = 0,

√
∑

i
αi + ∑

i
γjdi ∈ Q.
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Let us make a remark that the identity components G0 in cases 1–3 are solvable, but in case 4 it is
not. Due to Corollary 1, if G falls into case 4, then system (1) has no any meromorphic first integrals.
Moreover, from the proof of Theorem A1 by Kovacic, we also see that the necessary condition for
case 3 is based on the assumption that G is a finite group and admits an algebraic solution, which has
nothing to do with the assumption that cases 1 and 2 do not hold. Hence, if the necessary condition
for case 3 is evaluated to be false, then G is not a finite group and by Corollary 1 system (1) is not
completely integrable with meromorphic first integrals.

Before formulating Kovacic’s algorithm, let us remark that if the coefficients of the normal
variational equations are not rational functions but are meromorphic with respect to the independent
variational, then we cannot use Kovacic’s Algorithm directly but make proper change of variables to
do so (see Theorem 2.5 in [11]):

Theorem A3. Let X be a (connected) Riemann surface. Let f : X′ → X be a finite ramified covering of X by a
Riemann surface X′. Let ∇ be a meromorphic connection on X, and set ∇′ = f ∗∇. Then, we have a natural
injective homomorphism Gal(∇′) → Gal(∇) of differential Galois groups which induces an isomorphism
between their Lie algebras(and identity component part).

In other words, if the original differential equation over the Riemann surface X′ is transformed
by a change of the independent variable in a differential equation over the Riemann surface X, then
both equations have the same identity component of the differential Galois group in the sense of
isomorphism.

In what follows, we formulate the complete Kovacic’s algorithm, which can help us recognize
which cases the differential Galois group of (A3) belongs to.

Appendix A1. Kovacic’s Algorithm of Case 1

• Step 1. For each c ∈ P we define [
√

r]c, α±c as follows:

(a) If c is a pole of order 1, then [
√

r]c = 0, α+c = α−c = 1.

(b) If c is a pole of order 2, then [
√

r]c = 0, α±c = 1
2 ±

1
2

√
1 + 4b, where b is the coefficient of

1/(x− c)2 in the partial fraction expansion for r.

(c) If c is a pole of order 2ν ≥ 4, then [
√

r]c = a
(x−c)ν + · · ·+ d

(x−c)2 of negative order part of the

Laurent series expansion of
√

r at c, α±c = 1
2 (±

b
a + ν), where b is the coefficient of 1/(x− c)ν+1

in r minus the coefficient of 1/(x− c)ν+1 in [
√

r]2c .

(d) If the order of r at ∞ is > 2, then [
√

r]∞ = 0, α+∞ = 0, α−∞ = 1.

(e) If the order of r at ∞ is 2, then [
√

r]∞ = 0, α±∞ = 1
2 ±

1
2

√
1 + 4b, where b is the coefficient of

1/x2 in the Laurent series expansion of r at ∞.

( f ) If ∞ is a pole of order −2ν ≤ 0, then [
√

r]∞ = axν + · · ·+ d of the positive order part of the
Laurent series expansion of

√
r at ∞, α±∞ = 1

2 (±
b
a − ν), where b is the coefficient of xν−1 in r

minus the coefficient of xν−1 in [
√

r]2∞.

• Step 2. Let d = ∑c∈P t(c)αs(c)
c , where s(c) ∈ {+,−} for any c ∈ P , t(∞) = +1 and t(c) = −1 for

any c ∈ P \ {∞}. If d is a non-negative integer, then let w = ∑c∈P (s(c)[
√

r]c + α
s(c)
c

x−c ) + [
√

r]∞s(∞),
otherwise, the family is discarded. If no families remain under consideration, case 1 of Theorem A1
cannot happen.

• Step 3. For each family retained from step 2, we search for a monic polynomial P of degree d
such that the equation P′′ + 2wP′ + (w′ + w2 − r)P = 0 holds. If such a polynomial exists, then
ξ = Pe

∫
w is a solution of ξ ′′ = rξ. If no such polynomial is found for any family retained from

Step 2, case 1 of Theorem A1 cannot happen.
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Appendix A2. Kovacic’s Algorithm of Case 2

• Step 1. For each c ∈ P we define Ec as follows:

(a) If c is a pole of order 1, then Ec = {4}.
(b) If c is a pole of order 2, then Ec = {2 + k

√
1 + 4b, k = 0,±2} ∩Z, where b refers to coefficients

of 1/(x− c)2 in the partial fraction expansion for r.

(c) If c is a pole of order ν > 2, then Ec = {ν}.
(d) If the order of r at ∞ is > 2, then E∞ = {0, 2, 4}.
(e) If the order of r at ∞ is 2, then E∞ = {2 + k

√
1 + 4b, k = 0,±2} ∩ Z, where b refers to

coefficients of 1/x2 in the Laurent series expansion of r at ∞.

