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Abstract: This paper describes and proves two important theorems that compose the Law of Large
Numbers for the non-Euclidean Lp-means, known to be true for the Euclidean L2-means: Let the
Lp-mean estimator, which constitutes the specific functional that estimates the Lp-mean of N
independent and identically distributed random variables; then, (i) the expectation value of the
Lp-mean estimator equals the mean of the distributions of the random variables; and (ii) the limit
N → ∞ of the Lp-mean estimator also equals the mean of the distributions.
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1. Introduction: Definition of Lp-Means and Their Basic Properties

In [1–3], a generalized characterization of means was introduced, namely, the non-Euclidean
means, based on metrics induced by Lp-norms, wherein the median is included as a special case for
p = 1 (L1) and the ordinary Euclidean mean for p = 2 (L2) (see also: [4,5]). Let the set of y-values
{yk}W

k=1 (yk ∈ Dy ⊆ <), associated with the probabilities {pk}W
k=1; then, the non-Euclidean means µp,

based on Lp-norms, are defined by

W

∑
k=1

pk|yk − µp|p−1sign(yk − µp) = 0 , (1)

where the median µ1 and the arithmetic mean µ2 follow as special cases when the Taxicab L1

and Euclidean L2-norms are respectively considered. Both the median µ1 and arithmetic µ2

means can be implicitly written in the form of Equation (1) as ∑W
k=1 pksign(yk − µ1) = 0 and

∑W
k=1 pk|yk − µ2|sign(yk − µ2) = 0 (⇔ µ2 = ∑W

k=1 pkyk), respectively.
Note that the solution of Equation (1) is a specific case of the so-called M-estimators [6], while

it is also related to the Fréchet Means [7]. The Euclidean norm L2 is also known as “Pythagorean”
norm. In [3], we preferred referring to the non-Pythagorean norms as non-Euclidean, inheriting
the same characterization to Statistics. One may adopt the more explicit characterizations of
“Non-Euclidean-normed” Statistics, for avoiding any confusion with the non-Euclidean metric of
the (Euclidean-normed) Riemannian Geometry. As an example of an application in physics, the Lp

expectation value of an energy spectrum {εk}W
k=1 is defined by representing the non-Euclidean

adaptation of internal energy Up [8].
Figure 1 illustrates an example of Lp-means. We use the Poisson distribution pk = e−λλk/k!

and the dataset yk = k, for k = 1, ..., W; hence, the Lp-means are implicitly given by

∑W
k=1

λk

k! |k− µp|p−1sign(k− µp) = 0 (note that the constant term e−λ can be ignored). The function
µp = µp(λ) is examined for various values of the p-norm, either (a) super-Euclidean, p > 2, or (b)
sub-Euclidean p < 2. The mean value for the Euclidean case, p = 2, is µ2 = λ, which is represented by
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the diagonal line in both panels. We observe that for p > 2 we always have µp > λ, while for p < 2
there is a critical value λ∗(p), for which µp > λ for λ > λ∗ and µp < λ for λ < λ∗. The critical value
λ∗(p) increases with p, and as p→ 2, µp → λ. For λ = 1, µp = 1 for any p ≤ 2, while for λ = 0, µp = 0
for any values of p.

Figure 1. Example of Lp-means of a dataset following the Poisson distribution. The relation µp = f (λ)
is plotted for (a) p ≥ 2, i.e., p = 2 (red solid line), p = 3 (blue dash), p = 5 (green dash–dot), p = 10
(purple thick dash), p = 30 (light-blue thick dash–dot); and (b) p ≤ 2, i.e., p = 2 (red solid line), p = 1.7
(blue dash), p = 1.5 (green dash–dot), p = 1.3 (purple thick dash), p = 1.1 (light-blue thick dash–dot).

The Law of Large Numbers is a theorem that guarantees the stability of long-term averages of
random events, but is valid only for Euclidean metrics based on L2-norms. The purpose of this paper is
to extend the theorem of the “Law of Large Numbers” to the non-Euclidean, Lp-means. Namely, (i) the
expectation value of the Lp-mean estimator (that corresponds to Equation (1)) equals the mean of the
distribution of each of the random variables; and (ii) the limit N → ∞ of the Lp-mean estimator also
equals the mean of the distributions. These are numbered as Theorems 2 and 3, respectively. The paper
is organized as follows: In Section 2, we prove the theorem of uniqueness of the Lp-means (Theorem 1).
This will be used in the proofs of Theorems 2 and 3, shown in Sections 3 and 4, respectively. Finally,
Section 5 briefly summarizes the conclusions. Several examples are used to illustrate the validity of the
Theorems 1–3, that is, the Poisson distribution (discrete description) and a superposition of normal
distributions (continuous description).

