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Abstract: Face verification for unrestricted faces in the wild is a challenging task. This paper proposes a
method based on two deep convolutional neural networks (CNN) for face verification. In this work,
we explore using identification signals to supervise one CNN and the combination of semi-verification
and identification to train the other one. In order to estimate semi-verification loss at a low computation
cost, a circle, which is composed of all faces, is used for selecting face pairs from pairwise samples.
In the process of face normalization, we propose using different landmarks of faces to solve the
problems caused by poses. In addition, the final face representation is formed by the concatenating
feature of each deep CNN after principal component analysis (PCA) reduction. Furthermore, each
feature is a combination of multi-scale representations through making use of auxiliary classifiers.
For the final verification, we only adopt the face representation of one region and one resolution of a
face jointing Joint Bayesian classifier. Experiments show that our method can extract effective face
representation with a small training dataset and our algorithm achieves 99.71% verification accuracy
on Labeled Faces in the Wild (LFW) dataset.

Keywords: deep convolutional neural networks; identification; semi-verification; multi-scale features;
face verification

1. Introduction

With the convolution neural network, in recent years, the vision community has made great
progress in many challenge problems, such as object detection [1], semantic segmentation [2], object
classifiaction [3] and so on. At the same time, face verification methods based on deep convolutional
neural networks (CNNs) have achieved high performance [4–7]. As it does not require too much user
cooperation, compared to iris verification, fingerprint verification and other methods, face verification
has a better user experience. Thus, face verification recently has attracted more and more concern.
In general, using a convolution neural network to do face verification needs the following steps:
a pair of face images is taken as input into the convolution neural network for feature extraction,
and then the extracted two features are sent to the classifier to calculate the similarity, according to the
relationship between similarity and the threshold, judging whether it is the face of the same person.
Face representation learning plays an important role in face recognition. Some researchers combine
deep face representation and verification into one system, which is learning to map faces into similarity
space directly [4]. However, it is much harder to learn the mapping in terms of a lack of training data.
In this paper, we use the deep CNN as a feature extractor and adopt an extra classifier to make face
representation more discriminative as in [5–7].
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The common convolution neural network for object classification such as Alexnet [3], VGG [8],
GoogleNet [9], Residual net [10], only use the softmax loss function for multi-class classification.
During inference, the input is directly classified by the convolution neural network. However, different
from object classification, face verification not only needs to have the ability to distinguish different
identities, but also needs to make the distance of the same identity small enough. The network only
trained by softmax loss function can not make intra-class closer. Siamese nets [11] use a pair of images
as input and directly output the similarity of the images. Though Siamese nets pay attention to the
distance between two samples, the separation of the different classes is ignored. DeepID2 [6] adds a
verification loss to softmax loss function, which is called contrastive loss, and solves the problem of
ignoring the separation of different classes. FaceNet [4] uses triplet loss to obtain the same purpose.
Triplet loss utilizes the distance relationship between anchor, positive, and negative, minimizes the
distance between anchor and positive, and maximizes the distance between anchor and negative.
Contrastive loss and triplet loss need to pair the training samples, and there are no reasonable ways
to pair samples efficiently for now. Some work uses online search to get the hard examples to pair.
This makes it necessary to perform a work of selecting training samples before each iteration thus
increasing the training time. In this paper, we design two CNNs to extract face features that can have
strong abilities of identification and verification. CNN1, which is only supervised by an identification
signal, is designed for setting different identities apart. In addition, CNN2 is supervised by the
combination of identification and semi-verification signals, which can make the distance of the same
person small enough. Semi-verification is inspired by triplet loss in Facenet and verification signal in
DeepID2, which represents the distance of pairs from the same identity. Different with the DeepID2
and Facenet, we do not need to select the training samples before each iteration, which avoids the extra
time consumption. We have similar thoughts to center loss [12], which is making intra-class samples
as close as possible. Center loss calculates the distance between samples and their classes’ centers to
minimize the intra-class variations. During backward propagation, center loss needs to update class
centers, which means that the extra calculation or parameters, though not complex, are needed. Our
method does not need any extra parameters and reduces the intra-class variations that softmax loss
function can not solve.

In face pre-processing, it is hard to do great normalization for faces with variation caused by poses.
In [13], Li proposes using the distance of landmarks instead of eye centers for face normalization,
which is said to be relatively invariant to pose variations in yaw poses. In our system, we combine this
method and use the eye centers method to do face normalization in a certain condition.

