
entropy

Article

Cockroach Swarm Optimization Algorithm for
Travel Planning

Joanna Kwiecień 1,* and Marek Pasieka 2

1 Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering,
AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

2 Swisscom (Schweiz) AG, Waldeggstrasse 51, 3097 Liebefeld, Switzerland; marek.pasieka@gmail.com
* Correspondence: kwiecien@agh.edu.pl; Tel.: +48-12-617-4320

Academic Editor: Mikhail Prokopenko
Received: 27 February 2017; Accepted: 3 May 2017; Published: 6 May 2017

Abstract: In transport planning, one should allow passengers to travel through the complicated
transportation scheme with efficient use of different modes of transport. In this paper, we propose the
use of a cockroach swarm optimization algorithm for determining paths with the shortest travel time.
In our approach, this algorithm has been modified to work with the time-expanded model. Therefore,
we present how the algorithm has to be adapted to this model, including correctly creating solutions
and defining steps and movement in the search space. By introducing the proposed modifications,
we are able to solve journey planning. The results have shown that the performance of our approach,
in terms of converging to the best solutions, is satisfactory. Moreover, we have compared our results
with Dijkstra’s algorithm and a particle swarm optimization algorithm.

Keywords: cockroach swarm optimization; swarm intelligence; journey planning; public transport;
optimization of travel time

1. Introduction

Intensive studies on journey planning problems produced several models and many algorithms
over the last few decades. The popularity of automated planning systems have motivated researchers
to search for methods that are sufficient for practical applications and meet travellers’ expectations.
There was considerable progress in the performance methods for journey planning in public transit
networks in recent years. Upon consideration of public transport timetable models in respect of how
they provide the best possible routes, we can divide them into graph-based models, representing the
timetable as a graph, and array-based models, using an array for the given timetable. Among the
models belonging to the first type, well-known examples include the time-expanded model [1–3] and
the time-dependent model [3,4]. In this paper, we focus on the time-expanded model, which is based
on the concept of the shortest path problem and is still used in many practical applications.

It should be mentioned that the performance of the methods for solving the journey planning
problems is receiving attention in various papers and depends on the complexity of the problems.
Various nature-inspired metaheuristics based on the existing mechanisms of a biological phenomenon
have been widely used to solve many optimization problems with success. The behavior of social
insects and animals, including foraging, nest building, hunting, and cooperative transport has become
a fascinating topic in the various problem-solving tasks in the last few years. Some of the mechanisms
underlying the collective activities show that complex group behavior may emerge from many
relatively simple interacting individuals. The growing interest of many researchers in the emergent
collective intelligence of insects, birds, and mammals led to the design of a special group of algorithms,
known as swarm intelligence, belonging to computational intelligence. Although the algorithms do

Entropy 2017, 19, 213; doi:10.3390/e19050213 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2017, 19, 213 2 of 15

not ensure obtaining optimum solutions, they achieve good results in a reasonable computation time.
For a survey on numerous examples of these algorithms and their applications, one can refer to [5,6].

The cockroach swarm optimization (CSO) algorithm is one of the new methods belonging to
the aforementioned algorithms. The algorithm is modeled after the habits of cockroaches looking
for food [7–9]. It can be used to solve various problems, for example the flow shop scheduling [10]
or the traveling salesman problem [9,11,12]. That algorithm is fairly simple to adapt, although it
requires adjustment to the problems being solved by introduction of certain movement modifications.
According to our knowledge, the CSO algorithm has never been used in solving travel planning,
involving several modes of transport. However, other applications of that algorithm to generally
known combinatorial problems, for example solving scheduling problems, indicate the algorithm’s
potential for solving real problems.

The purpose of this paper is not to provide a new model, but rather to demonstrate that the
swarm-based approach for solving a journey planning problem is possible through the design of case
studies, the characteristic properties of solutions and the type of movement mechanisms implemented.
Therefore, we assumed that the CSO algorithm can be applied to the travel planning problem after
its modification, concerning generation of an initial population, movement performance in particular
procedures, and proper definition of specific parameters. For that reason, the algorithm had to be
implemented and tested in several generated test instances. We should emphasize that we concentrated
on the practical application of the CSO algorithm in the travel planning problem, with the use of the
time-expanded model. We show that appropriate modifications are needed to ensure the admissibility
of solutions and the convergence of the CSO algorithm. In addition, we implemented the particle
swarm optimization (PSO) and Dijkstra’s algorithms to be able to compare our results and evaluate
the quality of our CSO approach.

The rest of the paper is organized as follows: Section 2 gives more insight into journey planning
in a public transit network and briefly describes the time-expanded model. In order to cope with
the application of the CSO algorithm to solve such journey planning, we present some adaptations
of the algorithm in Section 3. These include: (a) an appropriate definition of the cockroach position
which carries a solution, (b) the involvement of rules for movement through the time-expanded graph,
because any replacement of vertices in solutions carried by cockroaches can lead to obtaining incorrect
solutions, and (c) the assumption that, in the case of chase-swarming procedure, the nodes shared
between two cockroaches are found, and then a part of the nodes of one cockroach is conveyed to
the second individual. In Section 4, we provide a description of test instances, results of conducted
experiments and comparison of the CSO, the PSO, and Dijkstra’s algorithms with respect to their
performance on selected instances. We also present the influence of the selected parameters of the
CSO approach on the quality of the obtained solutions, using the variance analysis (ANOVA). Finally,
Section 5 presents a discussion of the results and summarizes the conclusions.

2. The Journey Planning Problem

2.1. Related Work

Many papers focus on road networks and public transportation networks. These important
and challenging problems are extensively investigated by a lot of researchers and solved by different
methods. The problem of journey planning was considered by many researchers. As reported in [13,14],
several techniques and algorithms have been proposed for solving that problem. We can characterize
this problem by using graph theory as a shortest path problem. Mohemmed et al. [15] used the
particle swarm optimization algorithm with a modified priority-based encoding for path finding
problems. Zhang et al. [16] integrated the artificial immune system and chaos operator in structure of
the particle swarm optimization for a realistic freeway network. Effati and Jafarzadeh [17] included
neural networks for solving the shortest path problem. In [18] the improved matrix multiplication
method for solving the all pairs shortest path problem was presented. Moreover, the pulse-coupled

Entropy 2017, 19, 213 3 of 15

neural networks have been applied to realize parallel computation. Rajabi-Bahaabadi et al. [19]
proposed a new model to find optimum paths in road networks, with time-varying stochastic travel
times, and solved it by genetic algorithms. Wang et al. [20] studied a biogeography-based optimization
method for solving multi-objective path finding. Many researchers dealt with genetic algorithms to
solve route planning problems. In [21], the proposed approach uses a priority-based encoding method
to represent all paths. In [22], the genetic-algorithm-based strategy was used to find the shortest path in
a dynamic network. Lozano and Storchi [23] solved the shortest viable path problem in a multi-modal
network using label correcting methods. In turn, in [24], an A∗ label-setting algorithm was presented
to solve a constrained shortest path problem. Zhang et al. [25] investigated the multi-modal shortest
path problem, in which travel time and travel costs were uncertain variables.