2. Uniqueness of Lp-Means

Here, we show the theorem of uniqueness of the Lp-means for any p > 1. The theorem will be
used in the Theorem 2 and 3 of the next sections.

Theorem 1. The curve µp(p) is univalued, namely, for each p > 1, there is a unique value of the
Lp-mean µp(p).

Proof of Theorem 1. Using the implicit function theorem [9], we can easily show the uniqueness in
a sufficiently small neighbourhood of p = 2. Indeed, there is at least one point, that is the Euclidean
point (p = 2, µp = µ2), for which the function µp(p) exists and is univalued. Then, the values of µp(p),



Entropy 2017, 19, 217 3 of 12

∀p > 1, can be approximated to any accuracy, starting from the Euclidean point. The implicit function
F(p, µp) = 0, defined by Equation (1), is continuous and ∂F(p, µp)/∂µp = (p-1)∑W

k=1 pk|yk − µp|p−2 6= 0;
then µp(p) is univalued in some domain around p = 2. The first derivative µṕ(p) is finite ∀p > 1
(e.g., for p = 2 we have µ2́ = [∂µp(p)/∂p]p=2 = ∑W

k=1 pk(yk − µ2) ln(|yk − µ2|)). Indeed, the inverse
derivative is non-zero for any p, i.e.,

∂p
∂µp

=
(p− 1)∑W

k=1 pk|yk − µp|p−2

∑W
k=1 pk|yk − µp|p−1sign(yk − µp) ln(|yk − µp|)

,∀ p > 1 . (2)

The inverse function, p(µp), should be continuous and differentiable according to Equation (2).
If µp(p) were multi-valued, then, it should have local minima or maxima. However, the derivative
dp/dµp is non-zero. Therefore, we conclude that p(µp) cannot be multi-valued, and there is a unique
curve µp(p) that passes through (p = 2, µp = µ2).

As an example, Figure 2 plots the Lp-means of the Poisson distribution shown in Figure 1, but now
as a function of the p-norm, and for various values of 0 < λ < 1. For λ < ln 2, the function µp(p) is
monotonically increasing with p. On the contrary, for λ > ln 2, the function µp(p) is not monotonic,
having a minimum in the region of sub-Euclidean norms, 1 < p < 2. The separatrix between these two
behaviors of µp(p) is given for λ = ln 2. We observe that the function µp(p) is differentiable, ∂µp/∂p is
always finite or ∂p/∂µp is always non-zero, thus µp(p) is unique for any value of p.

Finally, we note that the uniqueness of µp for a given p does not ensure monotonicity, as different
values of p may lead to the sameLp-mean. Such an example is theLp-means of the Poisson distribution
for λ > ln 2, shown in Figure 2. As stated and illustrated in [3], when the examined probability
distribution is symmetric, then the whole set of Lp-means degenerates to one single value, while when
it is asymmetric, a spectrum-like range of Lp-means is rather generated.

Figure 2. Uniqueness of the Lp-means of the Poisson distribution. The means are plotted as a function
of the p-norm, and for various values of 0 < λ < 1, that is, λ < ln 2 (red solid), λ = ln 2 (black dash),
and λ > ln 2 (blue solid).

3. The Concept of Lp-Expectation Values

Given the sampling {yi}N
i=1, the Lp-mean estimator µ̂p,N = µ̂p,N ({yj}N

j=1; p) is implicitly
expressed by

N

∑
i=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)
]
= 0 . (3)

Then, the Lp expectation value of µ̂p,N ({yj}N
j=1; p), namely 〈µ̂p,N 〉p ≡ Êp[µ̂p,N ({yj}N

j=1; p)], is
implicitly given by



Entropy 2017, 19, 217 4 of 12

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− 〈µ̂p,N 〉p

∣∣∣p−1
sign

[
µ̂p,N ({yj}N

j=1; p)− 〈µ̂p,N 〉p
]

× P({yj}N
j=1) dy1 . . . dyN = 0 ,

(4)

where P({yj}N
j=1) is the normalized joint probability density, so that

∫
· · ·
∫
{yj∈Dy}N

j=1

P({yj}N
j=1) dy1 . . . dyN = 1 . (5)

Definition 1. Let the sampling {yi}N
i=1, yi ∈ Dy ⊆ <, ∀ i = 1, . . . , N, of the set of random variables

{Yi}N
i=1. This set is called symmetrically distributed if the joint distribution density has the property

P({yj}N
j=1) = P(y1...yk...yi...yN) = P(y1...yi...yk...yN), ∀ i, k( 6= i) = 1, . . . , N. This property is formally

called Exchange-ability [10] and will be used in Lemmas 1 and 2.
Next, we postulate and prove Lemmas 1 and 2, which are necessary for the following Theorem 2 about the

expectation value of the Lp-mean estimator.

