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Abstract:



This paper presents a coding theorem for linear coding over finite rings, in the setting of the Slepian–Wolf source coding problem. This theorem covers corresponding achievability theorems of Elias (IRE Conv. Rec. 1955, 3, 37–46) and Csiszár (IEEE Trans. Inf. Theory 1982, 28, 585–592) for linear coding over finite fields as special cases. In addition, it is shown that, for any set of finite correlated discrete memoryless sources, there always exists a sequence of linear encoders over some finite non-field rings which achieves the data compression limit, the Slepian–Wolf region. Hence, the optimality problem regarding linear coding over finite non-field rings for data compression is closed with positive confirmation with respect to existence. For application, we address the problem of source coding for computing, where the decoder is interested in recovering a discrete function of the data generated and independently encoded by several correlated i.i.d. random sources. We propose linear coding over finite rings as an alternative solution to this problem. Results in Körner–Marton (IEEE Trans. Inf. Theory 1979, 25, 219–221) and Ahlswede–Han (IEEE Trans. Inf. Theory 1983, 29, 396–411, Theorem 10) are generalized to cases for encoding (pseudo) nomographic functions (over rings). Since a discrete function with a finite domain always admits a nomographic presentation, we conclude that both generalizations universally apply for encoding all discrete functions of finite domains. Based on these, we demonstrate that linear coding over finite rings strictly outperforms its field counterpart in terms of achieving better coding rates and reducing the required alphabet sizes of the encoders for encoding infinitely many discrete functions.
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1. Introduction


The problem of source coding for computing considers the scenario where a decoder is interested in recovering a function of the message(s), other than the original message(s), that is (are) i.i.d. generated and independently encoded by the source(s). In rigorous terms:



Problem 1 (Source Coding for Computing).

Given [image: there is no content] and [image: there is no content]. For each [image: there is no content] consider a discrete memoryless source that randomly generates i.i.d. discrete data [image: there is no content], where [image: there is no content] has a finite sample space [image: there is no content] and [image: there is no content]∀n∈N+. For a discrete function [image: there is no content] what is the largest region [image: there is no content], such that, ∀(R1,R2,⋯,Rs)∈R[g] and ∀ϵ>0, there exists an [image: there is no content], such that for all [image: there is no content], there exist s encoders [image: there is no content] and one decoder [image: there is no content] with


[image: there is no content]



(1)




where [image: there is no content] and


[image: there is no content]



(2)




The region [image: there is no content] is called the achievable coding rate region for computing g. A rate tuple [image: there is no content] is said to be achievable for computing g (or simply achievable) if and only if [image: there is no content]. A region [image: there is no content] is said to be achievable for computing g (or simply achievable) if and only if [image: there is no content].





If g is an identity function, the computing problem, Problem 1, is known as the Slepian–Wolf (SW) source coding problem. [image: there is no content] is then the SW region [1],


R[X1,X2,⋯,Xs]={(R1,R2,⋯,Rs)∈Rs∑j∈TRj>H(XT|XTc),∀∅≠T⊆S},



(3)




where [image: there is no content] is the complement of T in [image: there is no content] and [image: there is no content] is the random variable array [image: there is no content]. However, from [1] it is hard to draw conclusions regarding the structure (linear or not) of the encoders, as the corresponding mappings are chosen randomly among all feasible mappings. This limits the scope of their potential applications. As a consequence, linear coding over finite fields (LCoF), namely [image: there is no content]’s are injectively mapped into some subsets of some finite fields and the [image: there is no content]’s are chosen as linear mappings over these fields, is considered. It is shown that LCoF achieves the same encoding limit, the SW region [2,3]. Although it seems straightforward to study linear mappings over rings (non-field rings in particular), it has not been proved (nor denied) that linear encoding over non-field rings can be equally optimal.



For an arbitrary discrete function g, Problem 1 remains open in general, and [image: there is no content] obviously. Making use of Elias’ theorem on binary linear codes [2], Körner–Marton [4] shows that [image: there is no content] (“[image: there is no content]” is the modulo-two sum) contains the region


R˜=(R1,R2)∈R2|R1,R2>H(X1⊕2X2).



(4)




This region is not contained in the SW region for certain distributions. In other words, [image: there is no content]. Combining the standard random coding technique and Elias’ result, [5] shows that [image: there is no content] can be strictly larger than the convex hull of the union [image: there is no content]. However, the functions considered in these works are relatively simple. With a polynomial approach, [6,7] generalize the result of Ahlswede–Han ([5], Theorem 10) to the scenario of g being arbitrary. Making use of the fact that a discrete function is essentially a polynomial function (see Definition 2) over some finite field, an achievable region is given for computing an arbitrary discrete function. Such a region contains and can be strictly larger (depending on the precise function and distribution under consideration) than the SW region. Conditions under which [image: there is no content] is strictly larger than the SW region are presented in [6,8] from different perspectives, respectively. The cases regarding Abelian group codes are covered in [9,10,11].



The present work proposes replacing the linear encoders over finite fields from Elias [2] and Csiszár [3] with linear encoders over finite rings in the case of the problems accounted for above. Achievability theorems related to linear coding over finite rings (LCoR) for SW data compression are presented, covering the results in [2,3] as special cases in the sense of characterizing the achievable region. In addition, it is proved that there always exists a sequence of linear encoders over some finite non-field rings that achieves the SW region for any scenario of SW. Therefore, the issue of optimality of linear coding over finite non-field rings for data compression is closed with respect to existence. Furthermore, we also consider LCoR as an alternative technique for the general computing problem, Problem 1. Results from Körner–Marton [4], Ahlswede–Han ([5], Theorem 10) and [7] are generalized to corresponding ring versions for encoding (pseudo) nomographic functions (over rings). Since any discrete function with a finite domain admits a nomographic presentation, we conclude that our results universally apply for encoding all discrete functions of finite domains. Finally, it is shown that our ring approach dominates its field counterpart in terms of achieving better coding rates and reducing alphabet sizes of the encoders for encoding some discrete function. The proof is done by taking advantage of the fact that the characteristic of a ring can be any positive integer while the characteristic of a field must be a prime. From this observation used in the proof, it is seen that there are actually infinite many such functions.




2. Rings, Ideals and Linear Mappings


We start by introducing some fundamental algebraic concepts and related properties. Readers who are already familiar with this material may still choose to go through quickly to identify our notation.



Definition 1.

The tuple [image: there is no content] is called a ring if the following criteria are met:

	1. 

	
[image: there is no content] is an Abelian group ;




	2. 

	
There exists a multiplicative identity [image: there is no content], namely, [image: there is no content], ∀a∈R;




	3. 

	
∀a,b,c∈R, [image: there is no content] and [image: there is no content];




	4. 

	
∀a,b,c∈R, [image: there is no content] and [image: there is no content].











We often write [image: there is no content] for [image: there is no content] when the operations considered are known from the context. The operation “·” is usually written by juxtaposition, [image: there is no content] for [image: there is no content], for all [image: there is no content].