A number of papers discussed various ways of finding the shortest path in a multi-modal network,
but most articles often refer to the use of the label-setting algorithm [26], label-correcting algorithm [27],
and genetic algorithms [28]. It should be noted that, in the basic effective solutions for journey planning
in public transit networks, the timetable is formulated as a graph, hence, travel corresponds to a path
in the graph. Therefore, we can solve the problem for example by Dijkstra’s algorithm [1,29]. For a
comprehensive study on heuristic approaches in transportation applications, see [30].

As mentioned in the previous section, among the most studied approaches that model timetable
information as the shortest path problem, one can find the time-expanded [1,2] and time-dependent [4]
models that construct the digraphs. Pyrga et al. [3] discussed and examined both models in respect of
their theoretical considerations and practical use. They proposed those models along with some
speed-up techniques. Concerning CPU time, the time-dependent model was faster, but it was
experimentally proved that the time-expanded approach was more robust than the second one in
the case of realistic problems. It is worth mentioning that various studies focusing on design and
optimization of public transportation networks incorporate approaches based on the time-expanded
model, which is much more flexible and easily extendable, as concluded in [14]. For example
Dib et al. [31] formulated route planning in multimodal transportation networks as the time-expanded
model and proposed a combination of genetic algorithms (AG) and variable neighborhood search
(VNS) to compute multimodal shortest paths. Another way to tackle journey planning, instead of
using one of the graph-based models mentioned above, consists in developing approaches that directly
operate on the timetable. These methods involve CSA that assembles connections into one single
array (connection scan algorithm) [32], RAPTOR (round-based public transit routing) that operates on the
timetable using a dynamic programming approach [33], MCR (multimodal multicriteria RAPTOR) [34],
and FBS (frequency-based search) [35].

2.2. Time-Expanded Model

Due to the great importance of the time-expanded model and its common use in journey planning,
we will briefly describe this approach.

As we know, the basic transport networks consist of nodes that represent stops and edges that
represent links connecting nodes. Itinerary of transit line is formulated as the sequence of traversed
nodes. It should be noted that in the time-expanded model, every time event (e.g., departure or arrival)
at a stop (or a station) is presented as a node and connections between the two events or waiting within
a stop are represented by weighted edges. In other words, in this approach, we have three types of
nodes belonging to a station: arrival and departure nodes that are used to represent connections in
the timetable, and transfer nodes representing modeling transfers. In the simplified version of the
time-expanded model, transfer time between vehicles at a station is negligible. The weight of each
edge represents the time difference between the departure (td) and arrival (ta) times, where td and ta

represent times in minutes after midnight [3]. For each elementary connection from station X to the
next one Y, there is an edge connecting a departure node belonging to the first station with associated
time td, to an arrival node of station Y with associated time ta. In turn, for the realistic version of this
model, one should ensure a minimum transfer time at a station [36]. Therefore, for every arrival node,

Entropy 2017, 19, 213 4 of 15

two additional edges are assumed: one edge to ensure the possibility of departure by the same vehicle,
and a second edge for the first transfer node to allow transfers. For a detailed description, see [3].
Unfortunately, such an approach yields a high number of edges. Taking into account the earliest arrival
problem, in the case of removing some nodes (nodes having an outgoing degree of one), the original
size of the graph in the time-expanded model can be reduced [3,33].

3. Cockroach Swarm Optimization Algorithm for Transport Planning

Transport planning, which has been defined in the previous section, can be solved with various
algorithms. One way of solving the described problem would be to use the cockroach swarm
optimization algorithm with some of the proposed modifications described here. The issues presented
in the subsequent parts of this paper concern designing of the cockroach swarm optimization algorithm
to solve a specific travel planning problem, taking into account the proper representation of the solution,
the determination of the neighborhood, the distance of individuals, procedures of the movement in
the space of solutions, and the selection of the parameters that control the algorithm operation.
We assumed the TE model [36] and restricted ourselves to travel time (arrival at the target) as a single
optimization criterion.

Formally, we considered a set of stations Ω, a set of stop events ΨS per station S ∈ Ω, and a set of
elementary connections ∆, whose elements were tuples of the form δ = {Zd, Za, Sd, Sa, td, ta}, where [37]:

• Zd—stop event of the departing vehicle,
• Za—stop event of the arriving vehicle,
• Sd—station from which the vehicle departs,
• Sa—station at which the vehicle arrives, and
• td, ta—the departure and arrival times, respectively.

Given the start station (A) and the end station (B), the task was to find the sequence P ∈ ∆,
P = (δ1, δ2, . . . , δk) so that Sd(δ1) = A and Sa(δk) = B and minimize the travel time, taking into account
the limitation of maintaining a minimum time buffer (b) for safe transfer between public transportation
vehicles. The departure station of δi+1 is the arrival station of δi [3,14].

In this paper, the objective function we want to minimize is defined as a sum of times taken
between departing from the previous node and arriving to the next node (including the transfer time)
until the final station (B) is reached. Therefore, the objective function f is defined as follows:

f = ∑k
i=1(ta(δi)− td(δi)) + ∑k−1

i=1 (td(δi+1)− ta(δi)), (1)

with the constraint of:
td(δi+1)− ta(δi) ≥ b. (2)

3.1. Cockroach Swarm Optimization Algorithm—Basic Approach

The cockroach swarm optimization (CSO) algorithm is inspired by the behavior of cockroaches
looking for food, such as moving in swarms, scattering or escaping from light [7–9]. Hence, a set of
rules that models the collective cockroach behavior is employed in the CSO algorithm. In its initial
step, the algorithm focused on creating a set of possible solutions. In general, the initial solutions are
randomly generated in the search space. Furthermore, at each iteration, the CSO algorithm involves
three procedures for solving different optimization problems such as chase-swarming, dispersing, and
ruthless behavior.