Lemma 1. The symmetrically distributed random variables {Yi}N
i=1 are characterized by the same Lp

expectation value, namely, 〈Yi〉p = Êp(Yi) = µp ∈ <, ∀ i = 1, . . . , N, which is implicitly given by∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yi − µp
∣∣p−1 sign

(
yi − µp

)
P({yj}N

j=1) dy1 . . . dyN

=
∫

yi∈Dy

∣∣yi − µp
∣∣p−1 sign

(
yi − µp

)
Py(yi) dyi = 0 ,

(6)

where Pyi (u) ≡ Py(u), ∀ i = 1, . . . , N, is the marginal distribution density, that is identical for all the random
variables {Yi}N

i=1.

Proof of Lemma 1. The yi-marginal probability density, Pyi (yi), is

Pyi (yi) =
∫
· · ·
∫
{yj∈Dy}N

j=1,j 6=i

P({yj}N
j=1) dy1 . . . dyi−1dyi+1 . . . dyN , (7)

so that ∫
yi∈Dy

Pyi (yi) dyi = 1 . (8)

Given the symmetrical joint distribution, we have

Pyi (yi) =
∫
· · ·
∫
{yj∈Dy}N

j=1,j 6=i
P(y1...yi...yk...yN) dy1...dyi−1dyi+1...dyN

=

{ ∫
· · ·
∫
{yj∈Dy}N

j=1,j 6=i
P(y1...yk...yi...yN) dy1...dyk−1dyk+1...dyN

}
yk=yi

=

{ ∫
· · ·
∫
{yj∈Dy}N

j=1,j 6=i
P(y1...yi...yk...yN) dy1...dyk−1dyk+1...dyN

}
yk=yi

= Pyk (yi) ∀ i, k( 6= i) = 1, . . . , N .

(9)

Hence, the expression of the marginal distribution density Pyi (u) is identical ∀ i = 1, . . . , N,
i.e., for all the random variables, Pyi (u) ≡ Py(u).
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Then, we readily derive that the random variables {Yi}N
i=1 are characterized by the same Lp

expectation value, namely, 〈Yi〉p = Êp(Yi) = µp ∈ <, ∀ i = 1, . . . , N, which is implicitly expressed by∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yi − µp
∣∣p−1 sign

(
yi − µp

)
P({yj}N

j=1) dy1 . . . dyN

=
∫

yi∈Dy

∣∣yi − µp
∣∣p−1 sign

(
yi − µp

)
Py(yi) dyi = 0.

(10)

Indeed, if we had 〈Yi〉p = µpi ∈ <, ∀ i = 1, . . . , N, then∫
yi∈Dy

∣∣yi − µpi
∣∣p−1 sign

(
yi − µpi

)
Py(yi) dyi = 0 , (11)

and for k 6= i, ∫
yk∈Dy

∣∣yk − µpk
∣∣p−1 sign

(
yk − µpk

)
Py(yk) dyk = 0 ,

⇒
∫

yi∈Dy

∣∣yi − µpk
∣∣p−1 sign

(
yi − µpk

)
Py(yi) dyi = 0.

(12)

However, given the uniqueness of theLp-means, Equations (11) and (12) lead to µpi = µpk ∀ i, k( 6= i) =
1, . . . , N, or µpi = µp , ∀ i = 1, . . . , N.

Lemma 2. Let the auxiliary functionals {Gi}N
i=1, with Gi = Gi({yj}N

j=1; p) ≡ yi − µ̂p,N ({yj}N
j=1; p), ∀ i =

1, . . . , N. Then, their Lp expectation values are zero, namely, 〈Gi〉p = Êp(Gi) = 0, ∀ i = 1, . . . , N.

Proof of Lemma 2. The Lp expectation value of 〈Gi〉p is implicitly given by

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)− 〈Gi〉p

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)− 〈Gi〉p
]

× P({yj}N
j=1) dy1 . . . dyN = 0.