A ring [image: there is no content] is said to be commutative if ∀a,b∈R, [image: there is no content]. In Definition 1, the identity of the group [image: there is no content], denoted by 0, is called the zero. A ring [image: there is no content] is said to be finite if the cardinality [image: there is no content] is finite, and [image: there is no content] is called the order of [image: there is no content]. The set [image: there is no content] of integers modulo q is a commutative finite ring with respect to the modular arithmetic. For any ring [image: there is no content], the set of all polynomials of s indeterminants over [image: there is no content] is an infinite ring.



Definition 2.

A polynomial function (Polynomial and polynomial function are distinct concepts.) of k variables over a finite ring [image: there is no content] is a function [image: there is no content] of the form


[image: there is no content]



(5)




where [image: there is no content] and m and [image: there is no content]’s are non-negative integers. The set of all the polynomial functions of k variables over ring [image: there is no content] is designated by [image: there is no content].





Remark 1.

Polynomial and polynomial function are sometimes only defined over a commutative ring [12,13]. It is a very delicate matter to define them over a non-commutative ring [14,15], due to the fact that [image: there is no content] and [image: there is no content] can become different objects. We choose to define “polynomial functions” with Formula (5) because those functions are within the scope of this paper’s interest.





Proposition 1.

Given s rings [image: there is no content], for any non-empty set [image: there is no content], the Cartesian product (see [12]) [image: there is no content] forms a new ring [image: there is no content] with respect to the component-wise operations defined as follows:


[image: there is no content]



(6)






[image: there is no content]



(7)




∀a′=a1′,a2′,⋯,a|T|′,a″=a1″,a2″,⋯,a|T|″∈RT.





Remark 2.

In Proposition 1, [image: there is no content] is called the direct product of [image: there is no content]. It can be easily seen that [image: there is no content] and [image: there is no content] are the zero and the multiplicative identity of [image: there is no content], respectively.





Definition 3.

A non-zero element a of a ring [image: there is no content] is said to be invertible , if and only if there exists [image: there is no content], such that [image: there is no content]. b is called the inverse of a, denoted by [image: there is no content]. An invertible element of a ring is called a unit.





Remark 3.

It can be proved that the inverse of a unit is unique. By definition, the multiplicative identity is the inverse of itself.





Let [image: there is no content]. The ring [image: there is no content] is a field if and only if [image: there is no content] is an Abelian group. In other words, all non-zero elements of [image: there is no content] are invertible. All fields are commutative rings. [image: there is no content] is a field if and only if q is a prime. All finite fields of the same order are isomorphic to each other ([16], p. 549). This “unique” field of order q is denoted by [image: there is no content]. It is necessary that q is a power of a prime. More details regarding finite fields can be found in ([16], Chapter 14.3).



Theorem 1

(Wedderburn’s little theorem [12]). Let [image: there is no content] be a finite ring. [image: there is no content] is a field if and only if all non-zero elements of [image: there is no content] are invertible.





Remark 4.

Wedderburn’s little theorem guarantees commutativity for a finite ring if all of its non-zero elements are invertible. Hence, a finite ring is either a field or at least one of its elements has no inverse. However, a finite commutative ring is not necessary a field, e.g., [image: there is no content] is not a field if q is not a prime.





Definition 4

([16]). The characteristic of a finite ring [image: there is no content] is defined to be the smallest positive integer m, such that [image: there is no content], where 0 and 1 are the zero and the multiplicative identity of [image: there is no content], respectively. The characteristic of [image: there is no content] is often denoted by [image: there is no content].





Remark 5.

Clearly, [image: there is no content]. For a finite field [image: there is no content], [image: there is no content] is always the prime [image: there is no content] such that [image: there is no content] for some integer n ([12], Proposition 2.137).





Proposition 2.

Let [image: there is no content] be a finite field. For any [image: there is no content], [image: there is no content] if and only if m is the smallest positive integer such that [image: there is no content].





Proof. 

Since [image: there is no content],


[image: there is no content]



(8)




The statement is proved. ☐





Definition 5.

A subset [image: there is no content] of a ring [image: there is no content] is said to be a left ideal of [image: there is no content], denoted by [image: there is no content], if and only if

	1. 

	
[image: there is no content] is a subgroup of [image: there is no content];




	2. 

	
∀x∈I and ∀a∈R, [image: there is no content].









If condition 2 is replaced by

	3. 

	
∀x∈I and ∀a∈R, [image: there is no content],






then [image: there is no content] is called a right ideal of [image: there is no content], denoted by [image: there is no content]. [image: there is no content] is a trivial left (right) ideal, usually denoted by 0.





The cardinality [image: there is no content] is called the order of a finite left (right) ideal [image: there is no content].



Remark 6.

Let [image: there is no content] be a non-empty set of elements of some ring [image: there is no content]. It is easy to verify that ⟨a1,a2,⋯,an⟩r={∑i=1naibi|bi∈R,∀1≤i≤n} is a right ideal and ⟨a1,a2,⋯,an⟩l={∑i=1nbiai|bi∈R,∀1≤i≤n} is a left ideal. Furthermore, [image: there is no content] and [image: there is no content] if [image: there is no content] is a unit for some [image: there is no content].





It is well-known that if [image: there is no content], then [image: there is no content] is divided into disjoint cosets which are of equal size (cardinality). For any coset [image: there is no content], [image: there is no content], ∀x∈J. The set of all cosets forms a left module over [image: there is no content], denoted by [image: there is no content]. Similarly, [image: there is no content] becomes a right module over [image: there is no content] if [image: there is no content] [17]. Of course, [image: there is no content] can also be considered as a quotient group [12]. However, its structure is well richer than simply being a quotient group.



Proposition 3.

Let [image: there is no content] ([image: there is no content]) be a ring and [image: there is no content]. For any [image: there is no content], [image: there is no content] (or [image: there is no content]) if and only if [image: there is no content] and [image: there is no content] (or [image: there is no content]), ∀1≤i≤s.





Proof. 

We prove for the [image: there is no content] case only, and the [image: there is no content] case follows from a similar argument. Let [image: there is no content] ([image: there is no content]) be the coordinate function assigning every element in [image: there is no content] its ith component. Then [image: there is no content], where [image: there is no content]. Moreover, for any


[image: there is no content]



(9)




where [image: there is no content] for all feasible i, we have that


[image: there is no content]



(10)




where [image: there is no content] has the ith coordinate being 1 and others being 0. If [image: there is no content], then [image: there is no content] by definition. Therefore, [image: there is no content]. Consequently, [image: there is no content]. Since [image: there is no content] is a homomorphism, we also have that [image: there is no content] for all feasible i. The other direction is easily verified by definition. ☐





Remark 7.

It is worthwhile to point out that Proposition 3 does not hold for infinite index set, namely, [image: there is no content], where I is not finite.





For any [image: there is no content], Proposition 3 states that any left (right) ideal of [image: there is no content] is a Cartesian product of some left (right) ideals of [image: there is no content], [image: there is no content]. Let [image: there is no content] be a left (right) ideal of ring [image: there is no content] ([image: there is no content]). We define [image: there is no content] to be the left (right) ideal [image: there is no content] of [image: there is no content].