In the chase-swarming procedure, in the new cycle, the strongest cockroaches carry the local
best solutions (Pi), form small swarms, and move forward to the global optimum (Pg). Within this
procedure, each individual (Xi) moves to its local optimum in the range of its visibility. There can
occur a situation when a cockroach moving in a small group becomes the strongest by finding a better

Entropy 2017, 19, 213 5 of 15

solution, because individuals follow in other ways that their local optimums. A lonely cockroach,
within its own scope of visibility, is its local optimum and it moves forward to the best global solution.

Another procedure concerns the dispersion of individuals. It is performed from time to time to
preserve the diversity of cockroaches. The procedure involves each cockroach performing a random
step in the search space. We can also deal with ruthless behavior when a random individual is replaced
by the currently best individual. That process corresponds to the phenomenon of eating weaker
cockroaches in the case of inadequate food availability.

The main steps of the basic CSO algorithm can be described as below:

• STEP 1: generate a population of n individuals and initialize algorithm’s parameters (step,
visual—visual scope, D—space dimension, stopping criteria).

• STEP 2: Search Pi (within the visual scope of the ith individual) and Pg.
• STEP 3: Implement behavior of chase-swarming and update Pg at the end; if a cockroach Xi

is local optimum, then it goes to Pg according to Xi = Xi + step·rand·(Pg − Xi), where rand is a
random number within [0,1]; otherwise, the cockroach Xi goes to Pi (within its visibility) through
formula Xi = Xi + step rand·(Pi − Xi).

• STEP 4: Implement dispersing procedure and update Pg.
• STEP 5: Implement ruthless procedure (Xk = Pg or Xk = 0, where k = 1, . . . , n).
• STEP 6: Repeat steps 2–5 until a termination criterion is satisfied and output the final results.

The stopping criterion can include the maximum number of iterations, number of iterations
without improvement, computation time, obtaining an acceptable error of a solution, and so on.

3.2. Proposed Adaptation of Cockroach Swarm Optimization Algorithm to Time-Expanded Model

An adaptation of the cockroach swarm algorithm to work with the time-expanded model requires
additional operations. Therefore, our approach is an extension of the basic CSO algorithm with
some modifications.

As we know, each cockroach generates one solution at the beginning of the CSO algorithm.
Possible solutions encoded in the form of real variables, concerning at least the position of individuals
in the cockroach swarm optimization algorithm, do not reflect the nature of the problem. Therefore,
the solution represented by the cockroach is a set of successive vertices in the graph leading from the
start to the final destination. It must be correct and consist only of the permitted moves. In order to
generate the initial population of solutions, we used specific rules for movement through the graph
shown in the activity diagram (Figure 1), because a random choice of the next node did not result in
achievement of the destination node. When generating the initial solution, beginning with the start
node, subsequent nodes are searched in the neighborhood (belonging to the same line), until the final
node is reached. If another node is not found in the neighborhood of the current node within the same
line, either the solution generation is interrupted (after the limit of steps has been reached), or random
selection of a new line is effected from among those available in the current node, followed by the
search of a new node in the neighborhood, within a new line. If a new node is not found or another
line is not selected, the procedure is ended, without returning a correct solution.

Upon selection of initial solutions, the solution quality (determined by the travel time in our
case) is estimated. The purpose of the subsequent steps of the CSO algorithm is to improve solutions
and select the best one, with the fastest time of travel to the destination stop. In the chase-swarming
procedure, a weaker cockroach tends toward the better solution representing a shorter destination
time. It should be mentioned that appropriate interpretation of cockroach movement is necessary to
effectively solve various optimization problems. Therefore, in order to increase the efficiency of the
CSO algorithm, we assume that a step in the search space consists in taking over several nodes from
a better one and the number of said nodes is determined by the step size. In addition, the visibility
parameter (visual) denotes the minimum number of common nodes that two cockroaches should have

Entropy 2017, 19, 213 6 of 15

in order to be visible to each other. Thus, visual = 2 means that the intersection of routes carried by
both cockroaches at two points would be sufficient.Entropy 2017, 19, 213 6 of 14

Figure 1. Rules to create the initial population.

If two cockroaches have no common nodes, they cannot move with respect to each other. In
detail, the process of creating a new solution in this procedure starts with a random selection of one
of the common edges (en) for a weaker and a stronger cockroaches. Next, the edges are copied to the
new solution, from the first edge to the en from the weaker cockroach and the r (r is a randomly
chosen number) of the edges following the en from the stronger cockroach. If, as a result of this
operation, the end node has not been reached, the missing edges are created in the same way as in
the process of initial solution generation.

Taking into account the described modifications, the steps of implementing our chase
swarming procedure is outlined as follows:

procedure chase-swarming
initialize:

parameter graph from TE model;
parameter list of k cockroaches;
parameters visual, maxAttempt—maximum attempts to improve chase-swarming;
n–target node

for each cockroach k do:
oldSolution, newSolution := k.currentSolution
visibleRoaches := empty list
for each cockroach c do:

Figure 1. Rules to create the initial population.

If two cockroaches have no common nodes, they cannot move with respect to each other. In detail,
the process of creating a new solution in this procedure starts with a random selection of one of the
common edges (en) for a weaker and a stronger cockroaches. Next, the edges are copied to the new
solution, from the first edge to the en from the weaker cockroach and the r (r is a randomly chosen
number) of the edges following the en from the stronger cockroach. If, as a result of this operation, the
end node has not been reached, the missing edges are created in the same way as in the process of
initial solution generation.

Taking into account the described modifications, the steps of implementing our chase swarming
procedure is outlined as follows:

Entropy 2017, 19, 213 7 of 15

procedure chase-swarming

initialize:
parameter graph from TE model;
parameter list of k cockroaches;
parameters visual, maxAttempt—maximum attempts to improve chase-swarming;
n–target node

for each cockroach k do:
oldSolution, newSolution := k.currentSolution
visibleRoaches := empty list
for each cockroach c do:

if k == c continue;
if c contains at least visual common edges with k and c solution is better than k solution:

add c to visibleRoaches
end if

end for
if visibleRoaches is empty break loop
v := select the best cockroach from visibleRoaches
en := select random common edge for v and k
newSolution := remove all edges after en from newSolution
newSolution := append random number of edges r from v after en (en+1, . . . , en+r) // (following the better

cockroach v)
for i = 0 to maxAttempt:

newSolution := randomly generate remaining path for newSolution
if newSolution reached n break loop

end for
if newSolution is better than oldSolution:

k.currentSolution := newSolution
else

k.currentSolution := oldSolution
end if

end for

In the case of a dispersion procedure, we decided to select a random number of the nth node from
the end of the path, and then generate a new route from this node to the destination. The pseudo-code
of this procedure can be stated as follows:

procedure dispersing

initialize:
parameter graph from TE model;
parameter list of k cockroaches;
parameters maxStep—maximum dispersion step, maxAttempt—maximum attempts to improve dispersing;
n–target node

for each cockroach k do:
oldSolution, newSolution := k.currentSolution
step := random number from range <1; maxStep>
newSolution := remove last step nodes from newSolution
for i = 0 to maxAttempt:

newSolution := randomly generate remaining path for newSolution
if newSolution reached n break loop

end for
if newSolution is better than oldSolution:

k.currentSolution := newSolution
else

k.currentSolution := oldSolution
end if

end for

Entropy 2017, 19, 213 8 of 15

The searching procedure ceases if the stopping criterion, defined as the maximum number of
iterations or the number of unimproved iterations, is met.