Inspired by [9,14], we add auxiliary classifiers to assist the training of CNN. In addition, these
auxiliary classifiers provide multi-scale features for recognition. Thus, a stronger feature can be
obtained by concatenating these multi-scale features. Recently, most face verification methods catenate
face representations of multi-resolutions and multi-regions based on deep CNNs to construct a feature
with high dimension [6,7]. This will conduct high computation and a large burden of storage. In our
work, we combine the face representations of two networks and obtain a compact feature as the final
face representation. For each network, only one resolution and one region of a face are used. Due
to the final feature combining the multi-scale features coming from two CNNs trained by different
signals, we called it multi-task and multi-scale features fusion.

The overall framework of our face verification method is illustrated in Figure 1. In addition, our
effective face representation joint Joint Bayesian classifier achieves high performance (99.71%) on the
LFW dataset with a small training database.
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Figure 1. The overall framework of face verification.

The rest of this paper is constructed as follows: we introduce the semi-verification signal in
Section 2, which is used for supervising the training of one deep CNN. In Section 3, we present two
deep CNNs and the training algorithm. Face verification based on the proposed framework will be
presented in Section 4. In Section 5, we present the performance of our method compared with others
based on deep CNN. Conclusions will be drawn in Section 6.

2. The Proposed Loss Function

Recently, there have been a lot of methods to add the verification information to the CNN for face
verification tasks, such as contrastive loss [6], triplet loss [4], and lifted structured embedding [15]. The
CNN trained with verification information can adjust the parameters end-to-end, so that the features
generated from these CNN have greater discriminant power than those from normal networks that
only use the cross entropy loss. However, contrastive loss [6] and triplet loss [4] need to pair the
training sample. Contrastive loss [6] requires not only the positive pairs, but also negative pairs (where
the positive pair refers to two different face images having the same identity, and the negative pair
refers to two different face images having different identities). However, the number of positive pairs
and the number of negative pairs are extremely unbalanced. For a dataset containing n individuals
and m face images per person, the number of positive pairs is n(m

2 ), and the number of negative pairs
is m2(n

2). When m� n, n(m
2 )� m2(n

2), which means that the number of negative pairs is much larger
than the number of positive pairs. Therefore, unreasonable pairing can not improve the performance or
even worse. Triplet loss [4] proposed online and offline methods for selecting training pairs, and each
anchor uses a semi-hard sample as its corresponding negative sample. Although lifted structured
embedding [15] does not need to pair the samples in a complex method, if the batchsize is N, a high
cost O(N2) is entailed. The research community still does not have reasonable ways to pair samples.

In order to solve the above problems, we propose a semi-verification signal and a corresponding
pair selection method so that the verification information can be added to the CNN reasonably
and efficiently.

The semi-verification signal means that only the pairs of the same identity will be used to compute
verification loss. It minimizes the L2-distance between the face images of the same identity:

Semi-veri f ication Signal =
1
| S | ∑

(i,j)∈S
‖ fi − f j ‖2

2, (1)

where S is an index set of face pairs belonging to the same identity. It does not contain pairs of different
identities, which is different from verification signals. The negative pairs do not need to be selected,
and the imbalance between positive and negative pairs talked above exists no more. In addition, it is
the reason why we call it a semi-verification signal. Reducing the intra-class variations and keeping
the separable inter-class differences unchanged can also achieve the same purpose as the contrastive
loss [6].
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Supposing that there are n different face images from one person, it will be (n
2) positive pairs. In

this view, we only want to use a part of these pairs. However, randomly selected sample pairs cannot
establish close relationships between all samples.

Suppose that we randomly select m pairs from (n
2) pairwise combination and there will be such a

situation that some images do not appear in selected pairs any more. As shown in Figure 2, it will
make images of this person be divided into two clusters after training. As a result, the distance
between m pairs of face images is small enough in one cluster, but in the other one will not. In addition,
the distance between two clusters will not be small enough.

Figure 2. An example of random selection. Rounds present image pairs, which are selected for computing
semi-verification loss. Diamonds are not selected. They belong to the same identity and there is no
connection between circles and diamonds.