Let [image: there is no content] be the transpose of a vector (or matrix) [image: there is no content].



Definition 6.

A mapping [image: there is no content] given as:


f(x1,x2,⋯,xn)=∑j=1na1,jxj,⋯,∑j=1nam,jxjt,∀(x1,x2,⋯,xn)∈Rn,



(11)




where t stands for transposition and [image: there is no content] for all feasible i and j, is called a left linear mapping over ring [image: there is no content]. Similarly,


f(x1,x2,⋯,xn)=∑j=1nxja1,j,⋯,∑j=1nxjam,jt,∀(x1,x2,⋯,xn)∈Rn,



(12)




defines a right linear mapping over ring [image: there is no content]. If [image: there is no content], then f is called a left ( right ) linear function over [image: there is no content].





From now on, left linear mapping (function) or right linear mapping (function) are simply called linear mapping (function). This will not lead to any confusion since the intended use can usually be clearly distinguished from the context.



Remark 8.

The mapping f in Definition 6 is called linear in accordance with the definition of linear mapping (function) over a field. In fact, the two structures have several similar properties. Moreover, (11) is equivalent to


f(x1,x2,⋯,xn)=Ax1,x2,⋯,xnt,∀(x1,x2,⋯,xn)∈Rn,



(13)




where [image: there is no content] is an [image: there is no content] matrix over [image: there is no content] and [image: there is no content] for all feasible i and j. [image: there is no content] is named the coefficient matrix. It is easy to prove that a linear mapping is uniquely determined by its coefficient matrix, and vice versa. The linear mapping f is said to be trivial , denoted by 0, if [image: there is no content] is the zero matrix , i.e., [image: there is no content] for all feasible i and j.





It should be noted that an interesting approach to coding over an Abelian group was presented in [9,10,11]. However, we emphasize that even if group, field and ring are closely related algebraic structures, the definition of the group encoder in [11] and the linear encoder in [3] and in the present work are in general fundamentally different (although there is an overlap in special cases). To highlight in more detail the difference between linear encoding (this work and [3]) and encoding over a group, as in [11], which is a nonlinear operation in general, take the Abelian group [image: there is no content], the field [image: there is no content] of order 4 and the matrix ring [image: there is no content] as examples.



	
By ([11], Example 2), the Abelian group encoder encodes the source [image: there is no content] based on a Slepian–Wolf like scheme. Namely, two binary linear encoders encode [image: there is no content] and [image: there is no content] separately as two binary sources. Therefore, the lengths of the codewords from encoding [image: there is no content] and [image: there is no content] can even be different, and the encoder is in general a highly nonlinear device.



	
On the other hand, the linear encoder over either [image: there is no content] or [image: there is no content] simply outputs a linear combination of the vector [image: there is no content], namely [image: there is no content] for some matrix [image: there is no content] over [image: there is no content] or [image: there is no content].



	
However, if one requires that the codewords from encoding [image: there is no content] and [image: there is no content] be of the same length in (1), then the output from encoding [image: there is no content] is the same as [image: there is no content] for some matrix [image: there is no content] over ring [image: there is no content] (a specific product ring whose multiplication is significantly different from those of [image: there is no content] or [image: there is no content]). In other words, in this quite specific special case, the encoder becomes linear over a product ring of modulo integers, which is a sub-class of the completely general ring structures considered in this paper.






We also note that in some source network problems, linear codes appear superior to others [3]. For instance, for encoding the modulo-two sum of binary symmetric sources, linear coding over [image: there is no content] or [image: there is no content] achieves the optimal Körner–Marton region [4] (the [image: there is no content] case will be established in later sections), while coding over G achieves the sub-optimal Slepian–Wolf region ([11], p. 1509). To avoid any remaining confusion, we in Appendix D present additional details regarding the differences between linear coding, as in the present work and in [3], and coding over an Abelian group, as in [11].



Let [image: there is no content] be an [image: there is no content] matrix over ring [image: there is no content] and [image: there is no content], ∀x∈Rn. For the system of linear equations


[image: there is no content]



(14)




let [image: there is no content] be the set of all solutions, namely [image: there is no content]. It is obvious that [image: there is no content] if f is trivial, i.e., [image: there is no content] is the zero matrix. If [image: there is no content] is a field, then [image: there is no content] is a subspace of [image: there is no content]. We conclude this section with a lemma regarding the cardinalities of [image: there is no content] and [image: there is no content] in the following.



Lemma 1.

For a finite ring [image: there is no content] and a linear function


[image: there is no content]



(15)






(f:x↦xt(a1,a2,⋯,an)t),∀x∈Rn,



(16)




we have


[image: there is no content]



(17)




where [image: there is no content][image: there is no content]. In particular, if [image: there is no content] is invertible for some [image: there is no content], then [image: there is no content].





Proof. 

It is obvious that the image [image: there is no content] by definition. Moreover, ∀x≠y∈I, the pre-images [image: there is no content][image: there is no content] satisfy [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content], i.e., [image: there is no content]. Moreover, if [image: there is no content] is a unit, then [image: there is no content], thus, [image: there is no content]. ☐






3. Linear Coding over Finite Rings


In this section, we will present a coding rate region achieved with LCoR for the SW source coding problem, i.e., g is an identity function in Problem 1. This region is exactly the SW region if all the rings considered are fields. However, being field is not necessary as seen in Section 5, where the issue of optimality is addressed.



Before proceeding, a subtlety needs to be cleared out. It is assumed that a source generates data taking values from a finite sample space [image: there is no content], while [image: there is no content] does not necessarily admit any algebraic structure. We have to either assume that [image: there is no content] is with a certain algebraic structure, for instance [image: there is no content] is a ring, or injectively map elements of [image: there is no content] into some algebraic structure. In our subsequent discussions, we assume that [image: there is no content] is mapped into a finite ring [image: there is no content] of order at least [image: there is no content] by some injection [image: there is no content]. Hence, [image: there is no content] can simply be treated as a subset [image: there is no content] for a fixed [image: there is no content]. When required, [image: there is no content] can also be selected to obtain desired outcomes.



To facilitate our discussion, the following notation is used. For [image: there is no content], [image: there is no content] ([image: there is no content] and [image: there is no content] resp.) is defined to be the Cartesian product


[image: there is no content]



(18)




where [image: there is no content] is a realization of [image: there is no content]. If [image: there is no content], we denote the marginal of p with respect to [image: there is no content] by [image: there is no content], i.e., [image: there is no content], define the support


[image: there is no content]



(19)






[image: there is no content]



(20)




For simplicity, [image: there is no content] is defined to be


Φ1,Φ2,⋯,ΦsΦi:Xi→Riis injective,∀i∈S



(21)




([image: there is no content] is implicitly assumed), and [image: there is no content] for any [image: there is no content] and [image: there is no content]. For any [image: there is no content], let


RΦ={R1,R2,⋯,Rs∈Rs∑i∈TRilog|Ii|log|Ri|>rT,IT,∀∅≠T⊆S,∀0≠Ii≤lRi},



(22)




where [image: there is no content] and [image: there is no content] is a random variable with sample space [image: there is no content].