4. Experiments and Results

We developed many experiments to assess the performance of the presented CSO algorithm. Many
runs of the proposed approach were executed and the solution quality was taken into account. We have
prepared seven benchmarks for the construction of problems of varying complexity (see Table 1). The
time-expanded model was simulated. We assumed that all lines had regular departures (12 or 48 daily)
at equal intervals, regardless of the time of day. In order to test the effectiveness of the CSO algorithm,
experiments were performed 10 times for each test instance, with the same setting of parameters.
In all experiments we assumed fixed parameters of the CSO algorithm during all iterations. The
performance of our CSO adaptation was evaluated in comparison with Dijkstra’s [1,29] and the particle
swarm optimization [15,38,39] algorithms. All algorithms were implemented in the Java programming
language, using a Linux operating system. We ran all experiments using an Intel Core i5-5200U
2.20 GHz processor with 16 GB RAM.

Table 1. Characteristics of the time-expanded model.

Number
of Lines

Number
of Stops

Daily Number
of Departures

Number of
Arrival Nodes

Number of
Departure Nodes

Number of
Transfer Nodes

Total Number
of Nodes

1 21 12 217 229 228 674
1 21 48 865 913 912 2690
2 33 12 361 385 384 1130
2 33 48 1441 1537 1536 4514
6 52 12 673 745 744 2162
6 52 48 2689 2977 2976 8642
7 52 12 674 747 746 2167

4.1. Description of the Considered Test Instances

In order to verify the correctness and the quality of the implemented algorithm, we designed
several test instances with simple timetables. Below, we present a short description of those.

In the first case, we constructed only one transportation line, containing 21 stops with
12 departures per day. It is worth noting that, for this line, a graph with 674 vertices will be chosen.
Consequently, the increase of the number of departures to 48 per day required a more complex graph
to be adopted, as shown in Table 1. On this basis, the implemented solutions and processes of graph
construction were validated.

In the second experiment, we decided to investigate the correct detection of transfers between the
transportation lines, also for the two versions of timetables (12 and 48 departures). For this purpose,
the second transportation line intersecting with the first one at a single stop was added. It should be
emphasized that the only possible route between the desired points required transfer operations.

In another experiment, the area of travel was slightly expanded. Therefore, we increased the
number of public transportation lines to six. In addition, we assumed that at least two transfers were
required to reach the target point.

In the last experiment, we set the number of transportation lines at seven. In that case, one night
line was also taken into account, which was necessary to ensure diversity among instances.

All of the test instances conducted in the context of the time-expanded model are summarized in
Table 1. Therefore, we have a summary describing the dependence of the number of created nodes
in the graph on the complexity of the transportation plan. Note that the number of transfer nodes is
always one less than the number of departure nodes.

Entropy 2017, 19, 213 9 of 15

4.2. CSO Performance

By implementing the CSO algorithm described in the previous section, its performance was
obtained and then compared with Dijkstra’s and PSO algorithms. In addition, the variance analysis
(ANOVA) was applied in the statistical evaluation of the CSO results. We checked how the variable
containing the travel time obtained was influenced by the population size and the visual coefficient.
We tested the settings of the parameter: visual = 1, 2, 3, 4 and the population size: 5, 15, and
50 individuals. Depending on the test instance, our analysis indicated either an essential influence or
no essential influence of the visual parameter on the travel time obtained. For each test instance, there
existed, however, an essential dependence of that variable that contained the travel time obtained on
the population size. However, no interactions between the visual and population size factors occurred.
Selected results of the significance levels p for two analyses (instances with six lines, marked as 6/12
and 6/48) and the measures of the effect magnitude are presented in Table 2.

Table 2. Results of the ANOVA test for instances 6/12 and 6/48.

Instance Effect p η2

6/12
visual 0.79 0.01
population size 0 0.43
visual × population size 0.17 0.07

6/48
visual 0.01 0.1
population size 0 0.44
visual × population size 0.74 0.03

As we can see, the population size presents a strong effect (the travel time variable is explained by
the population size variable in the proportion of more than 40%) in both cases; however, the visual
either fails to indicate any influence (test instance 6/12) or shows a medium-size effect (test instance
6/48). The influence of the visual and population size parameters on the travel time obtained (vertical
bars refer to 0.95 confidence intervals) are presented for both test instances in Figures 2 and 3.

Entropy 2017, 19, 213 9 of 14

individuals. Depending on the test instance, our analysis indicated either an essential influence or
no essential influence of the visual parameter on the travel time obtained. For each test instance,
there existed, however, an essential dependence of that variable that contained the travel time
obtained on the population size. However, no interactions between the visual and population size
factors occurred. Selected results of the significance levels p for two analyses (instances with six
lines, marked as 6/12 and 6/48) and the measures of the effect magnitude are presented in Table 2.

Table 2. Results of the ANOVA test for instances 6/12 and 6/48.

Instance Effect p η2

6/12
visual 0.79 0.01
population size 0 0.43
visual × population size 0.17 0.07

6/48
visual 0.01 0.1
population size 0 0.44
visual × population size 0.74 0.03

As we can see, the population size presents a strong effect (the travel time variable is explained
by the population size variable in the proportion of more than 40%) in both cases; however, the
visual either fails to indicate any influence (test instance 6/12) or shows a medium-size effect (test
instance 6/48). The influence of the visual and population size parameters on the travel time obtained
(vertical bars refer to 0.95 confidence intervals) are presented for both test instances in Figures 2 and 3.

Figure 2. The influence of the selected parameters (test instance 6/12).

To investigate which of the parameters being tested, visual or population size, are different
from each other, post hoc tests (Tukey tests) were conducted. Selected test results for test instance
6/48 are presented in Table 3. For the visual parameter, Tukey test showed essential differences of
the average values between 1 and 2 and 4. In turn, for the population size parameter, tests showed
essential differences between all the groups. For test instance 6/12, essential differences also
occurred in all of the values of the population size parameter. Therefore, in our following tests, we
assumed various sizes of population (5, 15, and 50) and visual = 3.