For the purpose of solving the problems mentioned above, we institute positive pairs by creating
a circle as a pair selection method. Supposing that there are N training samples of class i in the training
data set, we number these samples 1, 2, · · ·, N. CNN extracts features f j (j = 1, 2, · · ·, N) for these N
samples. As shown in Figure 3, one feature corresponding to one image is connected with its directly
connected neighbors, and there are no extra connections between it and other features. In other words,
f j only pairs with f j−1 or f j+1. We can easily solve the problem above in this way. On the one hand,
it reduces the computation cost to a certain extent O(N). On the other hand, it establishes direct or
indirect relationships between all face images.

Figure 3. The method of instituting image pairs. fi (i = 1, 2, · · ·, n) present the face image of a certain person.
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In order to make the facial features extracted by CNN have strong identification and verification
performance, two kinds of loss functions are used in this paper. One is identification loss, and the
other is joint identification and semi-verification loss:

Identi f icationLoss = −
n

∑
i=1
−pilogp̂i, (2)

where pi is the target probability distribution, and p̂i is the predicted probability distribution. If t is the
target class, then pt = 1, and pj = 0 for j 6= t.

The joint identification and semi-verification loss can be formulated as follows:

Joint Loss = −
n

∑
i=1
−pilogp̂i +

λ

2 | S | ∑
(i,j)∈S

‖ fi − f j ‖2
2, (3)

where −∑n
i=1−pilogp̂i represents the identification part, and ‖ fi − f j ‖2

2 denotes a semi-verification
signal. S is a index set of face pairs belonging to the same identity, and λ is a hyper-parameter used to
balance the contributions of two signals.

3. The CNN Architecture and Detailed Parameters

Our face representation is a combination of features from two deep convolutional neural networks.
The first CNN (CNN1) is supervised by identification signal only and the second one (CNN2) is
supervised by joint identification and semi-verification signals.

3.1. Deep CNNs for Face Representation

Our deep CNNs contains two CNNs. CNN1 is constructed by ordinary convolution in shallow
layers and Inception architecture in deep layers. Inception can be traced back to GoogleNet [9], and it
is used for solving the problem of the increase of high computation cost in the process of making a
deeper network. It can not only increase the depth and width of convolution neural network at a
certain computation cost, but also extract multi-scale features for face representation. The framework
of Inception used in CNN1 is shown in Figure 4.

As shown in Figure 4, we concatenate different sizes of convolutional layers (1× 1, 3× 3, 5× 5)
and Max-Pooling in one layer. A small size of convolutional layer can focus more on local information,
and a larger one focuses on the global. It is the reason why Inception can extract multi-scale features.
In addition, 1× 1 reduction is used before 3× 3 and 5× 5, and we also adopt Batch Normalization
(BN) [16] after each convolution. BN can help our algorithm to coverage at a high speed and mitigate
the problem of overfitting.

Figure 4. Inception used in CNN1.
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When it comes to the activation function, we explore using ReLU [17] after BN for each convolution
in Inception. In addition, for the output of Inception, which concatenates the results of multi-scale
convolution, we adopt ReLU after concatenating layer. In this way, information can propagate
more from the former layers to the later and the back propagation is more smooth [18]. The overall
framework of CNN1 can be seen in Figure 5.

Figure 5. The overall frameworks of CNNs.

One difference between CNN1 and CNN2 in architecture is that we explore using extra residual
networks in CNN2, which is similar to [18]. Residual network [10] is not only used for ordinary
convolution but also for Inception, which is called res-Inception. The framework of res-Inception is
shown in Figure 6. The reason why we want to introduce a residual network in CNN2 is that it can
make information propagation much smoother from the former to the latter.

It also mitigates the problems of overfitting and low speed of coverage in the training process.
The overall framework of CNN2 is shown in Figure 5.

Figure 6. Res-Inception used in CNN2.

The deepening of the network will mostly cause a vanishing gradient. Although a residual
network has been introduced, the difficulty of training CNNs is still a problem. Inspired by [9,14],
we explore two auxiliary classifiers in both deep CNNs as shown in Figure 5. We call them cls1 and
cls2. For consistency, the original classifier is called cls3. Recently, much research has discovered that
the features from intermediary layers have great complement power with features from the top layer.
In our work, each cls used for classification has a fully connected layer and loss layer, so we can get three
features for each CNN. The three features produced from different layers correspond to different scales.
In order to extract multi-scale face representation features, the final face representation of each CNN is
formed by concatenating these three features. From this, we obtain local information from the former
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layers and the global information from the latter layers. As we can see in Section 5.2, concatenating
features from different layers will achieve a greater improvement than using just one feature.