Theorem 2.

[image: there is no content] is achievable with linear coding over the finite rings [image: there is no content]. In exact terms, ∀ϵ>0, there exists [image: there is no content], for all [image: there is no content], there exist linear encoders (left linear mappings to be more precise) [image: there is no content] ([image: there is no content]) and a decoder ψ, such that


[image: there is no content]



(23)




where [image: there is no content], as long as


[image: there is no content]



(24)









Proof. 

The proof is given in Section 4. ☐





The following is a concrete example providing some insight into this theorem.



Example 1.

Consider the single source scenario, where [image: there is no content] and [image: there is no content], specified as follows.



	[image: there is no content]
	0
	1
	2
	3
	4
	5



	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





Obviously, [image: there is no content] contains 3 non-trivial ideals [image: there is no content], [image: there is no content] and [image: there is no content], and [image: there is no content] and [image: there is no content] admit the distributions


 [image: Entropy 19 00233 i001]








respectively. In addition, [image: there is no content] is a constant. Thus, by Theorem 2, rate [image: there is no content] is achievable if


[image: there is no content]








In other words,


[image: there is no content]



(25)






[image: there is no content]



(26)




is achievable with linear coding over ring [image: there is no content]. Obviously, [image: there is no content] is just the region [image: there is no content]. Optimality is claimed.





Additionally, we would like to point out that some of the inequalities defining (22) are not active for specific scenarios. Two classes of these scenarios are discussed in the following theorems. The first, Theorem 3, is for scenarios where rings considered are product rings, while the second, Theorem 4, is for cases of lower triangle matrix rings (similarly, readers can consider usual matrix rings, which are often non-commutative, if interested).



Theorem 3.

Suppose [image: there is no content] ([image: there is no content]) is a (finite) product ring [image: there is no content] of finite rings [image: there is no content]’s, and the sample space [image: there is no content] satisfies [image: there is no content] for all feasible i and l. Given injections [image: there is no content] and let


[image: there is no content]



(27)




where [image: there is no content] is defined as


Φi:xi↦Φ1,i(xi),Φ2,i(xi),⋯,Φki,i(xi)∈Ri,∀xi∈Xi.



(28)




We have that


RΦ,prod={[R1,R2,⋯,Rs]∈Rs|∑i∈TRilogIilogRi>H(XT|YRT/IT,XTc),∀∅≠T⊆S,∀Ii=∏l=1kiIl,i with 0≠Il,i≤lRl,i},



(29)




where [image: there is no content], is achievable with linear coding over [image: there is no content]. Moreover, [image: there is no content].





Proof. 

The proof is found in Section 4. ☐





Let [image: there is no content] be a finite ring and


ML,R,m=a100a2a10⋱amam−1a1a1,a2,⋯,am∈R,



(30)




where m is a positive integer. It is easy to verify that [image: there is no content] is a ring with respect to matrix operations. Moreover, [image: there is no content] is a left ideal of [image: there is no content] if and only if


I=a100a2a10⋱amam−1a1aj∈Ij≤lR,∀1≤j≤m;Ij⊆Ij+1,∀1≤j<m.



(31)




Let [image: there is no content] be the set of all left ideals of the form


a100a2a10⋱amam−1a1aj∈Ij≤lR,∀1≤j≤m;Ij⊆Ij+1,∀1≤j<m;Ii=0for some1≤i≤m.



(32)







Theorem 4.

Let [image: there is no content] ([image: there is no content]) be a finite ring such that [image: there is no content]. For any injections [image: there is no content], let


[image: there is no content]



(33)




where [image: there is no content] is defined as


Φi:xi↦Φi′(xi)00Φi′(xi)Φi′(xi)0⋱Φi′(xi)Φi′(xi)Φi′(xi),∀xi∈Xi.



(34)




We have that


RΦ,m={[R1,R2,⋯,Rs]∈Rs|∑i∈TRilogIilogRi>H(XT|YRT/IT,XTc),    ∀∅≠T⊆S,∀Ii≤lML,Ri,mi and Ii∉O(ML,Ri,mi)},



(35)




where [image: there is no content], is achievable with linear coding over [image: there is no content]. Moreover, [image: there is no content].





Proof. 

The proof is found in Section 4. ☐





Remark 9.

The difference between (22), (29) and (35) lies in their restrictions defining [image: there is no content]’s, respectively, as highlighted in the proofs given in Section 4.





Remark 10.

Without much effort, one can see that [image: there is no content] ([image: there is no content] and [image: there is no content], respectively) in Theorem 2 (Theorem 3 and Theorem 4, respectively) depends on Φ via random variables [image: there is no content]’s whose distributions are determined by Φ. For each [image: there is no content], there exist [image: there is no content] distinct injections from [image: there is no content] to a ring [image: there is no content] of order at least [image: there is no content]. Let [image: there is no content] be the convex hull of a set [image: there is no content]. By a straightforward time sharing argument, we have that


[image: there is no content]



(36)




is achievable with linear coding over [image: there is no content].





Remark 11.

From Theorem 5, one will see that (22) and (36) are the same when all the rings are fields. Actually, both are identical to the SW region. However, (36) can be strictly larger than (22) (see Section 5), when not all the rings are fields. This implies that, in order to achieve the desired rate, a suitable injection is required. However, be reminded that taking the convex hull in (36) is not always needed for optimality as shown in Example 1. A more sophisticated elaboration on this issue is found in Section 5.





The rest of this section provides key supporting lemmata and concepts used to prove Theorems 2–4. The final proofs are presented in Section 4.



Lemma 2.

Let [image: there is no content] be two distinct sequences, where [image: there is no content] is a finite ring, and assume that [image: there is no content]. If [image: there is no content] is a random linear mapping chosen uniformly at random, i.e., generate the [image: there is no content] coefficient matrix [image: there is no content] of f by independently choosing each entry of [image: there is no content] from [image: there is no content] uniformly at random, then


[image: there is no content]



(37)




where [image: there is no content].





Proof. 

Let [image: there is no content], where [image: there is no content] is a random linear function. Then


[image: there is no content]



(38)






[image: there is no content]



(39)




since the [image: there is no content]’s are independent from each other. The statement follows from Lemma 1, which ensures that [image: there is no content]. ☐





Remark 12.

In Lemma 2, if [image: there is no content] is a field and [image: there is no content], then [image: there is no content] because every non-zero [image: there is no content] is a unit. Thus, [image: there is no content].





Definition 7

([18]). Let [image: there is no content] be a discrete random variable with sample space [image: there is no content]. The set [image: there is no content] of strongly [image: there is no content]-typical sequencesof length n with respect to X is defined to be


x∈XnN(x;x)n−pX(x)≤ϵ,∀x∈X,



(40)




where [image: there is no content] is the number of occurrences of x in the sequence [image: there is no content].