Each run of the CSO approach was terminated after 1000 iterations or if there was no
improvement of the best solution through 25 iterations. In all tests: maxStep = 15, maxAttempt = 100.
Table 4 shows the selected results of the CSO algorithm for the test instance with only one line,
relating, however, to various sizes of population. For one line with 12 departures per day (marked as
1/12), the population consisting of 5 individuals is sufficient to find the best solution of travel time.
Through 10 independent runs of the CSO approach, that solution was found in four cases. It turned

Figure 2. The influence of the selected parameters (test instance 6/12).

To investigate which of the parameters being tested, visual or population size, are different from
each other, post hoc tests (Tukey tests) were conducted. Selected test results for test instance 6/48 are
presented in Table 3. For the visual parameter, Tukey test showed essential differences of the average

Entropy 2017, 19, 213 10 of 15

values between 1 and 2 and 4. In turn, for the population size parameter, tests showed essential
differences between all the groups. For test instance 6/12, essential differences also occurred in all of
the values of the population size parameter. Therefore, in our following tests, we assumed various
sizes of population (5, 15, and 50) and visual = 3.

Entropy 2017, 19, 213 10 of 14

out, however, that such a small number of solutions was not enough to solve the problem with 48
departures. The shortest travel time amounted to 1 h and 9 min. That value was obtained in three
runs of the CSO algorithm. In the same test instance, the longest travel time amounted to 5 h and 21
min. Upon the increase of the population of individuals up to 15, we obtained the shortest travel
time of 41 min in three runs. It is worth noting that the CSO algorithm, with the population of 50
solutions, generated the shortest travel time (41 min) in eight runs. What is interesting is that the
worst solution for said population size was the same as the best solution for the population equal to 5.

Figure 3. The influence of the selected parameters (test instance 6/48).

Table 3. Results of Tukey test (test instance 6/48).

Visual {1} {2} {3} {4}
1 0.032497 0.196031 0.010639
2 0.032497 0.853130 0.979342
3 0.196031 0.853130 0.628842
4 0.010639 0.979342 0.628842

The number of correct solutions obtained during 10 runs, depending on the population size, is
shown in Figure 4. As expected, the increased population improved the chance of finding the best
solution. Note that in the test instance 6/48 (six lines and 48 departures per day), the best result could
not be attained anyway.

Table 4. Results for one line.

Population
Daily Number of

Departures
Travel Time [h:min] Computational Time [ms]

5 12
00:45, 00:45, 02:45, 00:45, 02:45, 02:45, 02:45,

02:45, 06:45, 00:45
38, 23, 9, 10, 6, 10, 5, 4, 8, 3

15 12
00:45, 00:45, 00:45, 00:45, 02:45, 00:45, 00:45,

02:45, 00:45, 00:45
108, 56, 13, 31, 16, 9, 18, 8, 7, 9

50 12
00:45, 00:45, 00:45, 00:45, 00:45, 00:45, 00:45,

00:45, 00:45, 00:45,
110, 82, 52, 56, 31, 50, 43, 64, 50, 35

5 48 03:29, 02:05, 05:21, 03:01, 05:21, 01:09, 03:01,
03:57, 01:09, 01:09

17, 11, 6, 4, 2, 4, 2, 3, 3, 2

15 48
00:41, 00:41, 01:37, 03:01, 01:37, 00:41, 04:25,

01:09, 01:09, 01:37 58, 15, 10, 12, 12, 11, 14, 11, 6, 12

50 48
00:41, 00:41, 00:41, 00:41, 00:41, 01:09, 00:41,

00:41, 01:09, 00:41
28, 29, 33, 94, 29, 30, 46, 43, 26, 47

Figure 3. The influence of the selected parameters (test instance 6/48).

Table 3. Results of Tukey test (test instance 6/48).

Visual {1} {2} {3} {4}

1 0.032497 0.196031 0.010639
2 0.032497 0.853130 0.979342
3 0.196031 0.853130 0.628842
4 0.010639 0.979342 0.628842

Each run of the CSO approach was terminated after 1000 iterations or if there was no improvement
of the best solution through 25 iterations. In all tests: maxStep = 15, maxAttempt = 100. Table 4 shows
the selected results of the CSO algorithm for the test instance with only one line, relating, however, to
various sizes of population. For one line with 12 departures per day (marked as 1/12), the population
consisting of 5 individuals is sufficient to find the best solution of travel time. Through 10 independent
runs of the CSO approach, that solution was found in four cases. It turned out, however, that such
a small number of solutions was not enough to solve the problem with 48 departures. The shortest
travel time amounted to 1 h and 9 min. That value was obtained in three runs of the CSO algorithm.
In the same test instance, the longest travel time amounted to 5 h and 21 min. Upon the increase of the
population of individuals up to 15, we obtained the shortest travel time of 41 min in three runs. It is
worth noting that the CSO algorithm, with the population of 50 solutions, generated the shortest travel
time (41 min) in eight runs. What is interesting is that the worst solution for said population size was
the same as the best solution for the population equal to 5.

Entropy 2017, 19, 213 11 of 15

Table 4. Results for one line.

Population Daily Number of Departures Travel Time [h:min] Computational Time [ms]

5 12 00:45, 00:45, 02:45, 00:45, 02:45,
02:45, 02:45, 02:45, 06:45, 00:45 38, 23, 9, 10, 6, 10, 5, 4, 8, 3

15 12 00:45, 00:45, 00:45, 00:45, 02:45,
00:45, 00:45, 02:45, 00:45, 00:45 108, 56, 13, 31, 16, 9, 18, 8, 7, 9

50 12 00:45, 00:45, 00:45, 00:45, 00:45,
00:45, 00:45, 00:45, 00:45, 00:45, 110, 82, 52, 56, 31, 50, 43, 64, 50, 35

5 48 03:29, 02:05, 05:21, 03:01, 05:21,
01:09, 03:01, 03:57, 01:09, 01:09 17, 11, 6, 4, 2, 4, 2, 3, 3, 2

15 48 00:41, 00:41, 01:37, 03:01, 01:37,
00:41, 04:25, 01:09, 01:09, 01:37 58, 15, 10, 12, 12, 11, 14, 11, 6, 12

50 48 00:41, 00:41, 00:41, 00:41, 00:41,
01:09, 00:41, 00:41, 01:09, 00:41 28, 29, 33, 94, 29, 30, 46, 43, 26, 47

The number of correct solutions obtained during 10 runs, depending on the population size, is
shown in Figure 4. As expected, the increased population improved the chance of finding the best
solution. Note that in the test instance 6/48 (six lines and 48 departures per day), the best result could
not be attained anyway.