3.2. Detailed Parameters for NNs and the Training Algorithm

The detailed parameters of CNN1 and CNN2 are shown in Table 1. We should point out that
there is no usage of residual networks in CNN1, so the parameters of the residual network for CNN1
is none. The training of CNN1 and CNN2 is based on a gradient descent algorithm with different
supervisory signals. CNN1 is supervised by an identification signal. The identification signal can make
the face representation have a strong ability to distinguish different identities, and this is formulated
in Equation (2).

Table 1. The detailed parameters of convolution and Max-Pooling layers; (“#” stands for the number
of corresponding filters in the layer).

Type Size/Stride Channel #1 × 1 #3 × 3
Reduction #3 × 3 #5 × 5

Reduction #5 × 5 Residual
Network

#Pooling
Reduction

Conv 5× 5/1 64 - - - - - - -
Pooling 3× 3/2 - - - - - - - -

Conv 1× 1/1 64 - - - - - 92 -
Conv 3× 3/1 92 - - - - - - -

Pooling 3× 3/2 - - - - - - - -
res-Incep - 256 64 96 128 16 32 256 32
res-Incep - 480 128 128 192 32 96 480 64

cls1 Pooling 5× 5/3 - - - - - - - -
cls1 Conv 1× 1/1 128 - - - - - - -

cls1 FC - 512 - - - - - - -
cls1 FC - 15, 340 - - - - - - -

cls1 softmax - 15, 340 - - - - - - -
Pooling 3× 3/2 - - - - - - - -

res-Incep - 512 192 96 208 16 48 512 64
res-Incep - 512 160 112 224 24 64 512 64
res-Incep - 512 128 128 256 24 64 512 64
res-Incep - 832 256 160 320 32 128 832 128
res-Incep - 512 192 96 208 16 48 512 64

cls2 Pooling 5× 5/3 - - - - - - - -
cls2 Conv 1× 1/1 128 - - - - - - -

cls2 FC - 512 - - - - - - -
cls2 FC - 15, 340 - - - - - - -

cls2 softmax - 15, 340 -
Pooling 3× 3/2 - - - - - - - -

res-Incep - 832 256 160 320 32 128 832 128
res-Incep - 1024 384 192 384 48 128 1024 128
Pooling 6× 6/6 - - - - - - - -
cls3 FC - 15, 340 - - - - - - -

cls3 softmax - 15, 340 - - - - - - -

Although CNN supervised by identification can be used for verification, it cannot make the
distance of faces from the same identity small enough. Enlarging the distance between different
identities and decreasing that of the same are important for face verification tasks. Thus, we use joint
identification and semi-verification signals to train CNN2. Unlike verification signals, semi-verification
only uses samples from the same identity to compute loss. It can either decrease the distance of the
intra-identity. The loss used for CNN2 is formulated in Equation (3). Thus, multi-task information can
be obtained by concatenating features that come from CNN1 and CNN2.

For the back propagation process, we compute the partial derivative of loss about parameters
(w, b). Then, parameters can be updated through the partial derivative and learning rate η. Since
CNN2 needs to calculate the distance between paired sampled features, we use the following method
to construct each batch sample in order to facilitate calculation. Supposing that we have N (N is an
even number) samples in a batch, denote these N samples as 1, 2, · · ·, N. We pair the first N/2 samples
of the batch with the last N/2 samples. The sample image i(i < N/2) in the batch belongs to the same
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person as the N/2 + i sample. Therefore, when training CNN2, we slice the features according to
the the “batch” dimension and then calculate the distance between pairs. The details of our learning
algorithm is shown in Algorithm 1.

Algorithm 1 The learning algorithm of CNN.

Input: Training database (xi, yi), i = 1, 2, . . . , n, where xi denotes face image and yi is identity label,
batchsize = 32;

Output: Weight parameters;

1: while not coverage do
2: t = t + 1, sample training set from training database (xi, yi), the size of each training set is

equal to batch size.;
3: Compute forward process:

fi = Conv(xi, θc)
4: Slice the output of the last convolutional layer at the point bbatchsize/2c.
5: Compute identification loss and verification loss respectively:

Identi f icationLoss = −∑batchsize
i=1 −pilogp̂i

Veri f icationLoss = 1
bbatchsize/2c ∑

bbatchsize/2c
i=1 ‖ fi − fi+bbatchsize/2c ‖2

2

6: Compute the value of loss function:

Loss = Identi f icationLoss (for CNN1)

Loss = Identi f icationLoss + λVer f icationLoss (for CNN2)
7: Compute gradient:

5θc =
∂loss
∂θc

8: Update network parameters:

θc = θc − η(t)5 θc
9: end while

4. Face Verification with Classifier

For face representation, we adopt CNN1 and CNN2 to extract features of normalized faces,
respectively. Then, two extracted features are concatenated to be a relatively high dimension feature.
The final representation of a face is formed by computing PCA reduction of the catenated feature.
After face representation, we explore a classifier to improve the discriminative ability of features.

