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Abstract: Representing patterns as labeled graphs is becoming increasingly common in the broad
field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools,
such as classifiers and knowledge discovery procedures, are nowadays available and tested for
various datasets of labeled graphs. However, the design of effective learning procedures operating
in the space of labeled graphs is still a challenging problem, especially from the computational
complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier
for graphs, which is conceived on an interplay between dissimilarity representation, clustering,
information-theoretic techniques, and evolutionary optimization algorithms. The improvement
focuses on a specific key subroutine devised to compress the input data. We prove different
theorems which are fundamental to the setting of the parameters controlling such a compression
operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed
variants on well-known datasets of labeled graphs, considering as distinct performance indicators
the classification accuracy, computing time, and parsimony in terms of structural complexity of the
synthesized classification models. The results show state-of-the-art standards in terms of test set
accuracy and a considerable speed-up for what concerns the computing time.

Keywords: graph-based pattern recognition; classification of labeled graphs; dissimilarity representation;
information-theoretic data characterization

1. Introduction

Graphs offer powerful models for representing patterns characterized by interacting elements,
both in static and dynamic scenarios. A labeled (also called attributed) graph is a tuple G = (V , E , µ, ν),
where V is the finite set of vertices, E ⊆ V × V is the set of edges, µ : V → LV is the vertex labeling
function, with LV denoting the set of vertex labels, and finally ν : E → LE is the edge labeling function,
with LE denoting the set of edge labels [1]. The topology of a graph enables characterizing patterns in
terms of “interacting” elements. Moreover, the generality of both LV and LE allows to cover a broad
range of real-world application domains. applications involving labeled graphs for representing data
can be cited in many scientific fields, such as electrical circuits [2], networks of dynamical systems [3],
biochemical networks [4,5], time-varying labeled graphs [6], and segmented images [7,8]. Owing
to the rapid diffusion of (cheap) multicore computing hardware, and motivated by the increasing
availability of interesting datasets describing complex interaction-oriented patterns, recent researches
on graph-based pattern recognition systems have produced numerous methods [9–25].

Focusing on high-level design of classification systems for graphs, it is possible to identify two
main approaches: those that operate directly in the domain of labeled graphs and those that deal
with the classification problem in an embedding space. Of notable interest are those systems that
are based on the so-called explicit graph embedding algorithms, which transform the input graphs
into numeric vectors by means of a mapping or feature extraction technique [1]. Graph embedding
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algorithms [12,26–32], operate by explicitly developing an embedding space, D. The distance between
two graphs is hence computed by processing their vector representations in D, usually by a geometric
or information-theoretic interpretation (e.g., based on distances or divergences [19]). We distinguish
two main categories of graph embedding algorithms: those that are defined in terms of a core inexact
graph matching (IGM) procedure working directly in the graph domain, G, and those that exploit a
matrix representation of graph to extract characterizing information. The former (e.g., see [12,27,31])
can process virtually any type of labeled graph, according to the capability of the adopted core IGM
algorithm. The latter [28,29,32–35] are constrained to process a restricted variety of labeled graphs,
in which all relevant information can be effectively encoded into a matrix representation, such as
(weighted) adjacency, transition, or Laplacian matrix. The interested reader is referred to [1,24,36] and
references therein for reviews of recent graph embedding techniques.

The dissimilarity representation offers a valuable framework for this purpose, since it permits to
describe arbitrarily complex objects by means of their pairwise dissimilarity values (DV) [37]. In the
dissimilarity representation, the elements of an input dataset S ⊂ X are characterized by considering
vectors made of their pairwise DVs [37,38]. The key component is hence the definition of a nonnegative
(bounded) dissimilarity measure d : X ×X → R+. A set of prototypes,R, called representation set
(RS), is used to compute the dissimilarity matrix (DM), D, whose elements are given as Dij = d(xi, rj),
for every xi ∈ S and rj ∈ R. By means of D, it is possible to embed the data in S by developing the
so-called dissimilarity space representation: each input sample is represented by the corresponding
row-vector of D.

Recently, the Optimized Dissimilarity Space Embedding (ODSE) system has been proposed
as a labeled graph classifier, achieving state-of-the-art results in terms of classification accuracy
on well-known benchmarking datasets [11]. The synthesis of the ODSE model is performed by a
novel information-theoretic interpretation of the DM in terms of conveyed information. In practice,
the system estimates the informativeness of the input data dissimilarity representation by calculating
the quadratic Rényi entropy (QRE) [39]. Such an entropic characterization has been used
in the compression–expansion scheme as well as an important factor of the ODSE objective
function. However, training the ODSE model is computationally demanding. As a consequence,
we have developed two improved versions that are based on a fast clustering-based compression
(CBC) scheme [40]. The parameters of such a clustering algorithm are analytically determined,
hence obtaining a considerable computational speed-up of the training phase, yet maintaining
state-of-the-art standards in terms of test set classification accuracy.

In this paper, we elaborate further over the same CBC scheme first introduced in [40] by estimating
the differential α-order Rényi entropy of the DVs by means of a faster technique that relies on an
entropic Minimum Spanning Tree (MST). Also in this case, we give a formal proof pertaining the setting
of the clustering algorithm governing the compression operation. We experimentally demonstrate that
the performance of ODSE operating with the MST-based estimator is comparable with the one using
the kernel-based estimator. Additionally, we observe that with the former the overall computing time
is in general lower.

The remainder of the paper is organized as follows. In Table 1 we show all acronyms. Section 2
provides the necessary theoretical background related to the entropy estimators used in this work.
In Section 3 we give an overview of the original ODSE graph classification system [11]. In Section 4
we present the improved ODSE system, which is primarily discussed considering the QRE estimator.
In Section 4.3, we discuss a relevant topic related to the (worst-case) efficiency of the developed CBC
procedure. Section 5 introduces the principal theoretical contribution of this paper. We prove a theorem
related to the CBC scheme when considering the MST-based estimator. Experiments and comparisons
with other graph classifiers on well-known benchmarking datasets are presented and discussed in
Section 6. Conclusions and future directions follow in Section 7.
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Table 1. Acronyms sorted in alphabetic order.

Acronym Full Name

BSAS Basic sequential algorithmic scheme
CBC Clustering-based compression
DM Dissimilarity matrix
DS Dissimilarity space
DV Dissimilarity value
IGM Inexact graph matching
MinSOD Minimum sum of distances
MMN Min-max network
MS Mode Seek
MST Minimum spanning tree
MST-RE Minimum spanning tree-Rényi entropy
ODSE Optimized dissimilarity space embedding
QRE Quadratic Rényi entropy
RS Representation set
SOA State-of-the-art
SVM Support vector machines
TWEC Triple-weight edit scheme

2. Differential Rényi Entropy Estimators

Designing pattern recognition systems by using concepts derived from information theory is
nowadays well-established [39]. A key issue in this context is the estimation of information-theoretic
quantities from a given dataset, such as entropy and mutual information. From the groundbreaking
work of Shannon, different generalized entropy formulations have been proposed. Here we are
interested in the generalization proposed by Rényi, which is called α-order Rényi entropy. Given a
continuous random variable X, distributed according to a probability density function p(·), the α-order
Rényi entropy is defined as:

Hα(X) =
1

1− α
log
(∫

p(x)αdx
)

, α ≥ 0, α 6= 1. (1)

In the following two subsections, we provide the details of the non-parametric α-order Rényi
entropy estimation techniques used here.

2.1. The QRE Estimator

Recently, Príncipe [39] provided a formulation of Equation (1) in terms of the so-called information
potential of order α, Vα(X),

Vα(X) =
∫

p(x)αdx; Hα(X) = − log
(

Vα(X)
1

α−1

)
. (2)

When α = 2 holds in Equation (2), the entropy measure simplifies to the so-called quadratic Rényi
entropy. Non-parametric kernel-based estimators offer a plug-in solution for the density estimation
problem. Typically, a zero-mean Gaussian kernel Gσ(·) is adopted, p̃(x) = 1

n ∑n
i=1 Gσ (x− xi).