(13)

If 〈Gi〉p = 0, then

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)
]

× P({yj}N
j=1) dy1 . . . dyN = 0,

(14)

while if 〈Gi〉p 6= 0, then the above functional has to be non-zero, because of the uniqueness of Lp

expectation values, namely,

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)
]

× P({yj}N
j=1) dy1 . . . dyN = Ci(p, N) 6= 0,

(15)
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Now, rewriting Equation (15) for an index k( 6= i), we have

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣yk − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yk − µ̂p,N ({yj}N

j=1; p)
]

× P({yj}N
j=1) dy1 . . . dyN = Ck(p, N)

=
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yk − µ̂p,N (y1...yi...yk...yN; p)
∣∣p−1 sign

[
yi − µ̂p,N (y1...yi...yk...yN; p)

]
× P(y1...yi...yk...yN) dy1...dyi...dyk...dyN

=
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yi − µ̂p,N (y1...yk...yi...yN; p)
∣∣p−1 sign

[
yi − µ̂p,N (y1...yi...yk...yN; p)

]
× P(y1...yk...yi...yN) dy1...dyk...dyi...dyN

=
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yi − µ̂p,N (y1...yi...yk...yN; p)
∣∣p−1 sign

[
yi − µ̂p,N (y1...yk...yi...yN; p)

]
× P(y1...yi...yk...yN) dy1...dyi...dyk...dyN = Ci(p, N),

(16)

because of the symmetrical distribution of random variables {yj}N
j=1, i.e., P(y1...yk...yi...yN) =

P(y1...yi...yk...yN), ∀ i, k( 6= i) = 1, . . . , N, (the same symmetry holds also for the estimator µ̂p,N , while
the integration on each yi spans the same integral Dy. Hence, Ci(p, N) = Ck(p, N) ≡ C(p, N). Then, by
summing both sides of Equation (15) with ∑N

i=1, we conclude in

∫
· · ·
∫
{yj∈Dy}N

j=1

N

∑
i=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)
]

× P({yj}N
j=1) dy1 . . . dyN = 0 =

N

∑
i=1

Ci(p, N) = N C(p, N) ,

or C(p, N) = 0. Thus, Equation (14) holds, and given the uniqueness of Lp expectation values, we
conclude in 〈Gi〉p = 0, ∀ i = 1, . . . , N.

Theorem 2. Consider the sampling {yi}N
i=1, yi ∈ Dy ⊆ <,∀ i = 1, . . . , N, of the symmetrically distributed

random variables {Yi}N
i=1. According to Lemma 1, the random variables are characterized by the same Lp

expectation value (assuming that this exists), namely, 〈Yi〉p = Êp(Yi) = µp ∈ <, ∀ i = 1, . . . , N, which is
implicitly expressed by Equation (6). Then, the Lp expectation value of the Lp-mean estimator µ̂p,N ({yj}N

j=1; p)
is equal to µp, i.e., 〈µ̂p,N 〉p = Êp[µ̂p,N ({yj}N

j=1; p)] = µp or

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
sign

[
µ̂p,N ({yj}N

j=1; p)− µp

]
× P({yj}N

j=1) dy1 . . . dyN = 0.
(17)

Proof of Theorem 2. (For useful inequalities, see [11]) Apparently, the following integral inequalities hold:

0 =

∣∣∣∣∣ ∫· · ·∫{yj∈Dy}N
j=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
sign

[
yi − µ̂p,N ({yj}N

j=1; p)
]

× P({yj}N
j=1) dy1 . . . dyN

∣∣∣∣∣
≤
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣yi − µ̂p,N ({yj}N
j=1; p)

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN,

(18)
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and, ∀ i = 1, . . . , N,

0 =

∣∣∣∣∣ ∫yi∈Dy

∣∣yi − µp
∣∣p−1 sign(yi − µp)Py(yi) dyi

∣∣∣∣∣
≤
∫

yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi.

(19)

Furthermore, we consider the Lp expectation value of the functional g({yj}N
j=1; p) ≡

µ̂p,N ({yj}N
j=1; p)− µp, namely, 〈g〉p = Êp(g({yj}N

j=1; p)), which is implicitly given by

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp − 〈g〉p

∣∣∣p−1

× sign
[
µ̂p,N ({yj}N

j=1; p)− µp − 〈g〉p
]
P({yj}N

j=1) dy1 . . . dyN = 0.
(20)

If 〈g〉p = 0, then,

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
sign

[
µ̂p,N ({yj}N

j=1; p)− µp

]
× P({yj}N

j=1) dy1 . . . dyN = 0,
(21)

while if 〈g〉p 6= 0, then the above functional has to be non-zero, because of the uniqueness of Lp

expectation values, namely,

∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
sign

[
µ̂p,N ({yj}N

j=1; p)− µp

]
× P({yj}N

j=1) dy1 . . . dyN = D(p, N) 6= 0,
(22)

or

|D(p, N)| =
∣∣∣∣∣ ∫· · ·∫{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
sign

[
µ̂p,N ({yj}N

j=1; p)− µp

]
× P({yj}N

j=1) dy1 . . . dyN

∣∣∣∣∣
≤
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN.