The notation [image: there is no content] is sometimes replaced by [image: there is no content] when the length n and the random variable X referred to are clear from the context.



Now we conclude this section with the following lemma. It is a crucial part for our proofs of the achievability theorems. It generalizes the classic conditional typicality lemma ([19], Theorem 15.2.2), yet at the same time distinguishes our argument from the one for the field version.



Lemma 3.

Let [image: there is no content] be a jointly random variable whose sample space is a finite ring [image: there is no content]. For any [image: there is no content], there exists [image: there is no content], such that, ∀(x1,x2)t∈Tϵ(n,(X1,X2)) and ∀I≤lR1,


[image: there is no content]



(41)




where


[image: there is no content]



(42)




and [image: there is no content] is a random variable with sample space [image: there is no content].





Proof. 

Define the mapping [image: there is no content] by


Γ:x1↦x1+I,∀x1∈R1.



(43)




Assume that [image: there is no content], and let


[image: there is no content]



(44)




By definition, ∀(y,x2)t∈Dϵ(x1,I|x2), where [image: there is no content],


[image: there is no content]



(45)




Moreover,


[image: there is no content]



(46)






[image: there is no content]



(47)




For fixed [image: there is no content], the number of strongly [image: there is no content]-typical sequences [image: there is no content] such that [image: there is no content] is strongly [image: there is no content]-typical is strictly upper bounded by [image: there is no content] if n is large enough and [image: there is no content] is small. Therefore,


[image: there is no content]



(48)




 ☐





Remark 13.

We acknowledge an anonymous reviewer of our paper [20] for suggesting the proof for Lemma 3 given above. Our original proof was presented as a special case of a more general result in [21]. The techniques behind the two proofs are quite different, however the full generality of our original proof is appreciated better in non-i.i.d. scenarios, as in [21].





Remark 14.

Assume that [image: there is no content], then [image: there is no content] is equivalent to [image: there is no content].






4. Proof of the Achievability Theorems


4.1. Proof of Theorem 2


As mentioned, [image: there is no content] can be seen as a subset of [image: there is no content] for a fixed [image: there is no content]. In this section, we assume that [image: there is no content] has sample space [image: there is no content], which makes sense since [image: there is no content] is injective.



Let [image: there is no content] and [image: there is no content], ∀i∈S, where n is the length of the data sequences. If [image: there is no content], then [image: there is no content] (this implies that [image: there is no content] for some small constant [image: there is no content] and large enough n), ∀∅≠T⊆S,∀0≠Ii≤lRi. We claim that [image: there is no content] is achievable by linear coding over [image: there is no content].



Encoding:



For every [image: there is no content], randomly generate a [image: there is no content] matrix [image: there is no content] based on a uniform distribution, i.e., independently choose each entry of [image: there is no content] uniformly at random from [image: there is no content]. Define a linear encoder [image: there is no content] such that


ϕi:x↦Aix,∀x∈Rin.



(49)




Obviously the coding rate of this encoder is [image: there is no content].



Decoding:



Subject to observing [image: there is no content] ([image: there is no content]) from the ith encoder, the decoder claims that [image: there is no content] is the array of the encoded data sequences, if and only if:

	
[image: there is no content]; and



	
∀x′=x1′,x2′,⋯,xs′t∈Tϵ, if [image: there is no content], then [image: there is no content], for some j.








Error:



Assume that [image: there is no content] ([image: there is no content]) is the original data sequence generated by the ith source. It is readily seen that an error occurs if and only if one of the following events occurs:

	E1:

	
[image: there is no content];




	E2:

	
There exists [image: there is no content], such that [image: there is no content], ∀i∈S.









Error Probability:



By the joint asymptotic equipartition principle (AEP) ([18], Theorem 6.9), [image: there is no content], [image: there is no content].



Additionally, for [image: there is no content], let


Dϵ(x;T)=x1′,x2′,⋯,xs′t∈Tϵ|xi′≠xi,∀i∈Tandxi′=xi,∀i∈Tc.



(50)




We have


Dϵ(x;T)⊆⋃0≠Ii≤lRii∈TDϵ(xT,IT|xTc)\{x},



(51)




where [image: there is no content] and [image: there is no content], since [image: there is no content] goes over all possible non-trivial left ideals. Consequently,


[image: there is no content]










[image: there is no content]



(52)






[image: there is no content]



(53)






[image: there is no content]



(54)






[image: there is no content]



(55)




where

	
(52) is from the fact that [image: there is no content] (disjoint union);



	
(53) follows from (51) by the union bound (Boole’s inequality);



	
(54) is from Lemmas 2 and 3, as well as the fact that every left ideal of [image: there is no content] is a Cartesian product of some left ideals [image: there is no content] of [image: there is no content], [image: there is no content] (see Proposition 3). At the same time, [image: there is no content] is required to be sufficiently small;



	
(55) is due to the facts that the number of non-empty subsets of [image: there is no content] is [image: there is no content] and the number of non-trivial left ideals of the finite ring [image: there is no content] is less than [image: there is no content], which is the number of non-empty subsets of [image: there is no content].





Thus, [image: there is no content], when [image: there is no content], from (55), since for sufficiently large n and small [image: there is no content], [image: there is no content].



Therefore, [image: there is no content] as [image: there is no content] and [image: there is no content].




4.2. Proof of Theorem 3


The proof follows almost the same steps as in proving Theorem 2, except that the performance analysis only focuses on sequences [image: there is no content] ([image: there is no content]) such that


[image: there is no content]



(56)




for some [image: there is no content]. Let [image: there is no content] be any two such sequences satisfying [image: there is no content] for some [image: there is no content]. Based on the special structure of [image: there is no content] and [image: there is no content], it is easy to verify that Ii≠0⇔Ii=∏l=1kiIl,iand0≠Il,i≤lRl,i, for all [image: there is no content]. (This causes the difference between (22) and (29).) In addition, it is obvious that [image: there is no content] by their definitions.




4.3. Proof of Theorem 4


The proof is similar to that for Theorem 2, except that it only focuses on sequences [image: there is no content] ([image: there is no content]) such that [image: there is no content] satisfies [image: there is no content] for some [image: there is no content]. Let [image: there is no content] be any two such sequences such that [image: there is no content] for some [image: there is no content]. It is easily seen that [image: there is no content] if and only if [image: there is no content] (This causes the difference between (22) and (35).) In addition, it is obvious that [image: there is no content] by their definitions.





5. Optimality


Obviously, Theorem 2 specializes to its field counterpart if all rings considered are fields, as summarized in the following theorem.



Theorem 5.

Region (22) is the SW region if [image: there is no content] contains no proper non-trivial left ideal, equivalently, [image: there is no content] is a field, for all [image: there is no content]. As a consequence, region (36) is the SW region.





Proof. 

In Theorem 2, random variable [image: there is no content] admits a sample space of cardinality 1 for all [image: there is no content], since the only non-trivial left ideal of [image: there is no content] is itself for all feasible i. Thus, [image: there is no content]. Consequently,


RΦ=R1,R2,⋯,Rs∈Rs|∑i∈TRi>H(XT|XTc),∀∅≠T⊆S,



(57)




which is the SW region [image: there is no content]. Therefore, region (36) is also the SW region.