( f ) If ∞ is a pole of order ν < 2, then E∞ = {ν}.
• Step 2. Let d = 1

2 ∑c∈P t(c)ec, where ec ∈ Ec for any c ∈ P , t(∞) = +1 and t(c) = −1 for any
c ∈ P \ {∞}. If d is a non-negative integer, then let θ = 1

2 ∑c∈P
ec

x−c , otherwise, the family is
discarded. If no families remain under consideration, case 2 of Theorem A1 cannot happen.

• Step 3. For each family retained from step 2, we search for a monic polynomial P of degree d such
that the equation P′′′ + 3θP′′ + (3θ2 + 3θ′ − 4r)P′ + (θ′′ + 3θθ′ + θ3 − 4rθ − 2r′)P = 0 holds. If
such a polynomial exists, let φ = θ + P′

P and let w be a solution of the equation w2 + φw + ( 1
2 φ′ +

1
2 φ2 − r) = 0, then ξ = e

∫
w is a solution of ξ ′′ = rξ. If no such polynomial is found for any family

retained from Step 2, case 2 of Theorem A1 cannot happen.

Appendix A3. Kovacic’s Algorithm of Case 3

• Step 1. For each c ∈ P we define Ec as follows:

(a) If c is a pole of order 1, then Ec = {12}.
(b) If c is a pole of order 2, then Ec = {6 + 12k

n

√
1 + 4b, k = 0,±1,±2, · · · ,± n

2 } ∩Z, where b is a
coefficient of 1/(x− c)2 in the partial fraction expansion for r. Here and below in this case
n ∈ {4, 6, 12}.

(c) E∞ = {6 + 12k
n

√
1 + 4b, k = 0,±1,±2, · · · ,± n

2 } ∩Z, where b refers to coefficients of 1/x2 in
the Laurent series expansion of r at ∞.

• Step 2. Let d = n
12 ∑c∈P t(c)ec, where ec ∈ Ec for any c ∈ P , t(∞) = +1 and t(c) = −1 for

any c ∈ P \ {∞}. If d is a non-negative integer, then let θ = n
12 ∑c∈P

ec
x−c , S = ∏c∈P\{∞}(x− c),

otherwise, the family is discarded. If no families remain under consideration, case 3 of Theorem A1
cannot happen.

• Step 3. For each family retained from step 2, we search for a monic polynomial P of degree d such
that the recursive equations:

Pn = −P,

Pi−1 = −SPi + ((n− i)S′ − Sθ)Pi − (n− i)(i + 1)S2rPi+1; ( i = n, n− 1, · · · , 0),

with P−1 ≡ 0 hold. If such a polynomial exists, let w be a solution of the equation ∑n
i=0

Si Pi
(n−i)! w

i = 0,

then ξ = e
∫

w is a solution of ξ ′′ = rξ. If no such polynomial is found for any family retained from
Step 2, case 3 of Theorem A1 cannot happen.

Appendix B

In this section, we present some known facts about linear differential equations of special forms.
First, we consider a class of two order linear differential equations, which are given by:

d2ξ

dz2 − (az2 + bz + c)ξ = 0, (A4)
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where a 6= 0, b, c are parameters. As an example to illustrate his algorithm, Kovacic gave necessary
and sufficient conditions for which (A4) admits a Liouvillian solution.

Theorem A4. The identity component G0 of (A4) is solvable if and only if (4ac− b2)/4a2 is an odd integer.

Remark A1. A special case of this example is the Weber equation:

d2ξ

dz2 − (
1
4

z2 − 1
2
+ n)ξ = 0, n ∈ C,

where a = 1
2 and b = − 1

2 + n. Hence we see that the Weber equation is solvable if and only if n is an integer.

Next, we consider the Whittaker equation:

d2ξ

dz2 − (
1
4
− κ

z
+

4µ2 − 1
4z2 )ξ = 0, (A5)

where κ, µ are parameters. Using Stokes multipliers, Morales–Ramis in [11] studied the differential
Galois group of (A5). The following result presents necessary and sufficient conditions for solvability
of the identity component of the differential Galois group of (A5).

Theorem A5. The identity component G0 of (A5) is solvable if and only if at least one of the four numbers
κ − µ− 1

2 , κ + µ− 1
2 ,−κ − µ− 1

2 and −κ + µ− 1
2 is a positive integer.

Finally, we consider the Bessel equation,

z2 d2ξ

dz2 + z
dξ

dz
+ (z2 − n2)ξ = 0, (A6)

where n is the parameter. It admits two singular points 0 and ∞. Making the variable changes
ξ(z) = ξ̃/

√
z, we can transform (A6) into the Bessel equation in the reduced form:

d2ξ̃

dz2 = (
4n2 − 1

4z2 − 1)ξ̃. (A7)

For the solvability of identity component of the differential Galois group associated with (A7), we
have the following theorem due to Morales-Ruiz [11].

Theorem A6. The identity component G0 of (A7) is solvable if and only if n + 1/2 belongs to Z.
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