The Gaussian kernel Gσ(·) enables a controllable bias–variance trade-off of the estimator dependent
on the kernel size σ; and on the data sample size n. According to Príncipe [39], the QRE of the joint
distribution of a d-dimensional random vector can be estimated by relying on d unidimensional kernel
estimators combined as follows:

Ṽ2,σ(Xn) =
1
n2

n

∑
i=1,j=1

(
d

∏
r=1

Gσ
√

2

(
x(r)j − x(r)i

))
, (3)
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where Ṽ2,σ(·) is the quadratic information potential and Gσ
√

2(·) is a convoluted Gaussian kernel with
doubled variance, evaluated at the difference between the inputs. Since the input domain is bounded,
the entropy is maximized when the distribution is uniform, max H2(X) = d× log(∆), where ∆ is the
input data extent [39].

O(dn2) kernel evaluations are needed to compute (3), which may become onerous due to the cost
of computing the exponential function.

2.2. The MST-Based Estimator

Let Xn be the data sample of n measurements (points), with xi ∈ Rd, i = 1, 2, ..., n, and d ≥ 2,
and let G(Xn) be a complete graph constructed over these n measurements. An edge eij of such a
graph connects xi and xj in Rd by means of a straight line with length

|eij| = d2(xi, xj). (4)

The α-order Rényi entropy (1) can be estimated according to a geometric interpretation of a MST
of G(Xn) in Rd (shortened as MST-RE). To this end, let Lγ(Xn) be the weighted length of a MST T
connecting the n points, which is defined as

Lγ(Xn) = min
T∈T (G(Xn))

∑
eij∈T
|eij|γ, (5)

where γ ∈ (0, d) is a user-defined parameter, and T (G(Xn)) is the set of all possible (entropic) spanning
trees of G(Xn). The Rényi entropy of order α ∈ (0, 1), elaborated using the MST length (5), is defined
as follows [41,42]:

Ĥα(Xn) =
d
γ

[
ln
(

Lγ(Xn)

nα

)
− ln (β(Lγ, d))

]
, (6)

where the order α is determined by calculating:

α =
d− γ

d
. (7)

The β(Lγ, d) term is a constant (given the data dimensionality) that can be approximated, for large
enough d, as:

β(Lγ, d) ' γ

2
ln
(

d
2πe

)
. (8)

By modifying γ we obtain different α-order Rényi entropies. By definition of G(Xn), MST-RE (6)
is not sensitive to the input dimensionality.

Assuming to perform the estimation on a set of n measurements in Rd, the computational
complexity involved in computing Equation (6) is given by:

O
(

n(n− 1)
2

e +
n(n− 1)

2
× log

(
n(n− 1)

2

)
+ (n− 1)

)
. (9)

The first term in (9) accounts for the generation of G(Xn), computing the respective Euclidean
distances for the edge weights. The second term quantifies the cost involved in the MST computation
using the well-known Kruskal’s algorithm. The last term in (9) concerns the computation of the
MST length.

3. The Original ODSE Graph Classifier

The ODSE graph classification system [11] is founded on an explicit graph embedding mechanism
that represents S , n = |S|, using a suitable RSR, d = |R|, by initially computing the corresponding
DM, Dn×d. The configuration of the embedding vectors representing the input data in D is derived
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directly using the rows of D. The adopted IGM dissimilarity measure is the symmetric version of the
procedure called best matching first that uses a three-weight edit scheme (TWEC). Although TWEC
provides a heuristic solution to the graph edit distance problem, it has shown a good compromise
between computational complexity (quadratic in the graph order) and the number of characterizing
parameters [1,11,12]. TWEC performs a greedy assignment of the vertices among the two input graphs
on the base of the corresponding labels dissimilarity; edge operations are induced accordingly.

ODSE synthesizes the classification model optimizing the DS representation by means of two
dedicated operations, called compression and expansion. Both operations make use of the QRE estimator
(Section 2.1) to quantify the information conveyed by the DM.

Another important component of the ODSE graph classification system is the feature-based
classifier, which operates directly in D; its own classification model is trained during the ODSE
synthesis. Such a classifier can be any well-known classification system, such as an MMN [43],
or a kernelized support vector machine (SVM). Test labeled graphs are classified in ODSE by feeding
the corresponding dissimilarity representation to the learned feature-based classifier, which assigns
proper class labels to the test patterns.

Figure 1a,b gives, respectively, the schematics of the ODSE training and determination of the
prototypes. The ODSE classification model is defined by the RS,Ri, the TWEC parameters, p, and the
model of the trained feature-based classifier. During the synthesis stage additional parameters are
optimized: the kernel size σ used by the entropy estimator and two thresholds, τc, τe, which are
used in the compression and expansion operations, respectively. The ODSE model is synthesized
by cross-validating the learned models on the training set Str over a validation set Svs. The global
optimization is governed by a genetic algorithm, since the classification accuracy is used as part of
the final objective and its analytical definition with respect to (w.r.t.) the model parameters is not
available in closed form. A genetic algorithm, although it does not assure convergence towards a global
optimum, is easily and effectively parallelizable, allowing to make use of multicore hardware/software
implementations during the training stage.

3.1. The ODSE Objective Function

All parameters of the ODES model are arranged into codes, ci ∈ C. These include the two entropy
thresholds {τc, τe}i, the kernel size of the entropy estimator, {σ}i, the weights of TWEC and any
parameter of the vertex/edge label dissimilarity measures, all ranging in [0, 1]. Since each ci induces a
specific RS,Ri, the optimization problem that characterizes the ODSE synthesis consists in deriving
the best-performing RS:

R̂ = arg max
ci∈C

f (Str,Svs,Ri). (10)

The objective function (10) is defined as a linear convex combination of two objectives,

f (Str,Svs,Ri) = η f1(ΦRi (Str), ΦRi (Svs)) + (1− η) f2(ΦRi (Str)), (11)

where η ∈ [0, 1] and ΦRi (·) shortens the dissimilarity representation of an entire dataset using
the compressed-and-expanded RS instance, Ri. The function f1(·, ·) evaluates the recognition rate
achieved on a validation set Svs, while f2(·) accounts for the quality of the synthesized classification
model. Specifically,

f2(ΦRi (Str)) = ςΘ + (1− ς)Υ, (12)

where ς ∈ [0, 1], and Θ denotes the cost related to the number di of prototypes. Accordingly,

Θ = 1− di − ζ

|Str|
, (13)
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where ζ is the number of classes characterizing the classification problem at hand. The second term,
namely Υ, captures the informativeness of the DM:

Υ = H̃2(Dn). (14)

(a) ODSE training.

(b) Determination of the prototypes.

Figure 1. Schematic descriptions of the main stages in the ODSE training phase. (a) ODSE training;
(b) Determination of the prototypes.

We consider the entropy factor (14) in the ODSE objective function (11) to increase the
spread–dispersion of the DVs, which in turn is assumed to magnify the separability of the classes.

3.2. The ODSE Compression Operation

The compression operation searches for subsets of the initial RS, R, which convey
“similar information”; the initial RS is equal to the whole Str in the original ODSE. In order to describe
the mechanism behind the ODSE compression operation, we need to define when a given subset
B ⊆ R of prototypes is compressible. Let Dn×d be the DM corresponding to Str andR, with n = |Str|
and d = |R|. Basically, B individuates a subset of k = |B| ≤ d columns of D. Let D[B]n×k be the filtered
DM, i.e., the submatrix considering the prototypes in B only. We say that D[B]n×k is compressible if

H̃2(Dk) ≤ τc, (15)

where 0 ≤ τc ≤ 1 is the compression threshold, and H̃(·) estimates the QRE of the underlying joint
distribution of D[B]n×k. In practice, the values of D[B]n×k are interpreted as k measurements of a
n-dimensional random vector; Dk is the corresponding notation that we use throughout the paper
to denote a sample of k random measurements elaborated from the DM. If the measurements are
concentrated around a single n-dimensional support point, the estimated joint entropy is close to
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zero. This fact allows us to use Equation (15) as a systematic compression rule, retaining only a single
representative graph of B.

The selection of the subsets Bi, i = 1, 2, ..., p, is the first important algorithmic issue to be addressed.
In the original ODSE [11], the subset selection has been performed by means of a randomized algorithm.
The computational complexity of this approach was O

(
d3n
)
, which does not scale adequately as the

input size grows.