4.1. Face Representation

Identifying faces with different poses is one of the hardest tasks in face verification, especially
ones in yaw angles. As shown in Figure 7, compared with ordinary canonical faces, the distance
between two eyes is smaller when faces are in yaw angles, and face normalization with eye centers
can conduct the results to be just parts of faces especially. It has negative effects for face verification.
However, normalization by the distance between two landmarks of the nose is relatively invariant to
yaw angles. However, accurate landmarks of the nose are much harder to be detected than eyes.

In order to solve two problems mentioned above, we adopt different methods to deal with face
normalization, and the flow of this strategy is described in Figure 8. First of all, an image is detected
by a face detector based on CNN [19]. Then, we estimate the pose and locate face landmarks of the
detected face through a 3D poses algorithm [20]. For those faces, whose yaw angle belongs to [−15, 15],
we adopt landmarks of eye centers for normalization. For others, we use the landmarks of eye center
and nose for alignment. By this method, it can not only ensure the accuracy of face normalization for
faces with small or no pose variance, but also ensure that results of faces with poses in yaw angles
containing the whole face regions.
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Figure 7. Face normalization by eye centers and distance.

Figure 8. The flow chart of face normalization.

After face pre-processing, we can obtain images that only contain face regions. The normalized
face image is taken as the input of two networks, and outputs are concatenated to form the final face
representation with PCA reduction.

4.2. Face Verification by Two Classifiers

In order to increase the ability of discriminant of face representation, we explore Cosine Distance
and Joint Bayesian [21], respectively. These two classifiers both compute the similarity of a pair of
features fi and f j. That is,

CosineDistance =
〈 fi, f j〉
‖ fi‖‖ f j‖

, (4)

JointBayesian = − log
p( fi, f j|HI)

p( fi, f j|HE)
. (5)

According to [21], HI and HE in Equation (5) means two hypotheses. The former represents an
intra-personal hypothesis in which two features fi and f j belong to the same identity and the latter is
an extra-personal hypothesis in which two features are from different identities.

5. Experiments

Our experiments are based on Caffe [22], with NVIDIA GT980X GPU with 4 GB of onboard memory,
using a single GPU. We train our model on the TesoFaces database, which contains 400,000 face images
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of 15,340 celebrities from the internet. We collect massive Eastern and Western celebrities’ photos from
the internet. Any names appearing in the LFW [23] are removed in order to make it possible to train on
this new dataset. For each class, the method claimed in Section 4.1 are used to detect faces. We delete
such images that no bounding box exists or the size of the bounding box is too small. After that, we
manually delete some other images such as duplicates or bad quality. The final database has 0.4 M
images, consisting of 15,340 identities. The faces are cropped and aligned to the size of 100× 100 in
both training and testing phases. Furthermore, we evaluate our method on LFW [23] and YouTube
Faces Database(YTF) [24], which are challenging datasets for face verification in the wild. We do not
use LFW or TesoFaces to train Joint Bayesian and PCA. CASIA-Webfaces [13] is used.

5.1. Experiment on Hyper-Parameter λ

We research the balance between identification and semi-verification signals by a hyper-parameter
λ. In our experiment, we try to explore five different values of λ(λ = 0, 0.0005, 0.005, 0.05, 0.5). With the
increase of λ, the contribution of semi-verification to loss function is much greater. If λ = 0, only
identification signals will take effect.

We decide the value of λ in two views. In the first view, the decrease of loss function is used for
measuring the performance of different values. Furthermore, the second view is to use face verification
accuracy on the LFW dataset to determine whether λ is zero or not. The TesoFaces database is split into
training and validation sets. The proportion of the training sets and validation sets is 7:3. We firstly
train our model on the train set of TesoFaces and test on the validation set to show the different
performance of different λ values. The final model is trained entirely by the TesoFaces database.
Figure 9 shows the curve of the decrease of loss with different hyper-parameters. As we can see,
the large value of λ = 0.5 and λ = 0.05 cause the loss to not fall any more. Furthermore, the loss
of λ = 0.005 decreases very slowly. In contrast to the results of the other three values, the loss of
λ = 0.0005 is decreasing at a high speed and will converge finally.