Entropy 2017, 19, 213 11 of 14

For simpler TE models, relating to 12 departures a day, we obtained the best solution, although
only in several runs.

Figure 4. Number of the best solutions depending on the population size.

However, with the population composed of five solutions, it was not possible to obtain the best
known solution for any of the test instances in which 48 departures a day were taken into account
(marked as 1/48, 2/48, and 6/48, respectively).

In addition, we implemented the particle swarm optimization algorithm. We assume that
following the neighboring particles consist of attempts at “taking over” part of the graph edge from
the solution of a better particle; that is, the particle that “follows” another one is trying to add to its
route a node from the particle being followed. The number of nodes that is tried to be added is
determined by the particle’s velocity. Moreover, we assumed that the difference of one hour in
reaching the target node caused the increase of one node in the particle’s velocity.

Table 5 shows the experimental results of the CSO algorithm performance in comparison with
the results obtained by Dijkstra’s and PSO algorithms for each test instance. Among the results
obtained from the swarm algorithms, the best and the worst values of travel time were gathered. The
first column shows the population size, the second one presents specific test instances, described by
the numbers of lines and departures. The columns “Best travel” and “Worst travel” represent the
best and worst travel times found by the CSO and the PSO algorithms, respectively. The fifth and the
eighth columns give the average computational times of 10 independent runs of swarm algorithms.
The last column shows reference solutions obtained by Dijkstra’s algorithm.

Table 5. Selected results of seven test instances.

Population Instance
CSO PSO

Dijkstra
[h:min] Best Travel

[h:min]
Worst Travel

[h:min]
Mean Time

[ms]
Best Travel

[h:min]
Worst Travel

[h:min]
Mean Time

[ms]
5 1/12 00:45 06:45 11.6 00:45 08:45 11:5

00:45 15 1/12 00:45 02:45 27.5 00:45 02:45 30.8
50 1/12 00:45 00:45 57.3 00:45 00:45 172.8
5 1/48 01:09 05:21 5.4 00:41 11:53 2.7

00:41
15 1/48 00:41 04:25 16.1 00:41 05:21 16.3

Figure 4. Number of the best solutions depending on the population size.

For simpler TE models, relating to 12 departures a day, we obtained the best solution, although
only in several runs.

However, with the population composed of five solutions, it was not possible to obtain the best
known solution for any of the test instances in which 48 departures a day were taken into account
(marked as 1/48, 2/48, and 6/48, respectively).

In addition, we implemented the particle swarm optimization algorithm. We assume that
following the neighboring particles consist of attempts at “taking over” part of the graph edge from the

Entropy 2017, 19, 213 12 of 15

solution of a better particle; that is, the particle that “follows” another one is trying to add to its route a
node from the particle being followed. The number of nodes that is tried to be added is determined by
the particle’s velocity. Moreover, we assumed that the difference of one hour in reaching the target
node caused the increase of one node in the particle’s velocity.

Table 5 shows the experimental results of the CSO algorithm performance in comparison with the
results obtained by Dijkstra’s and PSO algorithms for each test instance. Among the results obtained
from the swarm algorithms, the best and the worst values of travel time were gathered. The first
column shows the population size, the second one presents specific test instances, described by the
numbers of lines and departures. The columns “Best travel” and “Worst travel” represent the best and
worst travel times found by the CSO and the PSO algorithms, respectively. The fifth and the eighth
columns give the average computational times of 10 independent runs of swarm algorithms. The last
column shows reference solutions obtained by Dijkstra’s algorithm.

Table 5. Selected results of seven test instances.

Population Instance

CSO PSO
Dijkstra
[h:min]Best Travel

[h:min]
Worst Travel

[h:min]
Mean

Time [ms]
Best Travel

[h:min]
Worst Travel

[h:min]
Mean

Time [ms]

5 1/12 00:45 06:45 11.6 00:45 08:45 11:5
00:4515 1/12 00:45 02:45 27.5 00:45 02:45 30.8

50 1/12 00:45 00:45 57.3 00:45 00:45 172.8

5 1/48 01:09 05:21 5.4 00:41 11:53 2.7
00:4115 1/48 00:41 04:25 16.1 00:41 05:21 16.3

50 1/48 00:41 01:09 40.5 00:41 01:37 90.0

5 2/12 02:38 08:38 4.2 02:38 16:38 5.6
02:3815 2/12 02:38 04:38 33.8 02:38 12:38 25.2

50 2/12 02:38 04:38 84.1 02:38 04:38 215.3

5 2/48 02:31 09:43 16.3 02:31 13:43 3.5
01:0715 2/48 01:07 03:55 28.3 01:07 11:23 16.5

50 2/48 01:07 02:03 131.6 01:07 08:35 187

5 6/12 04:07 18:07 14.8 14:07 22:07 9.3
04:0715 6/12 04:07 12:07 31.7 08:07 14:07 74.5

50 6/12 04:07 06:07 122.3 06:07 10:07 272.3

5 6/48 03:22 11:46 11.6 11:18 17:22 3.8
01:0215 6/48 01:58 08:30 42.1 05:42 13.38 36

50 6/48 01:30 05:42 187.5 02:54 13:38 301.1

5 7/12 04:07 12:07 15.1 08:07 16:07 12
04:0715 7/12 04:07 8:07 38.5 04:07 16:07 56.3

50 7/12 04:07 6:07 153.1 04:07 08:07 284

Depending on particular tests, and upon comparison with Dijkstra’s algorithm, the best results
obtained with the CSO algorithm were similar to those of the second algorithm. In all of the test
instances the results show that application of a larger population (50 individuals) reduced travel time,
and produced the same solutions as Dijkstra’s algorithm in most cases. It needs to be pointed out that
such an improvement was reached at the expense of computational time. Note that it does not imply
that the optimum result was achieved. In the cases presented here, the result was not satisfying in one
test instance with six lines and 48 departures per day.

When analyzing the results obtained with the use of the PSO algorithm, one can conclude that the
CSO algorithm performs better than the PSO does. We should notice that the best travel times obtained
with the PSO algorithm for two instances (6/12 and 6/48) are worse than those obtained with the use
of the CSO algorithm. We should further consider the worst solutions, in all of the analyzed cases,
there was a distinct domination of the CSO algorithm over the PSO one. Additionally, the average
time of calculation performance, with the population increased to 50 individuals, indicates that the
CSO algorithm provides a better solution when such specific parameters have been selected.