3.3. The ODSE Expansion Operation

The expansion focuses on each single Rj ∈
←−R , by analyzing the corresponding columns of the

compressed DM, Dn×d. By denoting with Dn the sample containing the n DVs corresponding to the
j-th column of D, we say that Rj is expandable if

H̃2(Dn) ≤ τe, (16)

where 0 ≤ τe ≤ 1 is the expansion threshold. Practically, the information provided by the prototype
is low if the n unidimensional measurements are concentrated around a single real-valued number.
In such a case, the estimated entropy would be low, approaching zero as the underlying distribution
becomes degenerate. Examples of such prototypes are outliers and prototype graphs that are equal
in the same measure to all other graphs. Once an expandable Rj is individuated through (16), Rj is
substituted by extracting ζ new graphs elaborated from Str. Notably, those new graphs are derived by
searching for recurrent subgraphs in a suitable subset of the training graphs.

Although the idea of trying to extract new features by searching for (recurrent) subgraphs is
interesting, it is also very expensive in terms of computational complexity.

4. The Improved ODSE Graph Classifier

The improved ODSE system [40] is designed with the primary goal of a significant computational
speed-up. The first variant, which is presented in Section 4.1, considers a simple yet fast RS initialization
strategy and a more advanced compression mechanism. The compression is grounded on a formal
result discussed in Section 4.1.2. The second variant is presented in Section 4.2. This version includes
a more elaborated initialization of the RS, while it is characterized by the same CBC operation.
The expansion operation, in both cases, has been greatly simplified. Finally, in Section 4.3 we discuss
an important fact related to the efficiency of the implemented CBC.

4.1. ODSE with Clustering-Based Compression Operation

4.1.1. Randomized Representation Set Initialization

The initial RSR, that is, the RS used during the synthesis, is defined by sampling the Str according
to a selection probability, p. The size of the initial RS is thus characterized by a binomial distribution,
selecting in average |Str|p graphs, with variance |Str|p(1− p). Although such a selection criteria is
linear in the training set size, it operates blindly and may also cause an unbalanced selection of the
prototypes w.r.t. the prior class distributions. However, such a simple sampling scheme is mostly used
when the available hardware cannot process the entire dataset at hand.

4.1.2. Compression by a Clustering-Based Subset Selection

The entropy measured by the QRE estimator (3) is used to determine the compressibility of a
subset of prototypes, B. Since the entropy estimation is directly related to the DVs between the graphs
of B, we design a subset selection strategy that aggregates the initial prototypes according to their
distances in the DS. Such subsets are guaranteed to be compressible by definition, avoiding thus the
computational burden involved in entropy estimation.
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We make use of the well-known Basic Sequential Algorithmic Scheme (BSAS) clustering algorithm
(see the pseudo-code in Algorithm 1) with the aim of grouping the n-dimensional dissimilarity
column-vectors xj, j = 1, 2, ..., d, with (hyper)spheres and using the Euclidean metric d2(·, ·). The main
reason behind the use of such a simple cluster generation rule is that it is much faster than other more
sophisticated approaches [44], and it gives full control on the generated cluster geometry through a
single real-valued parameter, θ ≥ 0. Since θ constrains each cluster Bl to have a maximum intra-cluster
DV (i.e., a diameter) lower or equal to 2θ, we can deduce analytically the value of θ considering the
particular instance of the kernel size σc and entropy threshold τc used in Equation (15). Accordingly,
the following theorem (see [40] for the proof) allows us to determine a partition P(θ; τc, σc) that contains
clusters that are compressible by construction.

Algorithm 1 BSAS Cluster Generation Rule

Input: The ordered n input elements, a dissimilarity measure d(·, ·), the cluster radius θ, and the maximum
number of allowed clusters Q

Output: The partition P(θ)
1: for i = 1, 2, ..., n do
2: if P(θ) = ∅ then
3: Create a new cluster in P(θ) and define xi as the set representative
4: else

5: Get the distance value D from the closest representative modeling a cluster of the current partition P(θ)
6: D = min

µj∈P(θ)
d(xi, µj)

7: if D > θ AND |P(θ)| < Q then

8: Add a new cluster in P(θ) and define xi as the representative
9: else

10: Add xi in the j-th cluster and update the representative element
11: end if
12: end if
13: end for

Theorem 1. The compressible partition P(θ; τc, σc) obtained on a training set Str of n graphs, is derived setting:

θ ≤
√

τcnσ2
c ln(2)
2

. (17)

The optimization of τc and σc, together with the proof of Theorem 1, allows us to search for the
best level of training set compression for the problem at hand. Algorithm 2 shows the pseudo-code of
the herein described compression operation. Since the ultimate aim of the compression is to aggregate
prototypes that convey similar information w.r.t. Str, we represent a cluster using the minimum sum
of distances (MinSOD) technique [45]. In fact, the MinSOD allows to select a single representative
element xk ∈ Bk according to the following expression:

xk = arg min
xj∈Bk

∑
xi∈Bk

d2(xj, xi). (18)

Eventually, the p prototype graphs, Bi, i = 1, 2, ..., p, corresponding to the p computed MinSOD
elements in the DS, populate the compressed RS,

←−R = {B1, B2, ..., Bp}.
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Algorithm 2 Clustering-Based Compression Algorithm

Input: The initial set of prototype graphsR, |R| = d, the DM Dn×d, the compression threshold τc, and the kernel
size σc

Output: The compressed set of prototype graphs
←−R

1: Configure BSAS setting Q = |R| and θ according to Equation (17)
2: Let X = (x1, x2, ..., xd) be the (ordered) set of dissimilarity vectors elaborated from the columns of D
3: Execute the BSAS on X . Let P(θ; τc, σc) = {B1,B2, ...,Bp} be the obtained compressible partition
4: Compute the MinSOD element bi of each cluster Bi, i = 1, 2, ..., p, according to Equation (18). Retrieve fromR

the prototype graph Bi corresponding to each dissimilarity vector bi

5: Define
←−R =

⋃p
i=1 Bi

6: return
←−R

The search interval for the kernel size σc can be effectively reduced as follows:

0 ≤ σc ≤
√

8
ln(2)

. (19)

A proof for (19) can be found in [40]. This bound is important, since it allows to narrow down the
search interval for the kernel size σc, which is theoretically defined in the entire extended real line.

4.1.3. Expansion Based on Replacement with Maximum Dissimilar Graphs

The genetic algorithm evolves a population of models over iterations t = 1, 2, ..., max. LetR0 be
defined as shown in Section 4.1.1, and let N t = Str \ Rt−1 be the set of unselected training graphs at
iteration t ≥ 1. Finally, let

←−R t be the compressed RS at iteration t. The herein described expansion
operation makes use of the elements of N t replacing in

←−R t those prototypes that do not discriminate
the classes. The expansion of a single prototype graph is still performed by the same criterion described
in Section 3.3. Notably, if the estimated entropy of the j-th column vector is lower than the expansion
threshold τe, then l new training graphs are selected from N t for each class, where l ≥ 1. ζ × l new
graphs are selected such that they result maximally dissimilar w.r.t. the j-th prototype under analysis.
The new expansion procedure is outlined in Algorithm 2 of [40].

Since compression and expansion are evaluated considering two different interpretations of the
DM, we accordingly use two different kernel sizes: σc and σe.

4.1.4. Analysis of Computational Complexity

The computational complexity is dictated by the execution of the genetic algorithm, O(I + EP× F).
I is the cost of the RS initialization, E is the number of (maximum) evolutions, P is the population size,
and finally F is the cost related to a single fitness function evaluation. Here, the initialization is linear
in the training set size, O(I) = O(|Str|); in average we select d

′
= b|Str|pc prototypes. The detailed

cost related to the fitness function, O(F), is articulated as the sum of the following costs:

O(F1) = O(nd
′
g); O(F2) = O(nQCe);

O(F3) = O
(←−

d n2 × (N log(N) + ζl)
)

;

O(F4) = O
(

nd
)

; O(F5) = O
(

v×
(

d + kn
))

;

O(F6) = O
(

n2d
)

.