Figure 9. The loss of different values of λ.

Table 2 shows the face verification rate on the LFW dataset by Cosine Distance when λ = 0 and
λ = 0.0005. We can see that training with the combination of identification and semi-verification,
that is, λ = 0.0005, has a good performance. Furthermore, the weight of semi-verification should be
a little small. That is to say, the identification signal takes a much more important role in the CNN
training process. Furthermore, semi-verification plays the role of regularization to a certain extent.
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Table 2. Accuracy with different values of λ by Cosine Distance.

Signal Identification
(λ = 0)

Identification & Semi-Verification
(λ = 0.0005)

Accuracy 97.77% 98.18%

5.2. Learning Effective Face Representation

In order to learn the most effective face representation, we evaluate various combinations of
features from auxiliary classifiers by Cosine Distance for face verification. We train each deep CNN with
three auxiliary classifiers, and there are seven kinds of possible combinations of features for each CNN.
As shown in Table 3, adding more features from auxiliary classifiers can improve the performance.

Table 3. Accuracy of different combined manners by Cosine Distance.

CNN1 CNN2

Combination Manner Accuracy Combination Manner Accuracy

cls 1 95.73% cls 1 95.92%
cls 2 96.60% cls 2 96.42%
cls 3 97.85% cls 3 98.07%

cls 1 & cls 2 96.78% cls 1 & cls 2 96.68%
cls 1 & cls 3 98.10% cls 1 & cls 3 97.93%
cls 2 & cls 3 98.22% cls 2 & cls 3 98.12%

cls 1 & cls 2 & cls 3 98.25% cls 1 & cls 2 & cls 3 98.18%

As a result, the feature of deeper layer has a much stronger ability of classification. Furthermore,
face verification accuracy is much higher with the increase of the number of features. Combining
three features increases the accuracy by 0.40% and 0.11% over the best single feature for each CNN,
respectively. In addition, the trends of the performance show that with more auxiliary classifiers being
used, the accuracy may be improved.

Furthermore, we compare the face verification rate of each CNN and that of the combination of
two CNNs. The result is shown in Table 4. We can see the result of CNN2 is not greater than CNN1.
Because CNN2 is supervised by additional verified signals, CNN2 can not do as well as CNN1 in
separating classes. If simply comparing CNN1 and CNN2 results, CNN1 will be better than CNN2.
However, when we aggregate the outputs of these two nets, the result will be improved greatly. CNN1
is good at separating classes, and CNN2 is good at minimizing intra-class variation. It means that
CNN1 and CNN2 complement each other. Aggregating the features from CNN1 and CNN2 will have
both advantages of two nets. Our final effective face representation is formed by concatenating features
from CNN1 and CNN2, and each feature is a combination of three outputs of auxiliary classifiers.
It shows that multi-task and multi-scale feature fusion has great power in face verification.

Table 4. Accuracy of different face representation by Cosine Distance.

CNN1 CNN2 CNN1 & CNN2

98.25% 98.18% 98.50%

5.3. Evaluation on Classifiers

Learning more compact and discriminative features is the key for face verification tasks. For final
face verification, we explore Cosine Distance and Joint Bayesian to improve the discriminative ability
of features. The verification rates of two methods are shown in Table 5.

As a result, Joint Bayesian seems to be more appropriate for our face representation, and it has a
much better performance in face verification tasks. The reason why Joint Bayesian is better than Cosine
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Distance is that the former one has taken the variance of intra and inter-identity into consideration.
In other words, it can further increase differences of inter-identity and reduce that of intra-identity
after face representation learning.

Table 5. Performance of Cosine Distance and Joint Bayesian.

Classifier Cosine Distance Joint Bayesian

Accuracy 98.50% 99.71%

5.4. Comparision with Other Methods

To show the performance of our algorithm, we compare pairwise accuracy on the LFW dataset
and the YTF dataset with the state-of-the-art deep methods.