(23)

First case, p ≤ 2: Hence, p− 1 ≤ 1, and from the power inequality (| f |+ |g|)s ≤ | f |s + |g|s holding
∀ s ≤ 1, we have the following:

The triangle inequality gives |µ̂p,N ({yj}N
j=1; p)− µp| ≤ |µ̂p,N ({yj}N

j=1; p)− yi|+ |yi − µp|. Then,

applying the above power inequality for s = p− 1, f = µ̂p,N ({yj}N
j=1; p)− yi, and g = yi − µp, we have

|µ̂p,N ({yj}N
j=1; p)− µp|p−1 ≤ (|µ̂p,N ({yj}N

j=1; p)− yi|+ |yi − µp|)p−1 ≤ |µ̂p,N ({yj}N
j=1; p)− yi|p−1 + |yi −

µp|p−1. Thereafter, Equation (23) becomes

|D(p, N)| ≤∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN

+
∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣yi − µp
∣∣p−1P({yj}N

j=1) dy1 . . . dyN,

⇒ |D(p, N)| ≤∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN

+
∫

yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi,

(24)
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or

1
2 |D(p, N)| ≤ Max

{ ∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1

P({yj}N
j=1) dy1 . . . dyN ,

∫
yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi

}
.

(25)

Second case, p ≥ 2: Hence, p− 1 ≥ 1, and applying the Minkowski inequality on Equation (23),
we have

|D(p, N)|
1

p−1 ≤[ ∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− µp

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN

] 1
p−1

≤
[ ∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1 . . . dyN

] 1
p−1

+

[ ∫
yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi)

] 1
p−1

dyi .

(26)

or
1

2p−1 |D(p, N)|≤

Max

{∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1. . .dyN,

∫
yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi

}
.

(27)

Combining Equations (25) and (27), we conclude in an inequality that holds ∀ p ≥ 1,

0 6= Min

{[
1
2 |D(p, N)|

]
p≤2

,
[

1
2p−1 |D(p, N)|

]
p≥2

}
≡ D̃(p, N)≤

Max

{∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1. . .dyN,

∫
yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi

}
.

(28)

On the other hand, Equations (18) and (19) imply that

0 ≤ Max

{∫
· · ·
∫
{yj∈Dy}N

j=1

∣∣∣µ̂p,N ({yj}N
j=1; p)− yi

∣∣∣p−1
P({yj}N

j=1) dy1. . .dyN,

∫
yi∈Dy

∣∣yi − µp
∣∣p−1Py(yi) dyi

}
.

(29)

We construct the auxiliary random variables {Xi}N
i=1, defined by Xi = fx(Yi) ≡ Yi · D̃(p, N)

− 1
p−1 ,

having values {xi = fx(yi)}N
i=1 in the domain xi ∈ Dx ≡ { fx(yMin) ≤ x ≤ fx(yMax)} ⊆ <, ∀ i =

1, . . . , N (where yMin ≡ Dy,Min ∈ Dy is the infimum of Dy, while yMax ≡ Dy,Max ∈ Dy is the supremum
of Dy). The Lp-mean estimator of the set {xi}N

i=1 is given by the functional µX
p,N

= µX
p,N

({xj}N
j=1; p) =

µ̂p,N ({yj = xjD̃(p, N)
1

p−1 }N
j=1; p)D̃(p, N)

− 1
p−1 , while the random variables {Xi}N

i=1 have the common

Lp expectation value 〈Xi〉p ≡ Êp(Xi) = µX
p = µpD̃(p, N)

− 1
p−1 ∈ <, ∀ i = 1, . . . , N. The respective



Entropy 2017, 19, 217 9 of 12

joint probability density is given by PX({xj}N
j=1) = P [{yj = xjD̃(p, N)