If [image: there is no content] is a field, then obviously it has no proper non-trivial left (right) ideal. Conversely, ∀0≠a∈Ri, [image: there is no content] implies that ∃0≠b∈Ri, such that [image: there is no content]. Similarly, ∃0≠c∈Ri, such that [image: there is no content]. Moreover, [image: there is no content]. Hence, [image: there is no content]. b is the inverse of a. By Wedderburn’s little theorem, [image: there is no content] is a field. ☐





One important question to address is whether linear coding over finite non-field rings can be equally optimal for data compression. Hereby, we claim that, for any SW scenario, there always exist linear encoders over some finite non-field rings which achieve the data compression limit. Therefore, optimality of linear coding over finite non-field rings for data compression is established in the sense of existence.



5.1. Existence Theorem I: Single Source


For any single source scenario, the assertion that there always exists a finite ring [image: there is no content], such that [image: there is no content] is in fact the SW region


[image: there is no content]



(58)




is equivalent to the existence of a finite ring [image: there is no content] and an injection [image: there is no content], such that


[image: there is no content]



(59)




where [image: there is no content].



Theorem 6.

Let [image: there is no content] be a finite ring of order [image: there is no content]. If [image: there is no content] contains one and only one proper non-trivial left ideal [image: there is no content] and [image: there is no content], then region (36) coincides with the SW region, i.e., there exists an injection [image: there is no content], such that (59) holds.





Remark 15.

Examples of such a non-field ring [image: there is no content] in the above theorem include


[image: there is no content]



(60)




([image: there is no content] is a ring with respect to matrix addition and multiplication) and [image: there is no content], where p is any prime. For any single source scenario, one can always choose [image: there is no content] to be either [image: there is no content] or [image: there is no content]. Consequently, optimality is attained.





Proof of Theorem 6.

Notice that the random variable [image: there is no content] depends on the injection [image: there is no content], so does its entropy [image: there is no content]. Obviously [image: there is no content], since the sample space of the random variable [image: there is no content] contains only one element. Therefore,


[image: there is no content]



(61)




Consequently, (59) is equivalent to


logR1logI0H(X1)−H(YR1/I0)≤H(X1)⇔H(X1)≤2H(YR1/I0),



(62)




since [image: there is no content]. By Lemma A1, there exists injection [image: there is no content] such that (62) holds if [image: there is no content]. The statement follows. ☐





Up to isomorphism, there are exactly 4 distinct rings of order [image: there is no content] for a given prime p. They include 3 non-field rings, [image: there is no content], [image: there is no content] and [image: there is no content], in addition to the field [image: there is no content]. It has been proved that, using linear encoders over the last three, optimality can always be achieved in the single source scenario. Actually, the same holds true for all multiple sources scenarios.




5.2. Existence Theorem II: Multiple Sources


Theorem 7.

Let [image: there is no content] be s finite rings with [image: there is no content]. If [image: there is no content] is isomorphic to either

	1. 

	
a field, i.e., [image: there is no content] contains no proper non-trivial left (right) ideal; or




	2. 

	
a ring containing one and only one proper non-trivial left ideal [image: there is no content] and [image: there is no content],






for all feasible i, then (36) coincides with the SW region [image: there is no content].





Remark 16.

It is obvious that Theorem 7 includes Theorem 6 as a special case. In fact, its proof resembles the one of Theorem 6. Examples of [image: there is no content]’s include all finite fields, [image: there is no content] and [image: there is no content], where p is a prime. However, Theorem 7 does not guarantee that all rates, except the vertexes , in the polytope of the SW region are “directly” achievable for the multiple sources case. A time sharing scheme is required in our current proof. Nevertheless, all rates are “directly” achievable if [image: there is no content]’s are fields or if [image: there is no content]. This is partially the reason that the two theorems are stated separately.





Remark 17.

Theorem 7 also includes Theorem 5 as a special case. However, Theorem 5 admits a simpler proof compared to the one for Theorem 7.





Proof of Theorem 7.

It suffices to prove that, for any [image: there is no content] satisfies


Ri>H(Xi|Xi−1,Xi−2,⋯,X1),∀1≤i≤s,



(63)




[image: there is no content] for some set of injections [image: there is no content], where [image: there is no content]. Let [image: there is no content] be the set of injections, where, if

	(i)

	
[image: there is no content] is a field, [image: there is no content] is any injection;




	(ii)

	
[image: there is no content] satisfies 2, [image: there is no content] is the injection such that


H(Xi|Xi−1,Xi−2,⋯,X1)≤2H(YRi/I0i|Xi−1,Xi−2,⋯,X1),



(64)




when [image: there is no content]. The existence of [image: there is no content] is guaranteed by Lemma A1.






If [image: there is no content], then


[image: there is no content]



(65)






[image: there is no content]



(66)




for all [image: there is no content] and [image: there is no content]. As a consequence,


[image: there is no content]



(67)






[image: there is no content]



(68)






[image: there is no content]



(69)






[image: there is no content]



(70)






[image: there is no content]



(71)




for all [image: there is no content]. Thus, [image: there is no content]. ☐





By Theorems 5–7, we draw the conclusion that



Corollary 1.

For any SW scenario, there always exists a sequence of linear encoders over some finite rings (fields or non-field rings) which achieves the data compression limit, the SW region.





In fact, LCoR can be optimal even for rings beyond those stated in the above theorems (see Example 1). We classify some of these scenarios in the remaining parts of this section.




5.3. Product Rings


Theorem 8.

Let [image: there is no content] ([image: there is no content]) be a set of finite rings of equal size, and [image: there is no content] for all feasible i. If the coding rate [image: there is no content] is achievable with linear encoders over [image: there is no content] ([image: there is no content]), then [image: there is no content] is achievable with linear encoders over [image: there is no content].





Proof. 

By definition, [image: there is no content] is a convex combination of coding rates which are achieved by different linear encoding schemes over [image: there is no content] ([image: there is no content]), respectively. To be more precise, there exist [image: there is no content] and positive numbers [image: there is no content] with [image: there is no content], such that [image: there is no content]. Moreover, there exist injections [image: there is no content] ([image: there is no content]), where [image: there is no content], such that


Rj∈RΦl={(R1,R2,⋯,Rs)∈Rs|∑i∈TRilogIl,ilogRl,i>H(XT|XTc)−H(YRl,T/Il,T|XTc),∀∅≠T⊆S,∀0≠Il,i≤lRl,i},



(72)




where [image: there is no content], [image: there is no content] and [image: there is no content] is a random variable with sample space [image: there is no content]. To show that [image: there is no content] is achievable with linear encoders over [image: there is no content], it suffices to prove that [image: there is no content] is achievable with linear encoders over [image: there is no content] for all feasible j. Let [image: there is no content]. For all [image: there is no content] and [image: there is no content] with [image: there is no content] ([image: there is no content]), we have


[image: there is no content]



(73)




where [image: there is no content]. By (72), it can be easily seen that


[image: there is no content]



(74)




Meanwhile, let [image: there is no content], [image: there is no content], [image: there is no content] (Note:


[image: there is no content]



(75)




for all [image: there is no content].) and [image: there is no content]. It can be verified that [image: there is no content] ([image: there is no content]) is a function of [image: there is no content], hence, [image: there is no content]. Consequently,


[image: there is no content]



(76)




which implies that [image: there is no content] by Theorem 3. We therefore conclude that [image: there is no content] is achievable with linear encoders over [image: there is no content] for all feasible j, so is [image: there is no content]. ☐





Obviously, [image: there is no content] in Theorem 8 are of the same size. Inductively, one can verify the following without any difficulty.