In Table 6, we show the results of comparisons and the scales of the database used for training in
different methods. As a result, our method achieves 99.71% test accuracy, and it outperforms most
deep face verification algorithms. The method in [5] is only 0.06% higher than ours, but the number
of faces they used for training was 12 times the amount of data that we have. Therefore, our face
verification method has a high product with a small cost.

Table 6. Accuracy of different methods on the LFW and YTF datasets.

Method Accuracy on LFW Identities Face Number Accuracy on YTF

Baidu [5] 99.77% 18 k 1.2 M NA
Ours 99.71% 15 k 0.4 M 94.6%

Centerloss [12] 99.28% 17 k 0.7 M 94.9%
FaceNet [4] 99.63% NA 260 M 95.1%

DeepID3 [25] 99.53% 16 k NA NA
Face++ [26] 99.50% 16 k NA NA

DeepID2+ [27] 99.47% NA NA 93.2%
DeepID2 [3] 99.15% 10 k NA NA
DeepFR [28] 98.95% 2.6 k 2.6 M 97.3%
DeepID [4] 97.45% 10 k NA NA

DeepFace [29] 97.35% NA NA 91.4%

Figure 10 compares receiver operating characteristic(ROC) curves of different methods, and the
curve of our algorithm is much smoother than others. In the experiment, there are 17 wrong pairs
in which three of them are wrongly labeled. Thus, our final pairwise accuracy is 99.75%. For safety,
on some occasions such as financing institutions, a large true positive rate when the false acceptance
rate is small is important. Though Baidu [5] got a better accuracy than us, according to Figure 11
and Table 7, we can see that when the false acceptance rate is small, our method will get a better true
positive rate.

Table 7. True Positive Rate (TPR) with different False Acceptance Rate (FAR).

Method FAR = 0.03% FAR = 0.1% FAR = 1%

Baidu [2] 98.77% 99.63% 99.83%
Ours 99.3% 99.65% 99.87%



Entropy 2017, 19, 228 13 of 15

Figure 10. ROC curves of different methods.

Figure 11. ROC curves of Baidu [5] and ours.

6. Conclusions

In this paper, we propose a face verification method based on multi-task and multi-scale features
fusion with Joint Bayesian classifier. In addition, our algorithm has achieved high performance (99.75%)
on the LFW dataset. Furthermore, we only use one region and one resolution in our face representation
process. In addition, the training database that we used is small. Thus, our method is more practical in
a real-life scenario.

Acknowledgments: This research is partially supported by the National Natural Science Foundation of China
(Grant No. 31301086).

Author Contributions: Xiaojun Lu, Yue Yang, Yang Wang conceived and designed the experiments, performed
the experiments and analyzed the data. Yue Yang, Weilin Zhang and Yang Wang wrote the manuscript. Qi Wang
refined expression of the article. All authors have read and approved the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal
networks. arXiv 2015, arXiv:1506.01497. [Crossref]

2. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 3431–3440. [Crossref]

https://arxiv.org/abs/1506.01497
https://doi.org/10.1109/CVPR.2015.7298965


Entropy 2017, 19, 228 14 of 15

3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of the Twenty-Sixth Annual Conference on Neural Information Processing Systems (NIPS),
Stateline, NV, USA, 3–8 December 2012; pp. 1097–1105. [Crossref]

4. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA,
USA, 7–12 June 2015; pp. 815–823. [Crossref]

5. Liu, J.; Deng, Y.; Bai, T.; Wei, Z.P.; Huang, H. Targeting ultimate accuracy: Face recognition via deep embedding.
arXiv 2015, arXiv:1506.07310. [Crossref]

6. Sun, Y.; Wang, X.; Tang, X. Deep learning face representation by joint identification-verification. arXiv 2014,
arXiv:1406.4773. [Crossref]

7. Sun, Y.; Wang, X.; Tang, X. Deep learning face representation from predicting 10,000 classes. In Proceedings of
the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 1891–1898. [Crossref]

8. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556. [Crossref]

9. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Crossref]

10. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778. [Crossref]

11. Chopra, S.; Hadsell, R.; Lee, C.Y. Learning a similarity metric discriminatively, with application to face
verification. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 539–546. [Crossref]

12. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A Discriminative Feature Learning Approach for Deep Face Recognition.
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October
2016; pp. 11–26. [Crossref]