1
p−1 }N

j=1] · D̃(p, N)
N

p−1 , so that,

PX({xj}N
j=1)dx1. . .dxN = P({yj}N

j=1)dy1. . .dyN . Then, Equations (28) and (29) become

1 ≤ Max

{∫
· · ·
∫
{xj∈Dx}N

j=1

∣∣∣µX
p,N

({xj}N
j=1; p)− xi

∣∣∣p−1
PX({xj}N

j=1) dx1. . .dxN,

∫
xi∈Dx

∣∣∣xi − µX
p

∣∣∣p−1
PX

x (xi) dxi

}
,

(30)

and

0 ≤ Max

{∫
· · ·
∫
{xj∈Dx}N

j=1

∣∣∣µX
p,N

({xj}N
j=1; p)− xi

∣∣∣p−1
PX({xj}N

j=1) dx1. . .dxN,

∫
xi∈Dx

∣∣∣xi − µX
p

∣∣∣p−1
PX

x (xi) dxi

}
,

(31)

respectively (where PX
xi
(u) = PX

x (u), ∀ i = 1, . . . , N is the identical marginal distribution density for all
the random variables {Xi}N

i=1).
Moreover, we define the nonnegative quantities `X

p , determined by the integral operator ÎX
p ,

given by

ÎX
p ≡ Max

{∫
· · ·
∫
{xj∈Dx}N

j=1

∣∣∣µX
p,N

({xj}N
j=1; p)− xi

∣∣∣p−1
1̂ dx1. . .dxN,

∫
xi∈Dx

∣∣∣xi − µX
p

∣∣∣p−1
1̂ dxi

}
,

(32)

which acts on the probability densities PX({xj}N
j=1) so that

`X
p = ÎX

p [PX({xj}N
j=1)] . (33)

Now consider the subsetM ⊆ < of all the possible values of `X
p . Equation (30) yields 1 ≤ `X

p ,
so that the infimum I(M) = 1 (Note that, in this case, the infimum is element ofM, obtained for
p = 1). On the other hand, Equation (31) yields 0 ≤ `X

p , which reads that the nonnegative quantities `X
p

can be arbitrary small, even zero, so that the infimum is now given by I(M) = 0.
However, the infimum is unique. The false by contradiction comes from the statement

D(p, N) 6= 0. Hence, D(p, N) = 0, and Equation (20) yields 〈g〉p = 0, i.e., 〈µ̂p,N ({yj}N
j=1; p)− µp〉p = 0,

or 〈µ̂p,N ({yj}N
j=1; p)〉p = µp = 〈yi〉p,∀ i = 1, . . . , N.

4. Limit of the Lp-Mean Estimator

The following theorem derives the limit of Lp-mean estimator µ̂p,N ({yj}N
j=1; p).

Theorem 3. Let the sampling {yi}N
i=1, yi ∈ Dy ⊆ <,∀ i = 1, . . . , N, of the independent and identically

distributed random variables {Yi}N
i=1. The Lp-mean estimator µ̂p,N ({yj}N

j=1; p) converges to its Lp expectation
value, 〈µ̂p,N 〉p = Êp[µ̂p,N ({yj}N

j=1; p)] ≡ µp, as N → ∞, namely, limN→∞ µ̂p,N = 〈µ̂p,N 〉p ≡ µp.

Notes:

1. Obviously, the independent and identically distributed random variables are also symmetrically
distributed. Thus, according to Theorem 2, we have 〈µ̂p,N 〉p = Êp[µ̂p,N ({yj}N

j=1; p)] = 〈Yi〉p =

Êp(Yi) = µp.
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2. The Lp expectation value 〈Yi〉p = µp should be calculated given the marginal distribution density
Py(yi), ∀ i = 1, . . . , N. However, the expression of this distribution is usually unknown, and thus,
we estimate µp by means of limN→∞ µ̂p,N .

Proof of Theorem 3. We construct the set of auxiliary random variables {Xi}N
i=1, defined by

Xi = fx(Yi) ≡ |Yi − µp|p−1sign(Yi − µp), and having the relevant sampling values {xi = fx(yi)}N
i=1,

with domain xi ∈ Dx ≡ {−| fx(yMin)| ≤ x ≤ | fx(yMax)|} ⊆ <, ∀ i = 1, . . . , N. Apparently, {Xi}N
i=1 are

also independent and identically distributed random variables, and let PX
xi
(u) = PX

x (u), ∀ i = 1, . . . , N
be the identical marginal distribution density for all the random variables {Xi}N

i=1.