Theorem 9.

Let [image: there is no content] be any finite index set, [image: there is no content] ([image: there is no content]) be a set of finite rings of equal size, and [image: there is no content] for all feasible i. If the coding rate [image: there is no content] is achievable with linear encoders over [image: there is no content] ([image: there is no content]), then [image: there is no content] is achievable with linear encoders over [image: there is no content].





Remark 18.

There are delicate issues to the situation Theorem 9 (Theorem 8) illustrates. Let [image: there is no content] ([image: there is no content]) be the set of all symbols generated by the ith source. The hypothesis of Theorem 9 (Theorem 8) implicitly implies the alphabet constraint [image: there is no content] for all feasible i and l.





Let [image: there is no content] be s finite rings each of which is isomorphic to either

	
a ring [image: there is no content] containing one and only one proper non-trivial left ideal whose order is [image: there is no content], e.g., [image: there is no content] and [image: there is no content] (p is a prime); or



	
a ring of a finite product of finite field(s) and/or ring(s) satisfying 1), e.g., [image: there is no content] (p and [image: there is no content]’s are prime) and [image: there is no content] ([image: there is no content] and [image: there is no content] are non-negative, [image: there is no content]’s are prime and [image: there is no content]’s are power of primes).





Theorems 7 and 9 ensure that linear encoders over ring [image: there is no content] are always optimal in any applicable (subject to the condition specified in the corresponding theorem) SW coding scenario. As a very special case, [image: there is no content], where p is a prime, is always optimal in any (single source or multiple sources) scenario with alphabet size less than or equal to p. However, using a field or product rings is not necessary. As shown in Theorem 6, neither [image: there is no content] nor [image: there is no content] is (isomorphic to) a product of rings nor a field. It is also not required to have a restriction on the alphabet size (see Theorem 7), even for product rings (see Example 1 for a case of [image: there is no content]).




5.4. Trivial Case: Uniform Distributions


The following theorem is trivial, however we include it for completeness.



Theorem 10.

Regardless which set of rings [image: there is no content] is chosen, as long as [image: there is no content] for all feasible i, region (22) is the SW region if [image: there is no content] is a uniform distribution.





Proof. 

If p is uniform, then, for any [image: there is no content] and [image: there is no content], [image: there is no content] is uniformly distributed on [image: there is no content]. Moreover, [image: there is no content] and [image: there is no content] are independent, so are [image: there is no content] and [image: there is no content]. Therefore, [image: there is no content] and [image: there is no content]. Consequently,


[image: there is no content]



(77)




Region (22) is the SW region. ☐





Remark 19.

When p is uniform, it is obvious that the uncoded strategy (all encoders are one-to-one mappings) is optimal in the SW source coding problem. However, optimality stated in Theorem 10 does not come from deliberately fixing the linear encoding mappings, but generating them randomly.





So far, we have only shown that there exist linear encoders over finite non-field rings that are equally good as their field counterparts. In next section, Problem 1 is considered with an arbitrary g. It will be demonstrated that linear coding over finite non-field rings can strictly outperform its field counterpart for encoding some discrete functions, and there are infinitely many such functions.





6. Application: Source Coding for Computing


The problem of Source Coding for Computing, Problem 1, with an arbitrary g is addressed in this section. Some advantages of LCoR (compared to LCoF) will be demonstrated. We begin with establishing the following theorem which can be recognized as a generalization of Körner–Marton [4].



Theorem 11.

Let [image: there is no content] be a finite ring, and


[image: there is no content]



(78)




and [image: there is no content]’s are functions mapping [image: there is no content] to [image: there is no content]. Then


[image: there is no content]



(79)




where [image: there is no content] and [image: there is no content].





Proof. 

By Theorem 2, ∀ϵ>0, there exists a large enough n, an [image: there is no content] matrix [image: there is no content] and a decoder [image: there is no content], such that [image: there is no content], if [image: there is no content]. Let [image: there is no content] ([image: there is no content]) be the encoder of the ith source. Upon receiving [image: there is no content] from the ith source, the decoder claims that [image: there is no content], where [image: there is no content], is the function, namely [image: there is no content], subject to computation. The probability of decoding error is


[image: there is no content]



(80)






[image: there is no content]



(81)






[image: there is no content]



(82)






[image: there is no content]



(83)






[image: there is no content]



(84)






[image: there is no content]



(85)




Therefore, all [image: there is no content], where [image: there is no content], is achievable, i.e., [image: there is no content]. ☐





Corollary 2.

In Theorem 11, let [image: there is no content]. We have


[image: there is no content]



(86)




if either of the following conditions holds:

	1. 

	
[image: there is no content] is isomorphic to a finite field;




	2. 

	
[image: there is no content] is isomorphic to a ring containing one and only one proper non-trivial left ideal [image: there is no content] with [image: there is no content], and


[image: there is no content]



(87)















Proof. 

If either (1) or (2) holds, then it is guaranteed that


[image: there is no content]



(88)




in Theorem 11. The statement follows. ☐





Remark 20.

By Lemma A2, examples of non-field rings satisfying (2) in Corollary 2 includes

	(1) 

	
[image: there is no content] with [image: there is no content] satisfying


[image: there is no content]



(89)








	(2) 

	
[image: there is no content] with


[image: there is no content]



(90)




satisfying (89), etc.






Interested readers can figure out even more explicit examples deduced from Lemma A1.





Remark 21.

If [image: there is no content] is isomorphic to [image: there is no content] and [image: there is no content] is the modulo-two sum, then Corollary 2 recovers the theorem of Körner–Marton [4]. While if [image: there is no content] is (isomorphic to) a field, it becomes a special case of ([7] Theorem III.1). Actually, almost all the results in [6,7] can be reproved in the setting of rings in a parallel fashion.





We claim that there are functions g for which LCoR outperforms LCoF; in fact, there are infinite many such g’s. To prove this, some definitions are required for the mechanics of our argument.



Definition 8.

Let [image: there is no content] and [image: there is no content] be two functions. If there exist bijections [image: there is no content], ∀1≤i≤s, and [image: there is no content], such that


[image: there is no content]



(91)




then [image: there is no content] and [image: there is no content] are said to be equivalent(via [image: there is no content] and ν).





Definition 9.