13. Yi, D.; Lei, Z.; Liao, S.; Li, S.Z. Learning face representation from scratch. arXiv 2014, arXiv:1411.7923. [Crossref]
14. Lee, C.Y.; Xie, S.; Gallagher, P.; Zhang, Z.; Tu, Z. Deeply-Supervised Nets. arXiv 2014, arXiv:1409.5185. [Crossref]
15. Song, H.O.; Xiang, Y.; Jegelka, S.; Savarese, S. Deep metric learning via lifted structured feature embedding.

arXiv 2015, arXiv:1511.06452. [Crossref]
16. Ioffe, S.; Szegedy, C. Batch normalization:Accelerating deep network training by reducing internal covariate

shift. arXiv 2015, arXiv:1502.03167. [Crossref]
17. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th

International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Crossref]
18. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual

connections on learning. arXiv 2016, arXiv:1602.07261. [Crossref]
19. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. From facial parts responses to face detection: A deep learning approach.

In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile,
7–13 December 2015; pp. 3676–3684. [Crossref]

20. Ye, M.; Wang, X.; Yang, R.; Ren, L.; Pollefeys, M. Accurate 3d pose estimation from a single depth image.
In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November
2011; pp. 731–738. [Crossref]

21. Chen, D.; Cao, X.; Wang, L.; Wen, F.; Sun, J. Bayesian face revisited: A joint formulation. In Proceedings of the
12th European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; pp. 566–579. [Crossref]

22. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T. Caffe:
Convolutional architecture for fast feature embedding. arXiv 2014, arXiv:1408.5093. [Crossref]

23. Huang, G.B.; Ramesh, M.; Berg, T.; Learned-Miller, E. Labeled Faces in the Wild: A Database for Studying Face
Recognition in Unconstrained Environments; Technical Report; University of Massachusetts: Amherst, MA, USA,
2007; pp. 7–49.[Crossref]

24. Wolf, L.; Hassner, T.; Maoz, I. Face recognition in unconstrained videos with matched background similarity.
In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado
Springs, CO, USA, 20–25 June 2011; pp. 529–534. [Crossref]

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://doi.org/10.1109/CVPR.2015.7298682
https://arxiv.org/abs/1506.07310
https://arxiv.org/abs/1406.4773
https://doi.org/10.1109/CVPR.2014.244
https://arxiv.org/abs/1409.1556
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2005.202
https://link.springer.com/chapter/10.1007/978-3-319-46478-7_31
https://arxiv.org/abs/1411.7923
https://arxiv.org/abs/1409.5185
https://arxiv.org/abs/1511.06452
https://arxiv.org/abs/1502.03167
http://machinelearning.wustl.edu/mlpapers/papers/icml2010_NairH10
https://arxiv.org/abs/1602.07261
https://doi.org/10.1109/ICCV.2015.419
https://doi.org/10.1109/ICCV.2011.6126310
https://link.springer.com/chapter/10.1007/978-3-642-33712-3_41
https://arxiv.org/abs/1408.5093
http://hal.archives-ouvertes.fr/inria-00321923/
https://doi.org/10.1109/CVPR.2011.5995566


Entropy 2017, 19, 228 15 of 15

25. Sun, Y.; Liang, D.; Wang, X.; Tang, X. Deepid3: Face recognition with very deep neural networks. arXiv 2015,
arXiv:1502.00873. [Crossref]

26. Zhou, E.; Cao, Z.; Yin, Q. Naive-deep face recognition: Touching the limit of LFW benchmark or not? arXiv
2015, arXiv:1501.04690. [Crossref]

27. Sun, Y.; Wang, X.; Tang, X. Deeply learned face representations are sparse, selective, and robust. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 2892–2900. [Crossref]

28. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep Face Recognition. In Proceedings of the British Machine Vision
Conference (BMVC), Swansea, UK, 7–10 September 2015; pp. 1–12. [Crossref]

29. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance in
face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708. [Crossref]

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1502.00873
https://arxiv.org/abs/1501.04690
https://doi.org/10.1109/CVPR.2015.7298907
https://dx.doi.org/10.5244/C.29.41
https://doi.org/10.1109/CVPR.2014.220
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Loss Function
	The CNN Architecture and Detailed Parameters
	Deep CNNs for Face Representation
	Detailed Parameters for NNs and the Training Algorithm

	Face Verification with Classifier
	Face Representation
	Face Verification by Two Classifiers

	Experiments
	Experiment on Hyper-Parameter 
	Learning Effective Face Representation
	Evaluation on Classifiers
	Comparision with Other Methods

	Conclusions