(20)

The first cost, F1, is related to the computation of the initial DM corresponding to Str with RS
obtained through the initialization of Section 4.1.1; g is the computational cost associated with the
adopted IGM procedure. F2 is related to the compression operation which consists of a single BSAS
execution, where C = d

′
is the cache size of the MinSOD [45], Q = d

′
, and e = n is the cost of a
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single Euclidean distance computation. F3 is the cost characterizing the expansion operation; N is the
cardinality of the set N t. This operation is repeated at most

←−
d = |←−R| times, with a quadratic entropy

estimation cost in the training set size. F4 is the cost related to the embedding of the DM, and F5 is
due to the classification of the validation set using a k-NN rule based classifier—this cost is updated
according to the specific classifier. F6 is the cost for the QRE over the compressed and expanded DM.

As it is possible to deduce from Equation (20), the model synthesis is now characterized by a
quadratic cost in the training set size, n, as well as in the RS size, d, while in the original ODSE it was
(pseudo) cubic in both n and d.

4.2. ODSE with Mode Seeking Initialization

The ODSE variant described in this section does not include any expansion operation. The RS
initialization is now part of the synthesis, since it depends on some of the parameters tuned during the
optimization. Compression is still implemented as described in Section 4.1.2.

The initialization makes use of the Mode Seek (MS) algorithm [37], which is a well-known
procedure that is able to individuate the modes of a distribution. For each class ci, i = 1, 2, ..., ζ,
and considering a user-defined neighborhood size s ≥ 1, the algorithm proceeds as illustrated in
Algorithm 3 of [40]. The elements of R found in this way are the estimated modes of the class
distribution; it is a supervised algorithm.

The cardinality of R depends on the choice of s: the larger is s, the smaller R. This approach
is very appropriate when elements of the same class are distributed in different and heterogeneous
clusters: the cluster representatives are the modes individuated by the MS algorithm. Moreover, the MS
algorithm can be useful to filter out outliers, since they are characterized by a low neighborhood density.
The procedure depends on s, which directly influences the outcome of the initialization. Additionally,
since a neighborhood is defined in the graph domain, MS is also dependent on the TWEC weights.
For this reason, the initialization is now performed during the ODSE synthesis.

To limit the complexity of such an initialization, in the experiments we systematically assign small
values to s, constraining the search in small neighborhoods. A possible side effect of this choice is that
we can find an excessive number of prototypes/modes. This effect is however attenuated by the use of
the compression Algorithm 2.

Analysis of Computational Complexity

The overall computational cost of the synthesis is now bounded by O(EP× F); see (21). The two
main steps of the fitness function involve the execution of the MS algorithm followed by the
compression algorithm. The F1 cost refers to the MS algorithm. |ci| is the number of training data
belonging to the i-th class. F2 refers to the computation of the initial DM, constructed using Str and
the d

′ ≤ |Str| prototypes derived with MS. F3 is the cost of the compression operation, with Q = d
′
.

F4, F5, and F6 are equivalent to the ones described in Section 4.2. The overall cost is dominated by the
initialization stage (the F1 cost), which is (pseudo) quadratic in the class size |ci|, and quadratic in the
neighborhood size, s,

O(F1) = O
(

n + ζ|ci| ×
(
|ci|g + |ci| log(|ci|) + s + s2

))
;

O(F2) = O(nd
′
g); O(F3) = O(nQCe); (21)

O(F4) = O
(

nd
)

; O(F5) = O
(

v×
(

d + kn
))

;

O(F6) = O
(

n2d
)

.

4.3. The Efficiency of the ODSE Clustering-Based Compression

The BSAS (see Algorithm 1) is characterized by a linear computational complexity. However, due
to the sequential processing nature, the outcome is sensitive to the data presentation order. In the
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following, we study the effect caused by the ordering of the input over the effectiveness of the CBC,
by calculating what we called ODSE compression efficiency factor.

Let s = (x1, x2, ..., xn) be the sequence of dissimilarity vectors describing the n prototypes in
the DS, which are presented in input to Algorithm 1. Let Ω(s) be the set of all permutations of the
sequence s. We define the optimal compression ratio ρ∗(s) for the sequence s as:

ρ∗(s) = max
si∈Ω(s)

ρ(si) = max
si∈Ω(s)

|R|/|←−R i|, (22)

where
←−R i is the compressed RS obtained by analyzing the prototypes arranged according to si, andR

is the uncompressed RS, i.e., the initial RS. Let ρ̂(s) be the effective compression ratio, achieved by
ODSE considering a generic ordering of s. The ratio

ξ = lim
n→∞

ρ̂(s)/ρ∗(s) ∈ [0, 1], (23)

describes the asymptotic efficiency of the ODSE compression as the initial RS size grows.

Theorem 2. The asymptotic worst-case ODSE compression efficiency factor is ξ = 2/3.

The proof can be found in Appendix A. An interpretation of the result of Theorem 2 is
that the asymptotic efficiency of the implemented CBC varies within the [2/3, 1] range of the
optimum compression.

5. ODSE with the MST-Based Rényi Entropy Estimator

In the following, we contextualize the MST-RE estimation technique introduced in Section 2.2 as a
component of the improved ODSE system presented in Section 4. Notably, we discuss a theorem for
determining the θ parameter used in the compression operation (Algorithm 2). In this case, we generate
clusters according to the particular instance of τc and of the γ parameter, since the kernel size parameter,
σc, is not present in the MST-based estimator. The γ parameter is optimized during the ODSE synthesis.
While γ is defined in (0, d), where d is the dimensionality of the samples, we restrict the search interval
to (0, U], with U = 3 in the experiments. This technical choice is motivated by the fact that γ is used in
Equation (5) as exponent, and an excessively large value would easily cause overflow problems for the
floating-point representation of the MST length variable.

Theorem 3. Considering the instances of γ and τc, a compressible partition P(θ; τc, γ) is derived executing the
BSAS algorithm on n = |Str| training graphs by setting:

θ ≤ 2τc−1n
τc
2 β

−τc+1
γ c(γ), where 0 ≤ c(γ) ≤ 2

α
γ . (24)

The proof of this theorem can be found in Appendix B. Defining θ according to Equation (24)
constrains the BSAS to generate clusters that are compressible by construction. Since τc and γ are
optimized during the ODSE synthesis, the result of Theorem 3, likewise the one of Theorem 1, allows
us to evaluate different levels of training set compression according to the overall system performance.
It goes without saying that computational complexity discussed in the previous sections is readily
updated by considering the cost of the MST-based estimator (see Equation (9) for details).

6. Experimental Section

In Section 6.1 we introduce the IAM benchmarking datasets considered in our study; in Section 6.2
we present the experimental setting. Finally, in Section 6.3 we show and discuss the results.
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6.1. Datasets

The experimental evaluation is performed on the well-known IAM graph benchmarking
database [46]. The IAM database contains several datasets representing real-world data: from images
to biochemical compounds. In particular, we use the Letter LOW (L-L), Letter MED (L-M), Letter
HIGH (L-H), AIDS (AIDS), Proteins (P), GREC (G), Mutagenicity (M), and finally the Coil-Del (C-D)
datasets. The first three datasets denote digitized characters modeled as labeled graphs, which are
characterized by three different levels of noise. The AIDS, P, and M datasets represent biochemical
networks, while G and C-D are images of various type. For the sake of brevity, we report only essential
details in Table 2, referring the reader to [46] (and references therein) for a more in-depth discussion
about the data. Moreover, since each dataset contains graphs characterized by different vertex and
edge labels, we adopted the same vertex and edge dissimilarity measures described in [11,12].

Table 2. IAM datasets. See [46] for details. “#” indicates cardinality of the sets.