Entropy 2017, 19, 213 13 of 15

5. Conclusions

As we mentioned at the beginning of this work, we are merely presenting our research about
the cockroach swarm optimization algorithm used to solve travel planning. Hence, we have shown
that it is possible to use the CSO algorithm with the time-expanded model to solve travel planning,
with some additional assumptions. To apply the CSO approach, we had to define movement in the
search space. Therefore, we introduced a set of rules for determining paths in the time-expanded
graph and some modifications of the searching capability during the whole algorithm. The proposed
CSO approach was tested on seven instances of varying complexity. Solving travel planning was a
complex process, but the results obtained were satisfactory. We compared the performance of the
CSO, the PSO, and Dijkstra’s algorithms applied to the time-expanded model. Many experiments
were conducted for different test problems and various sizes of population (5, 15, and 50). We also
conducted some tests relating to the influence of visual and population size parameter settings on the
results obtained, using the variance analysis (ANOVA). Our research proved that, in the majority of
cases, the value of visual parameter did not have any significant influence on the travel time obtained.
We observed that, for all the test instances, the increase of the population to up to 50 individuals
improved the performance of the CSO algorithm, in respect of the travel time. However, it took more
computational time, and it could be too slow to be used when solving larger problems. It should be
mentioned, that for the test instance with six lines and 48 departures per day, the obtained solutions
were not as good as those obtained with Dijkstra’s algorithm, but the improvement of travel time for
the population of 50 individuals was clearly visible. However, our experiments indicated that the CSO
method outperforms the PSO in terms of the best travel time.

Analyzing results, we observe that by introducing some modifications into the framework of
the CSO approach, the approach can produce good solutions, but it requires the use of speed-up
techniques or parallel computing. Therefore, one possibility for future research could examine the
performance of a GPU implementation of our approach. Furthermore, the use of other models, instead
of the time-expanded model, could lead to better results.

Acknowledgments: This paper was supported by the statutory research of AGH University of Science and
Technology (no. 11.11.120.396).

Author Contributions: The concept of the CSO algorithm with the proposed modifications was designed by
Joanna Kwiecień. The CSO approach, the PSO, and Dijkstra’s algorithms were implemented by Marek Pasieka.
Material of Sections 1–3 was written by Joanna Kwiecień. The rest of the paper was written by both authors.
All experiments were conceived, performed, and described by both authors. Authors have read and approved the
final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Schulz, F.; Wagner, D.; Weihe, K. Dijkstra’s algorithm on-line: An empirical case study from public railroad
transport. ACM J. Exp. Algorithmics 2000, 5, 1–23. [CrossRef]

2. Schulz, F.; Wagner, D.; Zaroliagis, C. Using multi-level graphs for timetable information in railway systems.
In Algorithm Engineering and Experiments; Mount, D.M., Stein, C., Eds.; Lecture Notes in Computer Science
(LNCS); Springer: Heidelberg, Germany, 2002; Volume 2409, pp. 43–59.

3. Pyrga, E.; Schulz, F.; Wagner, D.; Zaroliagis, C. Efficient Models for Timetable Information in Public
Transportation Systems. ACM J. Exp. Algorithmics 2008, 12, 1–39. [CrossRef]

4. Brodal, G.S.; Jacob, R. Time dependent networks as models to achieve fast exact time-table queries.
Electron. Notes Theor. Comput. Sci. 2004, 92, 3–15. [CrossRef]

5. Xing, B.; Gao, W. Innovative Computational Intelligence: A Rough Guide to 134 Clever Algorithms; Springer:
Cham, Switzerland, 2014.

6. Yang, X.-S. Nature-Inspired Metaheuristic Algorithms, 2nd ed.; Luniver Press: Frome, UK, 2010.
7. Chen, Z. A modified cockroach swarm optimization. Energy Proced. 2011, 11, 4–9.

http://dx.doi.org/10.1145/351827.384254
http://dx.doi.org/10.1145/1227161.1227166
http://dx.doi.org/10.1016/j.entcs.2003.12.019

Entropy 2017, 19, 213 14 of 15

8. Chen, Z.; Tang, H. Cockroach swarm optimization for vehicle routing problems. Energy Procedia 2011, 13,
30–35. [CrossRef]

9. Cheng, L.; Wang, Z.; Yanhong, S.; Guo, A. Cockroach swarm optimization algorithm for TSP. Adv. Eng. Forum
2011, 1, 226–229. [CrossRef]

10. Kwiecień, J.; Filipowicz, B. Comparison of firefly and cockroach algorithms in selected discrete and
combinatorial problems. Bull. Pol. Acad. Sci. Tech. Sci. 2014, 62, 797–804. [CrossRef]

11. Kwiecień, J. Use of different movement mechanisms in cockroach swarm optimization algorithm for traveling
salesman problem. In Artificial Intelligence and Soft Computing; Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M., Eds.; Lecture Notes in Computer Science (LNCS); Springer:
Cham, Switzerland, 2016; Volume 9693, pp. 484–493.

12. Obagbuwa, I.C.; Abidoye, A.P. Binary cockroach swarm optimization for combinatorial optimization
problem. Algorithms 2016, 9, 59. [CrossRef]

13. Bast, H.; Delling, D.; Goldberg, A.; Müller-Hannemann, M.; Pajor, T.; Sanders, P.; Wagner, D.; Werneck, R.F.
Route Planning in Transportation Networks. In Algorithm Engineering; Kliemann, L., Sanders, P., Eds.; Lecture
Notes in Computer Science (LNCS); Springer: Cham, Switzerland, 2016; Volume 9220, pp. 19–80.

14. Müller-Hannemann, M.; Schulz, F.; Wagner, D.; Zaroliagis, C. Timetable information: Models and
algorithms. In Algorithmic Methods for Railway Optimization; Geraets, F., Kroon, L.G., Schoebel, A., Wagner, D.,
Zaroliagis, C.D., Eds.; Lecture Notes in Computer Science (LNCS); Springer: Heidelberg, Germany, 2007;
Volume 4359, pp. 67–90.