Then, the Euclidean expectation value of each of the random variables is

〈xi〉2 =
∫

xi∈Dx
xi Px(xi) dxi =

∫
yi∈Dy

∣∣yi − µp
∣∣p−1 sign(yi − µp)Py(yi) dyi = 0 , (34)

∀ i = 1, . . . , N. Thereafter, from the “Law of Large Numbers” we have that ∑N
i=1(xi − 〈xi〉2) converges

to zero, as N → ∞ [12–14]. Thus,

∞

∑
i=1

∣∣yi − µp
∣∣p−1 sign(yi − µp) = 0 . (35)

On the other hand, Equation (3), for N → ∞ (assuming the convergence of the sum at this limit),
is written as

∞

∑
i=1

∣∣∣∣yi − lim
N→∞

µ̂p,N

∣∣∣∣p−1
sign

(
yi − lim

N→∞
µ̂p,N

)
= 0 , (36)

while, given the uniqueness of µp, we conclude in limN→∞ µ̂p,N = µp.
As an application, we examine the probability distribution P(x), constructed by the superposition

of two different normal distributions N1(y; µ = 1, σ = 1) and N2(y; µ = 1 + δa, σ = 2) with δa > 0;
namely, P(y; δa; λ) = [N1(y)+λN2(y; δa)]/(1+λ). For δa = 0, the constructed probability distribution
is symmetric, and as explained in Section 3 and [3], the whole set of Lp-means degenerates to
one single value—in our case µp = 1, ∀p > 1. First, we derive the Lp-mean of the distribution,

〈y〉p = µp, where
∫ +∞
−∞

∣∣y− µp
∣∣p−1 sign(y− µp)P(y) dy = 0. Then, we compute the Lp-mean estimator

µ̂p,N ({yj}N
j=1; p), where the y-values, {yj}N

j=1, follow the probability distribution constructed above,
P(y; δa; λ). The N y-values are generated as follows: we derive the cumulative distribution of P , that
is F(y; δa; λ) = 1

2 +
[
erf
(

y−1√
2

)
+ λ · erf

(
y−1−δa

2
√

2

)]
/[2(1 + λ)], and then we set the parametrization

F(yi; δa; λ) = i/N, from where we solve for yi. The estimator µ̂p,N ({yj}N
j=1; p) is implicitly given

by ∑N
i=1
∣∣yi − µ̂p,N

∣∣p−1 sign
(
yi − µ̂p,N

)
= 0; then, we demonstrate Theorem 3 showing the equality

limN→∞ µ̂p,N = µp; in particular, we construct the sum S(N) ≡ ∑N
i=1
∣∣yi − µp

∣∣p−1 sign
(
yi − µp

)
,

and show that limN→∞S(N)→ 0, satisfying Equation (35).
Figure 3 illustrates the convergence limN→∞ µ̂p,N = µp. Panel (a) plots the sum S(N) as a function

of N and for the norms p = 1.5, 2, and 2.5; we find a convergence rate of S(N) ∼ 1/N. Panel (b) plots
the summation S(N) for large N (= 103), which becomes zero only if the p-norm used by the estimator
µ̂p,N , that is p = p1, equals the p-norm used by the mean µp, that is p = p2. Finally, panel (c) plots the
value of the estimator µ̂p,N , as a function of the norm p, for two data numbers N = 100 and N = 300,
showing the convergence to µp, which is co-plotted as a function of p.

Figure 4 plots the deviation between the Lp-mean estimator µ̂p,N and the mean µp, that is,
|µ̂p,N − µp|, and for a large number of data (N = 103). The mean µp is taken for the norm p = 3, while
the deviation is plotted as a function of the norm p of the estimator. We observe that the deviation is
minimized, tending to zero, when the norm is p ∼= 3. However, this result holds if the distribution is
not symmetric. Once the parameter δa decreases approaching zero, the distribution P(y; δa → 0; λ)
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becomes symmetric and the deviation |µ̂p,N − µp| obtains small values (while its minimization at a
certain p loses its meaning). We observe that for δa ≈ 0.01 or smaller, the deviation is small enough—of
the order of 10−4 − 10−3 (it is non-zero because of the computation errors caused by the finite N),
so that µ̂p,N ≈ µp.

Figure 3. Convergence of the estimator µ̂p,N to the mean µp (ensemble average). (a) The summation
S(N) plotted against N for p = 1.5 (red solid), 2 (blue dot), and 2.5 (green dash); (b) The summation
S(N) plotted against p = p2, for p1 = 1.5 (red solid), 2 (blue dot), and 2.5 (green dash), where S(N) = 0
holds only for p2 = p1; (c) Estimator limN→∞ µ̂p,N , plotted against the norm p, for N = 100 and
N = 300, showing the convergence to the co-plotted mean µp.

Figure 4. Deviation |µ̂p,N − µp| is plotted as a function of the p-norm of the estimator, and for
various values of the parameter δa = 1 (red solid), 0.3 (blue thick dash), 0.1 (green thick dash–dot),
0.03 (purple dash), and 0.01 (light-blue dash–dot).