DS # (tr, vs, ts) Classes Average |V| Average |E |

L-L (750, 750, 750) 15 4.7 3.1
L-M (750, 750, 750) 15 4.7 3.2
L-H (750, 750, 750) 15 4.7 4.5

AIDS (250, 250, 1500) 2 15.7 16.2
P (200, 200, 200) 6 32.6 62.1
G (286, 286, 528) 22 11.5 12.2
M (1500, 500, 2337) 2 30.3 30.8

C-D (2400, 500, 1000) 100 21.5 54.2

6.2. Experimental Setting

The ODSE system version described in Section 4.1 is denoted as ODSE2v1, while the version
described in Section 4.2 as ODSE2v2. These two versions make use of the QRE estimator; the setting
of the clustering algorithm parameter θ used during the compression is hence performed according
to the result of Theorem 1. By following the same algorithmic scheme, we consider two additional
ODSE variants adopting the MST-RE estimator. We denote these two variants as ODSE2v1-MST and
ODSE2v2-MST. θ is hence determined according to the proof of Theorem 3. However, the MST-based
estimator is conceived for high-dimensional data. As a consequence, in the ODSE2v1-MST system
version we still use the QRE estimator in the expansion operation. We adopted two feature-based
classifiers operating in the DS. The first one is a k-nearest neighbors (k-NN) rule based classifier
equipped with the Euclidean distance, testing three values of k: 1, 3, and 5. We also consider
a fast MMN, which is trained with the ARC algorithm [43]. The four aforementioned ODSE
variants (i.e., ODSE2v1, ODSEv2, ODSEv1-MST, and ODSE2v2-MST) are therefore replicated into
additional four variants that are straightforwardly denoted as ODSE2v1-MMN, ODSEv2-MMN,
ODSEv1-MST-MMN, and ODSE2v2-MST-MMN, meaning that we just use the neuro-fuzzy MMN on
the embedding space, instead of the k-NN. Table 3 summarizes all ODSE configurations evaluated in
this paper.

Experiments are executed with a (fixed) population size of 30 individuals, and performing
a maximum of 40 evolutions; a check on the fitness value is however performed terminating the
optimization if the fitness does not change for 15 consecutive evolutions. This choice allows for a fair
comparison with the previously obtained results in [11,40]. The genetic algorithm performs roulette
wheel selection, two-point crossover, and random mutation on the aforementioned codes ci, encoding
the real-valued model parameters; in addition, the genetic algorithm implements an elitism strategy
which automatically imports the fittest individual into the next population. In all configurations, we
executed the system setting η = 0.9 and ς = 0.2 in Equations (11) and (12), respectively. Moreover,
the s parameter affecting the MS algorithm has been set as follows: 10 for the L-L, L-M, and L-H,
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20 for AIDS, 2 for P, 8 for G, and finally 100 for either M and C-D. Note that these values have been
defined according to the training dataset size and considering some preliminary fine tuning. Each
dataset has been processed five times using different random seeds, reporting hence the average test
set classification accuracy together with its standard deviation. We show also the required average
serial CPU time and the average RS size obtained after the model synthesis. Tests have been conducted
on a regular desktop machine with an Intel Core2 Quad CPU Q6600 at 2.40 GHz and 4 Gb of RAM;
software is implemented in C++ on Ubuntu 14.04 using the SPARE library [47]. Finally, computing
time is measured using the clock() routine of the standard ctime library.

Table 3. Summary of the ODSE configurations evaluated in the experiments. The “Init” column refers
to the RS initialization scheme, “Compression / Est.” refers to the compression algorithm and adopted
entropy estimator, “Expansion / Est.” the same but for the expansion algorithm, and “Obj. Func. (14)”
refers to the entropy estimator adopted in Equation (14). Finally, “FB Class.” specifies the feature-based
classifier operating in the DS.

Acronym Init Compression / Est. Expansion / Est. Obj. Func. (14) FB Class.

ODSE2v1 Section 4.1.1 Section 4.1.2/QRE Section 4.1.3/QRE QRE k-NN
ODSE2v2 Section 4.2 Section 4.1.2/QRE – QRE k-NN

ODSE2v1-MST Section 4.1.1 Section 4.1.2/MST-RE Section 4.1.3/QRE MST-RE k-NN
ODSE2v2-MST Section 4.2 Section 4.1.2/MST-RE – MST-RE k-NN

ODSE2v1-MMN Section 4.1.1 Section 4.1.2/QRE Section 4.1.3/QRE QRE MMN
ODSE2v2-MMN Section 4.2 Section 4.1.2/QRE – QRE MMN

ODSE2v1-MST-MMN Section 4.1.1 Section 4.1.2/MST-RE Section 4.1.3/QRE MST-RE MMN
ODSE2v2-MST-MMN Section 4.2 Section 4.1.2/MST-RE – MST-RE MMN

6.3. Results and Discussion

All test set classification accuracy results have been collected in Table 4, including those of three
baseline reference systems and several state-of-the-art (SOA) classification systems based on graph
embedding techniques. The table is divided in appropriate macro blocks to improve readability.
The three reference systems are denoted as RPS + TWEC + k-NN, k-NN + TWEC, and RPS + TWEC
+ MMN. The first one performs a (class-independent) randomized selection of the training graphs to
develop the dissimilarity representation of the input data. This system adopts the same TWEC used
in ODSE and performs the classification in the DS by means of a k-NN classifier equipped with the
Euclidean distance. The second one differs from the first system by instead using the MMN. Finally,
the third reference system operates directly in G by means of a k-NN rule based classifier equipped
with TWEC. In all cases, to obtain a fair comparison, the configuration of the dissimilarity measures
for the vertex/edge labels is consistent with the one adopted previously. Additionally, k = 1, 3, and 5
are used in the k-NN rule, performing the TWEC parameters optimization (i.e., the weights in [0, 1])
by means of the same aforementioned genetic algorithm implementation. Therefore, also in this case,
the test set results must be intended as average of five different runs (however we omit standard
deviations for the sake of brevity).

Table 4 presents the obtained test set classification accuracy results, while Table 5 gives the
corresponding standard deviations. We provide two types of statistical evaluation of such results.
First, we perform pairwise comparisons by means of the t-test; we adopt the usual 5% as significance
threshold. Notably, we check if any of the improved ODSE variants significantly outperforms, for each
single dataset, both the reference systems and original ODSE. Best results satisfying such a condition are
reported in bold in Table 4. In addition to the pairwise comparisons, we calculate also a global ranking
of all classifiers by means of the Friedman’s test. Missing values are replaced by the dataset-specific
averages.
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Table 4. Test set classification accuracy results. Lines in grey denote novel results introduced in this
paper. The “-” sign means that the result is not available to our knowledge. Bold values denote
significant differences as discussed in the text.

Classifier Dataset RankL-L L-M L-H AIDS P G M C-D
Reference systems

RPS + TWEC + k-NN, k = 1 98.4 96.0 95.0 98.5 45.5 95.0 69.0 81.0 15
k-NN + TWEC, k = 1 96.8 66.3 36.3 73.9 52.1 95.0 57.7 61.2 38

RPS+TWEC + k-NN, k = 3 98.6 97.2 94.7 98.2 40.5 92.0 68.7 63.2 23
k-NN + TWEC, k = 3 97.5 57.4 39.1 71.4 48.5 91.8 56.1 33.7 39

RPS+TWEC + k-NN, k = 5 98.3 97.1 95.0 97.6 35.4 84.8 68.5 59.7 32
k-NN + TWEC, k = 5 97.6 60.4 42.2 76.7 43.0 88.5 56.9 27.8 40
RPS + TWEC + MMN 98.0 96.0 93.6 97.4 49.5 95.0 66.0 68.4 28

SOA systems
GMM + soft all + SVM [26] 99.7 93.0 87.8 - - 99.0 - 98.1 12

Fuzzy k-means+soft all + SVM [26] 99.8 98.8 85.0 - - 98.1 - 97.3 9
sk + SVM [48] 99.7 85.9 79.1 97.4 - 94.4 55.4 - 30
le + SVM [48] 99.3 95.9 92.5 98.3 - 96.8 74.3 - 7

PCA + SVM [49] 92.7 81.1 73.3 98.2 - 92.9 75.9 93.6 26
MDA + SVM [49] 89.8 68.5 60.5 95.4 - 91.8 62.4 88.2 37
svm + SVM [50] 99.2 94.7 92.8 98.1 71.5 92.2 68.3 - 17
svm + kPCA [50] 99.2 94.7 90.3 98.1 67.5 91.6 71.2 - 14

lgq [51] 81.5 - - - - 86.2 - - 35
bayes1 [52] 80.4 - - - - 80.3 - - 36
bayes2 [52] 81.3 - - - - 89.9 - - 34