15. Mohemmed, A.W.; Sahoo, N.C.; Geok, T.K. Solving shortest path problem using particle swarm optimization.
Appl. Soft Comput. 2008, 8, 1643–1653. [CrossRef]

16. Zhang, Y.; Jun, Y.; Wei, G.; Wu, L. Find multi-objective paths in stochastic networks via chaotic immune PSO.
Expert Syst. Appl. 2010, 37, 1911–1919. [CrossRef]

17. Effati, S.; Jafarzadeh, M. Nonlinear neural networks for solving the shortest path problem. Appl. Math.
Comput. 2007, 189, 567–574. [CrossRef]

18. Zhang, Y.; Wu, L.; Wei, G.; Wang, S. A novel algorithm for all pairs shortest path problem based on matrix
multiplication and pulse coupled neural network. Digit. Signal Process. 2011, 21, 517–521. [CrossRef]

19. Rajabi-Bahaabadi, M.; Shariat-Mohaymany, A.; Babaei, M.; Ahn, C.W. Multi-objective path finding in
stochastic time-dependent road networks using non-dominated sorting genetic algorithm. Expert Syst. Appl.
2015, 42, 5056–5064. [CrossRef]

20. Wang, S.; Yang, J.; Liu, G.; Du, S.; Yan, J. Multi-objective path finding in stochastic networks using a
biogeography-based optimization method. Simulation 2016, 92, 637–647. [CrossRef]

21. Gen, M.; Cheng, R.; Wang, D. Genetic algorithms for solving shortest path problems. In Proceedings of the
1997 IEEE International Conference on Evolutionary Computing, Indianapolis, IN, USA, 13–16 April 1997;
pp. 401–406.

22. Davies, C.; Lingras, P. Genetic algorithms for rerouting shortest paths in dynamic and stochastic networks.
Eur. J. Oper. Res. 2003, 144, 27–38. [CrossRef]

23. Lozano, A.; Storchi, G. Shortest viable path algorithm in multimodal networks. Transp. Res. Part A Policy Pract.
2001, 35, 225–241. [CrossRef]

24. Ma, T.Y. An A∗ label-setting algorithm for multimodal resource constrained shortest path problem.
Procedia Soc. Behav. Sci. 2014, 111, 330–339. [CrossRef]

25. Zhang, Y.; Liu, P.; Yang, L.; Gao, Y. A bi-objective model for uncertain multi-modal shortest path problems.
J. Uncertain. Anal. Appl. 2015, 3, 8. [CrossRef]

26. Horn, M.E.T. An extended model and procedural framework for planning multi-modal passenger journeys.
Transp. Res. Part B Methodol. 2003, 37, 641–660. [CrossRef]

27. Liu, L.; Yang, J.; Mu, H.; Li, X.; Wu, F. Exact algorithm for multi-criteria multi-modal shortest path with
transfer delaying and arriving time-window in urban transit network. Appl. Math. Model. 2014, 38, 2613–2629.
[CrossRef]

28. Yu, H.; Lu, F. A multi-modal route planning approach with an improved genetic algorithm. Adv. Geo-Spat.
Inform. Sci. 2012, 38, 193–202.

29. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
30. Fu, L.; Sun, D.; Rilett, L.R. Heuristic shortest path algorithms for transportation applications: State of the art.

Comput. Oper. Res. 2006, 33, 3324–3343. [CrossRef]

http://dx.doi.org/10.1016/j.proenv.2012.01.003
http://dx.doi.org/10.4028/www.scientific.net/AEF.1.226
http://dx.doi.org/10.2478/bpasts-2014-0087
http://dx.doi.org/10.3390/a9030059
http://dx.doi.org/10.1016/j.asoc.2008.01.002
http://dx.doi.org/10.1016/j.eswa.2009.07.025
http://dx.doi.org/10.1016/j.amc.2006.11.171
http://dx.doi.org/10.1016/j.dsp.2011.02.004
http://dx.doi.org/10.1016/j.eswa.2015.02.046
http://dx.doi.org/10.1177/0037549715623847
http://dx.doi.org/10.1016/S0377-2217(01)00354-X
http://dx.doi.org/10.1016/S0965-8564(99)00056-7
http://dx.doi.org/10.1016/j.sbspro.2014.01.066
http://dx.doi.org/10.1186/s40467-015-0032-x
http://dx.doi.org/10.1016/S0191-2615(02)00043-7
http://dx.doi.org/10.1016/j.apm.2013.10.059
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1016/j.cor.2005.03.027

Entropy 2017, 19, 213 15 of 15

31. Dib, O.; Manier, M.-A.; Caminada, A. Memetic algorithm for computing shortest paths in multimodal
transportation networks. Transp. Res. Procedia 2015, 10, 745–755. [CrossRef]

32. Dibbelt, J.; Pajor, T.; Strasser, B.; Wagner, D. Intriguingly simple and fast transit routing. In Experimental
Algorithms; Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A., Eds.; Lecture Notes in Computer Science
(LNCS); Springer: Heidelberg, Germany, 2013; Volume 7933, pp. 43–54.

33. Delling, D.; Pajor, T.; Werneck, R.F. Round-based public transit routing. Transp. Sci. 2015, 49, 591–604.
[CrossRef]

34. Delling, D.; Dibbelt, J.; Pajor, T.; Wagner, D.; Werneck, R.F. Computing Multimodal Journeys in Practice.
In Experimental Algorithms; Bonifaci, V., Demetrescu, C., Marchetti-Spaccamela, A., Eds.; Lecture Notes in
Computer Science (LNCS); Springer: Heidelberg, Germany, 2013; Volume 7933, pp. 260–271.

35. Bast, H.; Storandt, S. Frequency-based search for public transit. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, Dallas, TX, USA, 4–7 November
2014; pp. 13–22.

36. Delling, D.; Pajor, T.; Wagner, D. Engineering time-expanded graphs for faster timetable information.
In Robust and Online Large-Scale Optimization; Ahuja, R.K., Möhring, R.H., Zaroliagis, C.D., Eds.; Lecture
Notes in Computer Science (LNCS); Springer: Heidelberg, Germany, 2009; Volume 5868, pp. 182–206.

37. Geisberger, R. Advanced Route Planning in Transportation Networks. Ph.D. Thesis, Karlsruhe Institute of
Technology, Baden-Württemberg, Germany, February 2011.

38. Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization. An overview. Swarm Intell. 2007, 1, 33–57.
[CrossRef]

39. Toofani, A. Solving routing problem using particle swarm optimization. Int. J. Comput. Appl. 2012, 52, 16–18.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.trpro.2015.09.028
http://dx.doi.org/10.1287/trsc.2014.0534
http://dx.doi.org/10.1007/s11721-007-0002-0
http://dx.doi.org/10.5120/8301-1692
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Journey Planning Problem
	Related Work
	Time-Expanded Model

	Cockroach Swarm Optimization Algorithm for Transport Planning
	Cockroach Swarm Optimization Algorithm—Basic Approach
	Proposed Adaptation of Cockroach Swarm Optimization Algorithm to Time-Expanded Model

	Experiments and Results
	Description of the Considered Test Instances
	CSO Performance

	Conclusions