5. Conclusions

The Euclidean L2 means are derived by minimizing the sum of the total square deviations,
i.e., the Euclidean variance. In a similar way, the non-Euclidean Lp means were developed by
minimizing the sum of the Lp deviations, that is proportional to the Lp variance [3]. The main
advantage of the new statistical approach is that the p-norm is a free parameter, thus both the
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Lp-normed expectation values and their variance are flexible to analyze new phenomena that cannot be
described under the notions of classical statistics based on Euclidean norms. The least square method
based on the Euclidean norm, p = 2, and the least absolute deviations method based on the “Taxicab”
norm, p = 1, are some cases of the general fitting methods based on the Lp -norms (e.g., [15]; for more
applications on the fitting methods based on Lp norms, see: [2,4,16,17]; several other applications can
be in signal processing optimization and block entropy analysis, e.g., [2]; in image processing, e.g., [18];
in general data analysis, e.g., [5]; in statistical mechanics, e.g., [3,8,19]. The Law of Large Numbers is a
theorem that guarantees the stability of long-term averages of random events, but is valid only for
metrics induced by the Euclidean L2 norm. The importance of this paper is in extending this theorem
for Lp-norms. Other interesting applications will be to establish a central limit theorem applied for
the Lp-means.

Acknowledgments: The work was supported in part by the project NNX17AB74G of NASA’s HGI Program.

Conflicts of Interest: The author declare no conflict of interest.

References

1. Livadiotis, G. Approach to general methods for fitting and their sensitivity. Physica A 2007, 375, 518–536.
2. Livadiotis, G. Approach to the block entropy modeling and optimization. Physica A 2008, 387, 2471–2494.
3. Livadiotis, G. Expectation value and variance based on Lp norms. Entropy 2012, 14, 2375.
4. Livadiotis, G.; Moussas, X. The sunspot as an autonomous dynamical system: A model for the growth and

decay phases of sunspots. J. Stat. Distrib. Appl. 2014, 379, 436–458.
5. Livadiotis, G. Chi-p distribution: Characterization of the goodness of the fitting using Lp norms. Physica A

2007, 1, 4.
6. Huber, P. Robust Statistics; John Wiley Sons: New York, NY, USA, 1981.
7. Fréchet, M. Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. L’Institut

Henri Poincaré 1948, 10, 215–310. (In French)
8. Livadiotis, G. Non-Euclidean-Normed Statistical Mechanics. Physica A 2016, 445, 240–255.
9. Scarpello, G.M.; Ritelli, D.E. A historical outline of the theorem of implicit functions. Divulg. Mat. 2002, 10,

171–180.
10. Ahmad, R. On the Structure and Application of Restricted Exchangeability. In Exchangeability in Probability

and Statistics; Koch, G., Spizzichino, F., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 157–164.
11. Williams, L.R.; Wells, J.H. Lp inequalities. J. Math. Anal. Appl. 1978, 64, 518.
12. Feller, W. Law of Large Numbers for Identically Distributed Variables; Wiley: New York, NY, USA, 1971.
13. Hu, T.C.; Chang, H.C. Complete convergence and the law of large numbers for arrays of random elements.

Nonlinear Anal. 1997, 30, 4257–4266.
14. Hoffmann-Jørgensen, J.; Su, K.-L.; Taylor, R.L. The Law of Large Numbers and the Ito-Nisio Theorem for

Vector Valued Random Fields. J. Theor. Probab. 1997, 10, 145–183.
15. Burden, R.L.; Faires, J.D. Numerical Analysis; PWS Publishing Company: Boston, MA, USA, 1993; pp. 437–438.
16. Sengupta, A. A rational function approximation of the singular eigenfunction of the monoenergetic neutron

transport equation. J. Phys. A 1984, 17, 2743–2758.
17. Livadiotis, G.; McComas, D.J. Fitting method based on correlation maximization: Applications in

Astrophysics. J. Geophys. Res. 2013, 118, 2863–2875.
18. Sharma, M.; Batra, A. Analysis of distance measures in content based image retrieval. Glob. J. Comput. Sci.

Technol. G Interdiscip. 2014, 14, 11.
19. Livadiotis, G. Kappa Distributions: Theory and Applications in Plasmas; Elsevier: Amsterdam, The Netherlands;

London, UK; New York, NY, USA, 2017.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction: Definition of Lp-Means and Their Basic Properties
	Uniqueness of Lp-Means
	The Concept of Lp-Expectation Values
	Limit of the Lp-Mean Estimator
	Conclusions