FMGE + k-NN [30] 97.1 75.7 66.5 - - 97.5 69.1 - 31
FMGE + SVM [30] 98.2 83.1 70.0 - - 99.4 76.5 - 21

d-sps-SVM [31] 99.5 95.4 93.4 98.2 73.0 92.5 71.5 - 8
GRALGv1 [12] 98.2 75.6 69.6 99.7 - 97.7 73.0 94.0 10
GRALGv2 [12] 97.6 89.6 82.6 99.7 64.6 97.6 73.0 97.8 6

Original ODSE
ODSE, k = 1 [11] 98.6 96.8 96.2 99.6 61.0 96.2 73.4 - 1

Improved ODSE with QRE
ODSE2v1, k = 1 [40] 99.0 97.0 96.1 99.1 61.2 98.1 68.2 78.1 4
ODSE2v2, k = 1 [40] 98.7 97.1 95.4 99.5 51.9 95.4 68.1 77.2 5
ODSE2v1, k = 3 [40] 99.0 97.2 96.1 99.3 41.4 90.2 68.7 64.3 13
ODSE2v2, k = 3 [40] 98.8 97.4 95.1 99.4 31.4 38.0 69.4 59.0 24
ODSE2v1, k = 5 [40] 99.1 96.8 95.2 99.0 38.9 85.4 69.0 58.6 27
ODSE2v2, k = 5 [40] 98.7 97.0 95.6 99.4 31.3 82.5 70.0 54.0 25

ODSE2v1-MMN 98.3 95.2 94.0 99.3 53.1 94.5 67.9 62.8 22
ODSE2v2-MMN 97.8 95.6 93.6 99.6 48.7 94.8 68.2 59.2 29

Improved ODSE with MST-RE
ODSE2v1-MST, k = 1 98.6 96.8 98.9 99.3 61.3 95.6 70.0 81.0 3
ODSE2v2-MST, k = 1 98.4 97.1 96.0 99.7 51.0 94.1 71.6 82.0 2
ODSE2v1-MST, k = 3 98.7 97.0 96.8 99.5 43.0 92.3 68.6 64.8 11
ODSE2v2-MST, k = 3 98.8 96.9 96.0 99.7 35.0 91.0 69.4 60.0 16
ODSE2v1-MST, k = 5 99.0 96.8 95.6 99.6 41.4 85.0 68.6 60.0 18
ODSE2v2-MST, k = 5 98.8 97.0 95.5 99.7 32.9 83.3 70.0 54.0 19
ODSE2v1-MST-MMN 97.9 95.4 93.6 99.3 49.9 95.0 68.3 62.6 20
ODSE2v2-MST-MMN 97.9 95.1 91.8 99.2 48.5 94.8 67.1 59.0 33

First of all, we note that results obtained with the baseline reference systems are always worse
than those obtained with ODSE. Test set classification accuracy percentages obtained by ODSE2v1-MST
and ODSE2v2-MST are comparable with those of ODSE2v1 and ODSE2v2, although we note a slightly
general improvement for the first two variants. Results are also more stable varying the neighborhood
size parameter, k, of the k-NN rule. It is worth noting that, for difficult datasets such as P and
C-D, increasing the neighborhood size in the k-NN rule significantly affects the test set performance
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(i.e., results degrade considerably). Test set results obtained by means of the MMN operating in the DS
are in general (slightly) inferior w.r.t. the ones obtained with the k-NN rule with k = 1. This result is
not too unusual since the k-NN rule is a valuable classifier, especially in absence of noisy data. Since
ODSE operates by searching for the best-performing DS for the data at hand, we may deduce that the
embedding vectors are discriminative for the classes. Test set results on the first four datasets (i.e., L-L,
L-M, L-H, and AIDS) denote an important improvement over a large part of the SOA systems. On the
other hand, results over the P, G, and M datasets are comparable w.r.t. those of the SOA systems.
For all ODSE configurations, we observe non convincing results on the C-D dataset; in this case results
are comparable only with those of the reference systems (first block of Table 4). However, a rational
reason explaining this fact is not yet emerged from the tests, requiring thus further investigations.
The global picture provided by the “Rank” column shows that the ODSE classifiers rank very well w.r.t.
the SOA systems. Standard deviations (Table 5) are reasonably small, denoting a reliable classifier
regardless the particular ODSE variant.

Table 5. Standard deviations of ODSE results shown in Table 4. (Lines in grey denote novel results
introduced in this paper).

Classifier Dataset
L-L L-M L-H AIDS P G M C-D

ODSE [11] 0.0256 1.2346 0.2423 0.0000 0.7356 0.4136 0.6586 -
ODSE2v1, k = 1 [40] 0.0769 0.2309 0.1539 0.0000 2.6242 1.3350 0.5187 4.3863
ODSE2v2, k = 1 [40] 0.0769 0.0769 0.4000 0.0000 0.2915 0.8021 0.5622 2.2654
ODSE2v1, k = 3 [40] 0.0769 0.2309 0.2666 0.0000 1.0513 1.2236 0.0856 0.0577
ODSE2v2, k = 3 [40] 0.0769 0.4618 5.0800 0.1924 1.1666 3.1540 0.0356 1.2361
ODSE2v1, k = 5 [40] 0.5047 0.0769 0.9365 0.1924 0.5050 2.5585 0.3803 1.3279
ODSE2v2, k = 5 [40] 0.1333 0.2309 0.0769 0.0000 2.7815 4.5220 1.2666 0.0026

ODSE2v1-MMN 0.1520 0.3320 0.3932 0.1861 1.7740 0.7315 1.1300 1.0001
ODSE2v2-MMN 0.2022 0.2022 0.7682 0.0000 2.7290 1.3584 1.4080 0.3896

ODSE2v1-MST, k = 1 0.0730 0.0730 0.1115 0.2772 1.5500 0.1055 1.0786 0.4163
ODSE2v2-MST, k = 1 0.0596 0.2231 0.0730 0.0000 1.1660 0.2943 0.9534 0.2146
ODSE2v1-MST, k = 3 0.1192 0.1520 0.0942 0.6982 1.0940 0.0000 0.5926 1.7088
ODSE2v2-MST, k = 3 0.1460 0.2022 0.0730 0.0000 0.0000 0.1112 0.2365 0.5655
ODSE2v1-MST, k = 5 0.1115 0.0942 0.2190 0.0596 0.4748 0.0000 0.0547 1.2356
ODSE2v2-MST, k = 5 0.0730 0.0596 0.9933 0.0000 0.0000 0.1112 1.0023 0.9563
ODSE2v1-MST-MMN 0.1115 0.4216 0.7624 0.3217 2.5735 0.3067 0.7926 0.9899
ODSE2v2-MST-MMN 0.0596 0.7636 0.7477 0.0000 2.7290 0.5828 0.8911 1.2020

We demonstrated that the asymptotic computational complexity of ODSE2 is quadratic, while for
the original ODSE it was cubic. Here, in order to complement this result with experimental evidence,
we discuss also the physical computing time. The calculated serial CPU time, for each dataset, is shown
in Table 6, which includes both ODSE synthesis and test set evaluation. The ODSE variants based on
the MST entropy estimator are faster, with the only exception for the P and C-D datasets. This fact is
magnified on the first four datasets, in which the speed-up factor w.r.t. the original ODSE considerably
increases. The speed-up factors obtained for the first three datasets are one order of magnitude higher
than the ones obtained in the other datasets. In order to provide an explanation for such differences,
we need to take a closer look at the dataset details shown in Table 2, computational complexity in
Equations (20) and (21), and the computational complexity of the original ODSE [11]. It is possible to
notice that the first three datasets contain smaller (in average) labeled graphs. Therefore, this suggests
to look for the related terms in the computational complexity formulae. The g term (the cost of the
graph matching algorithm) is directly affected by the size of the graphs and appears in F1 Equation (20)
and F1, F2 in Equation (21). The same g term appears also in F1 of Equation 24 in [11]. In the original
ODSE version [11], the dissimilarity matrix is constructed using an initial set of prototypes equal to
the training set (then it is compressed and expanded). In the new version presented in this paper,
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we instead use a reduced set with d
′

elements. In the first variant that we presented, d
′

graphs are
selected randomly from the training set based on a selection probability. In the second variant, instead,
we use the MS algorithm, which finds a much lower number of representatives (although, as said
in the experimental setting section, we use a conservative setting for MS). This fact provides a first
rational justification for explaining the aforementioned differences. In fact, graph matching algorithms
are expensive from the computational viewpoint (the adopted algorithm is quadratic in the number of
vertices). In addition, compression and expansion operations are now much faster. As shown in Table 7,
the new ODSE versions compute a smaller RS; a direct consequence of the improved compression
operation. This is another important factor contributing to the overall speed-up, since smaller RSs
imply less graph matching computations during the validation and test stages; we remind that ODSE
is trained by cross-validation. Clearly, there are also other factors, such as the convergence of the
optimization algorithm, which might be affected by the specific dataset at hand.

As expected, the sped-up factors obtained by using the MMN as classifier are in general higher
than those obtained with kNN. In fact, MMN synthesizes a classification model over embedded
training data. This significantly reduces the computing time necessary for the evaluation of the test
set (and also of the validation stage). This is demonstrated by the results in Table 8, where we report
the CPU time for the test set evaluation only. This fact might assume more importance in particular
applications, especially in those where the synthesis of the classifier can be effectively performed only
once in off-line mode and the classification model is employed to process high-rate data streams in
real-time [53].

Let us focus now on the structural complexity of the synthesized classification models.
The cardinality of the best-performing RSs are shown in Table 6. It is possible to note that the
cardinality are slightly bigger for those variants operating with MST-RE (especially in the first three
datasets, i.e., L-L, L-M, and L-H). From this fact we deduce that, when configuring the CBC procedure
with the MST-RE estimator, the ODSE classifier, in order to obtain good results in terms of test set
accuracy, requires a more complex model w.r.t. the variants involving the QRE estimator. This behavior
is, however, magnified by the setting of the objective function parameter η adopted in our experiment,
which biases the ODSE system towards maximizing the recognition rate. Notably, variants operating
with the MMN develop considerable less costly classification models (see Tables 7 and 9 for the details).
This particular aspect becomes very important in resource-constrained scenarios and/or when the
input datasets are large. The considerable reductions of the RS size achieved here strengthen the fact
that the entropy estimation operates adequately in the dissimilarity representation context.

Table 6. Average serial CPU time in minutes (and speed-up factor w.r.t. the original ODSE system)
considering ODSE model synthesis and test set evaluation. In the k-NN case, we report the results with
k = 1 only. (Lines in grey denote novel results introduced in this paper).

Classifier
Dataset

L-L L-M L-H AIDS P G M C-D

ODSE [11] 63274 52285 28938 394 8460 601 43060 -
ODSE2v1 [40] 284 (222) 329 (158) 328 (88) 38 (10) 3187 (3) 210 (3) 3494 (12) 2724
ODSE2v2 [40] 126 (502) 268 (195) 183 (158) 110 (3) 1683 (5) 96 (6) 10326 (4) 8444

ODSE2v1-MMN 129 (490) 284 (184) 263 (110) 17 (23) 3638 (2) 170 (4) 8837 (5) 5320
ODSE2v2-MMN 195 (324) 422 (124) 183 (158) 86 (5) 1444 (6) 77 (8) 28511 (2) 20301
ODSE2v1-MST 213 (297) 231 (226) 225 (129) 18 (22) 3860 (2) 168 (4) 2563 (17) 3261
ODSE2v2-MST 145 (463) 160 (327) 107 (270) 93 (4) 2075 (4) 74 (8) 7675 (6) 10092

ODSE2v1-MST-MMN 201 (315) 249 (210) 205 (141) 15 (26) 3450 (2) 155 (4) 5496 (8) 7135
ODSE2v2-MST-MMN 117 (541) 176 (292) 118 (245) 83 (5) 1380 (6) 75 (8) 28007 (2) 16599
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Table 7. Average cardinality of the best-performing RS. In the k-NN case, we report the results with
k = 1 only since results with k = 3 and k = 5 are similar. (Lines in grey denote novel results introduced
in this paper).

Classifier
Dataset

L-L L-M L-H AIDS P G M C-D
ODSE [11] 435 750 750 250 200 283 1500 -

ODSE2v1 [40] 146 449 449 8 197 283 760 615
ODSE2v2 [40] 183 431 338 7 82 126 801 770
ODSE2v1-MM 136 192 144 6 190 163 563 555
ODSE2v2-MM 197 546 80 2 93 115 815 740
ODSE2v1-MST 597 595 597 6 198 283 687 618
ODSE2v2-MST 551 574 447 61 122 129 813 775

ODSE2v1-MST-MMN 600 606 500 5 190 184 424 549
ODSE2v2-MST-MMN 550 580 411 61 93 115 456 733

Table 8. Average serial CPU time in seconds for test set evaluation only. For simplicity, we report
the results of only one system variant operating in the DS with the k-NN classifier and only one with
the MMN. (Lines in grey denote novel results introduced in this paper).

Classifier
Datasets

L-L L-M L-H AIDS P G M C-D
ODSE2v1-MST, k = 1 0.740 0.740 0.740 0.130 0.020 0.060 9.020 9.700
ODSE2v1-MST-MMN 0.105 0.105 0.105 0.005 0.014 0.045 6.600 5.250

Table 9. Average number of hyperboxes generated by the MMN. The number of hyperboxes can be
used as a complexity indicator of the model synthesized by the MMN on the DS. Such values should
be taken into account considering also the dataset characteristics of Table 2 and the average RS sizes in
Table 7. (Lines in grey denote novel results introduced in this paper).

Classifier
Dataset

L-L L-M L-H AIDS P G M C-D
ODSE2v1-MMN 15 39 34 5 43 27 164 357
ODSE2v2-MMN 15 28 41 4 48 28 159 368

ODSE2v1-MST-MMN 15 27 38 3 48 28 168 348
ODSE2v2-MST-MMN 15 27 34 4 43 27 175 365

7. Conclusions and Future Directions

In this paper, we have presented different variants of the improved ODSE graph classification
system. All discussed variants are based on the characterization of the informativeness of DMs
through the estimation of the α-order Rényi entropy. The first adopted estimator computes the QRE by
means of a kernel-based density estimator, while the second one uses the length of an entropic MST.
The improved ODSE system has been designed by providing different strategies for the initialization,
compression, as well as for the expansion operation of the RS. In particular, we conceived a fast CBC
scheme, which allowed us to directly control the compression level of the data through the explicit
setting of the cluster radius parameter. We provided formal proofs related to the two estimation
techniques, which enabled us to determine the value of cluster radii analytically according to the ODSE
model optimization procedure. We have studied also the asymptotic worst-case efficiency of the CBC
scheme implemented by means of a sequential cluster generation rule (BSAS).

Experimental evaluations and comparisons with several state-of-the-art systems have been
performed on well-known benchmarking datasets of labeled graphs (IAM database). We used two
different feature-based classifiers operating in the DS: the k-NN classifier equipped with the Euclidean



Entropy 2017, 19, 216 18 of 23

distance and a neurofuzzy MMN trained with the ARC algorithm. Overall, the variants adopting
the MST-based estimator were faster but less parsimonious for what concerns the synthesized ODSE
model (i.e., the cardinality of the best-performing RS was larger). The use of the k-NN rule (with k = 1)
produced slightly better test set accuracy results w.r.t. the MMN classifier, while in the latter case we
observed important differences in term of (serial) CPU computing time, especially for what concerns
the test set processing. The test set classification accuracy results confirmed the effectiveness of the
ODSE classifier w.r.t. state-of-the-art standards. Moreover, the significative CPU time improvements
w.r.t. the original ODSE version, and the highly parallelizable global optimization scheme based on
genetic algorithms, bring the ODSE graph classifier one step closer towards the applicability to larger
labeled graphs and big datasets.

The vector representation of the input graphs have been obtained directly using the rows of the
DM. Such a choice, while it is known to be effective, has been mainly dictated by the computing time
requirements of the system. It is worth analyzing the performance of ODSE also when the embedding
space is obtained by a (non)linear embedding of the (corrected) pairwise dissimilarity values [54].
Future experiments include testing other core IGM procedures [55] and additional α-order Rényi
entropy estimators and feature-based classifiers.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A Proof of Theorem 2

Proof. We focus on the worst-case scenario for ξ, giving thus a lower bound for the efficiency (23).
Let s[i] = xi denote the i-th element of the sequence s, i.e., the i-th dissimilarity vector corresponding
to the prototype graph Ri ∈ R. Let s∗ be the best ordering for s, i.e.,

s∗ = arg max
si∈Ω(s)

ρ(si). (A1)

Let us assume the case in which the Euclidean distance among any pair of vectors in s is given by

d2(s[i], s[j]) = |i− j|θ, 1 ≤ i, j ≤ n, (A2)

where θ is the cluster radius adopted for the ODSE compression. It is easy to understand that this
is the worst-case scenario for the compression purpose in the sequential clustering setting. In fact,
each vector xi in the sequence s has a distance with its predecessor/successor equal to the maximum
cluster radius θ. As a consequence, there is still a possibility to compress the vectors, although it is
strictly dependent on the specific ordering of s.

First of all, it is important to note that, due to the distances assumed in (A2), only three elements
of s can be contained into a single cluster. In fact, any three consecutive elements of the sequence s
would form a cluster with a diameter equal to 2θ. Therefore, considering the sequential rule shown in
Algorithm 1, and setting Q = n, the best possible ordering s∗ is the one that preserves a distance equal
to θ for any two adjacent elements of s, achieving a compression ratio of:

ρ∗(s) = n/dn/3e. (A3)

The worst possible ordering, instead, yields n/dn/2e, which can be achieved (assuming n odd)
when considering the following ordering si w.r.t. the optimal s∗:

si[j] = s∗[(2j mod n) + 1], j = 1, 2, ..., n. (A4)

In this case, Algorithm 1 would generate exactly

dn/2e (A5)
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clusters, corresponding to the first dn/2e elements of the sequence si, since every pair of consecutive
elements in si is at a distance of exactly 2θ. Therefore, dn/2e is the maximum number of clusters that
can be generated by considering the distances assumed in (A2). Combining Equations (A3) and (A5),
we obtain for a given s,

n/dn/2e ≤ ρ̂(s) ≤ ρ∗(s) = n/dn/3e, (A6)

which allows us to claim that the worst-case efficiency of the ODSE compression varies as follows:

ρ̂(s)/ρ∗(s) =
n

dn/2e ×
dn/3e

n
=
dn/3e
dn/2e . (A7)

Taking the limit for n→ ∞ in Equation (A7) gives us the claim.

Appendix B Proof of Theorem 3

Proof. Let us focus the analysis on a single cluster B ∈ P(θ; τc, γ), containing k = |B| prototypes
within a training set of n graphs. We remind that cluster radius and diameter are, respectively, θ and
2θ in the spherical cluster case. Therefore, we can obtain an upper bound for the MST length factor (5),
considering that (all) corresponding MST, T, of the complete graph generated from the k measurements
has k− 1 edges with weights equal to 2θ. Specifically,

Lγ(θ) = ∑
eij∈T
|eij|γ = (k− 1)× (2θ)γ. (A8)

In the following, we evaluate β(Lγ(θ), n) exactly as defined in Equation (8), considering n
dimensions—note that β(Lγ(θ), n) is shortened as β. Equation (A8) allows us to derive the following
upper bound for the MST-based entropy estimator (6):

Ĥα(Dk) =
n
γ

[
ln
(

Lγ(Dk)

kα

)
− ln (β(Lγ, n))

]
≤ n

γ

[
ln
(

Lγ(θ)

kα

)
− ln(β)

]
=

n
γ

[
ln
(
(k− 1)× (2θ)γ

kα

)
− ln(β)

]
=

n
γ
[ln(k− 1) + γ ln(2θ)− ln(kα)− ln(β)] . (A9)

However, the entropy estimator shown in Equation (6) does not yield normalized values
(e.g., in [0, 1]). We can normalize the estimations by considering the following factor:

ι =
n
γ

[
ln(k− 1) + γ ln(∆

√
n)− ln(kα)− ln(β)

]
. (A10)

The quantity ∆
√

n is the maximum distance in an Euclidean ∆-hypercube of n-dimensions; ∆ is
the input data extent, which is 2 in our case. Equation (A10) is a maximizer of (6), since the logarithm
is a monotonically increasing function and the other relevant factors in the expression remain constant
changing the input distribution. Instead, the MST length achieves its maximum value only in the
specific case where all k points are at a distance equal to 2

√
n. Therefore, by normalizing Equation (A9)

using (A10), we obtain:

ln(k− 1) + γ ln(2θ)− ln(kα)− ln(β)

ln(k− 1) + γ ln(2
√

n)− ln(kα)− ln(β)
∈ [0, 1]. (A11)
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Rewriting the expression in terms of the ODSE compression rule (15), we have:

Ĥα(Dk)

ι
≤ ln(k− 1) + γ ln(2θ)− ln(kα)− ln(β)

ln(k− 1) + γ ln(2
√

n)− ln(kα)− ln(β)
≤ τc. (A12)

Solving for θ, the right-hand side of (A12) can be manipulated as follows:

γ ln(2θ) ≤τc
[
ln(k− 1) + γ ln(2

√
n)− ln(kα)− ln(β)

]
− ln(k− 1) + ln(kα) + ln(β);

ln(2θ) ≤τc

γ

[
ln(k− 1) + γ ln(2

√
n)− ln(kα)− ln(β)

]
+

1
γ
[− ln(k− 1) + ln(kα) + ln(β)] ;

θ ≤1
2

exp
(

τc

γ

[
ln(k− 1) + γ ln(2

√
n)− ln(kα)− ln(β)

])
× exp

(
1
γ
[− ln(k− 1) + ln(kα) + ln(β)]

)
;

θ ≤1
2
[
exp

(
ln(k− 1) + γ ln(2

√
n)− ln(kα)− ln(β)

)] τc
γ

× [exp (− ln(k− 1) + ln(kα) + ln(β))]
1
γ ;

θ ≤1
2

[
(k− 1)2γn

γ
2 k−αβ−1

] τc
γ
[
(k− 1)−1kαβ

] 1
γ ;

θ ≤1
2
(k− 1)

τc
γ 2τc n

τc
2 k
−ατc

γ β
− τc

γ (k− 1)−
1
γ k

α
γ β

1
γ ;

θ ≤(k− 1)
τc−1

γ 2τc−1n
τc
2 k

α(−τc+1)
γ β

−τc+1
γ . (A13)

Considering that τc − 1 ≤ 0 and (−τc + 1) ∈ [0, 1] hold for any τc ∈ [0, 1], we rewrite
Equation (A13) accordingly as follows:

θ ≤ 2τc−1n
τc
2 β

−τc+1
γ

k
α(−τc+1)

γ

(k− 1)
−τc+1

γ

; (A14)

θ ≤ 2τc−1n
τc
2 β

−τc+1
γ

(
kα

(k− 1)

)−τc+1
γ

. (A15)

The right-hand side of Equation (A15) can be further simplified as

θ ≤ 2τc−1n
τc
2 β

−τc+1
γ c(γ), (A16)

where the c(γ) function has the following bounds:

0 ≤ c(γ) ≤
(

kα

k− 1

)−τc+1
γ

. (A17)

In fact, provided that α ∈ (0, 1) and k ∈ N hold, with k ≥ 2 (there is no need to compress singleton
clusters), we have: 

k
α(−τc+1)

γ (k− 1)
τc−1

γ = 0 if k→ ∞,

k
α(−τc+1)

γ (k− 1)
τc−1

γ =
(

kα

k−1

)−τc+1
γ otherwise.

(A18)
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Note that c(γ) depends also on α, which, however, in turn depends on γ (7); we express c(γ) as a
function of the γ parameter only. Equation (A18) evaluates to 2

α
γ when k = 2 and τc = 0, providing

hence the upper bound for c(·).
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