Given function [image: there is no content], and let [image: there is no content]. The restriction of g on [image: there is no content] is defined to be the function [image: there is no content] such that g|S:x↦g(x),∀x∈S.





Lemma 4.

Let [image: there is no content] and Ω be some finite sets. For any discrete function [image: there is no content] there always exist a finite ring (field) and a polynomial function [image: there is no content] such that


[image: there is no content]



(92)




for some injections [image: there is no content] ([image: there is no content]) and [image: there is no content].





Proof. 

There are several possible proofs of this lemma. One is provided in Appendix B. ☐





Remark 22.

Up to equivalence, a function can be presented in many different formats. For example, the function [image: there is no content] defined on [image: there is no content] (with ordering [image: there is no content]) can either be seen as [image: there is no content] on [image: there is no content] or be treated as the restriction of [image: there is no content] defined on [image: there is no content] to the domain [image: there is no content].





Lemma 4 implies that any discrete function defined on a finite domain is equivalent to a restriction of some polynomial function over some finite ring (field). As a consequence, we can restrict Problem 1 to all polynomial functions. This polynomial approach offers valuable insight into the general problem, because the algebraic structure of a polynomial function is clearer than that of an arbitrary function. We often call [image: there is no content] in Lemma 4 a polynomial presentation of g. On the other hand, the [image: there is no content] given by (78) is named a nomographic function over [image: there is no content] (by terminology borrowed from [22]), it is said to be a nomographic presentation of g if g is equivalent to a restriction of it.



Lemma 5.

Let [image: there is no content] and Ω be some finite sets. For any discrete function [image: there is no content], there exists a nomographic function [image: there is no content] over some finite ring (field) [image: there is no content] such that


[image: there is no content]



(93)




for some injections [image: there is no content] ([image: there is no content]) and [image: there is no content].





Proof. 

There are several proofs of this lemma. One is provided in Appendix B. ☐





Lemma 5 advances Lemma 4 by claiming that a discrete function with a finite domain is always equivalent to a restriction of some nomographic function. From this, it is seen that Theorem 11 and Corollary 2 have presented a universal solution to Problem 1.



Given some finite ring [image: there is no content], let [image: there is no content] of format (78) be a nomographic presentation of g. We say that the region [image: there is no content] given by (79) is achievable for computing g in the sense of Körner–Marton. From Theorem 13 given later, we know that [image: there is no content] might not be the largest achievable region one can obtain for computing g. However, [image: there is no content] still captures the ability of linear coding over [image: there is no content] when used for computing g. In other words, [image: there is no content] is the region purely achieved with linear coding over [image: there is no content] for computing g. On the other hand, regions from Theorem 13 are achieved by combining the linear coding and the standard random coding techniques. Therefore, it is reasonable to compare LCoR with LCoF in the sense of Körner–Marton.



We show that linear coding over finite rings, non-field rings in particular, strictly outperforms its field counterpart, LCoF, in the following example.



Example 2

([23]). Let [image: there is no content] (Figure 1) be a function such that

Figure 1. [image: there is no content].



[image: Entropy 19 00233 g001]






g:(α0,α0,α0)↦β0;g:(α0,α0,α1)↦β3;g:(α0,α1,α0)↦β2;g:(α0,α1,α1)↦β1;g:(α1,α0,α0)↦β1;g:(α1,α0,α1)↦β0;g:(α1,α1,α0)↦β3;g:(α1,α1,α1)↦β2.



(94)




Define [image: there is no content] and [image: there is no content] by


μ:αj↦j,∀j∈{0,1},andν:βj↦j,∀j∈{0,1,2,3},



(95)




respectively. Obviously, g is equivalent to [image: there is no content] (Figure 2) via [image: there is no content] and ν. However, by Proposition 4, there exists no [image: there is no content] of format

Figure 2. [image: there is no content].



[image: Entropy 19 00233 g002]



 (78) so that g is equivalent to any restriction of [image: there is no content]. Although, Lemma 5 ensures that there always exists a bigger field [image: there is no content] such that g admits a presentation [image: there is no content] of format (78), the size q must be strictly bigger than 4. For instance, let


[image: there is no content]



(96)




Then, g has presentation [image: there is no content] (Figure 3) via [image: there is no content] and [image: there is no content] defined (symbolic-wise) by

Figure 3. [image: there is no content].



[image: Entropy 19 00233 g003]



 (95).





Proposition 4.

There exists no polynomial function [image: there is no content] of format (78), such that a restriction of [image: there is no content] is equivalent to the function g defined by (94).





Proof. 

Suppose [image: there is no content], where [image: there is no content], [image: there is no content] are injections, and [image: there is no content] with [image: there is no content] for all feasible i. We claim that [image: there is no content] and h are both surjective, since [image: there is no content] In particular, h is bijective. Therefore, [image: there is no content], i.e., g admits a presentation [image: there is no content]. A contradiction to Lemma A3. ☐





As a consequence of Proposition 4, in the sense of Körner–Marton, in order to use LCoF to encode function g, the alphabet sizes of the three encoders need to be at least 5. However, LCoR offers a solution in which the alphabet sizes are 4, strictly smaller than using LCoF. Most importantly, the region achieved with linear coding over any finite field [image: there is no content], is always a subset of the one achieved with linear coding over [image: there is no content]. This is proved in the following proposition.



Proposition 5.

Let g be the function defined by (94), [image: there is no content]be the sample space of [image: there is no content] and [image: there is no content] be the distribution of [image: there is no content]. If


[image: there is no content]



(97)




satisfying (89), then, in the sense of Körner–Marton, the region [image: there is no content] achieved with linear coding over [image: there is no content] contains the one, that is [image: there is no content], obtained with linear coding over any finite field [image: there is no content] for computing g. Moreover, if [image: there is no content] is the whole domain of g, then [image: there is no content].





Proof. 

Let [image: there is no content] be a polynomial presentation of g with format (78). By Corollary 2 and Remark 20, we have


[image: there is no content]



(98)






[image: there is no content]



(99)




Assume that [image: there is no content], where [image: there is no content] and [image: there is no content] are injections. Obviously, [image: there is no content] is a function of [image: there is no content]. Hence,


[image: there is no content]



(100)




On the other hand, [image: there is no content]. Therefore,


[image: there is no content]



(101)




and [image: there is no content]. In addition, we claim that [image: there is no content], where [image: there is no content], is not injective. Otherwise, [image: there is no content], where [image: there is no content], is bijective, hence, [image: there is no content]. A contradiction to Lemma A3. Consequently, [image: there is no content]. If [image: there is no content], then (100) as well as (101) hold strictly, thus, [image: there is no content]. ☐





A more intuitive comparison (which is not as conclusive as Proposition 5) can be identified from the presentations of g given in Figure 2 and Figure 3. According to Corollary 2, linear encoders over field [image: there is no content] achieve


[image: there is no content]



(102)




The one achieved by linear encoders over ring [image: there is no content] is


[image: there is no content]



(103)




Clearly, [image: there is no content], thus, [image: there is no content] contains [image: there is no content]. Furthermore, as long as


[image: there is no content]



(104)




[image: there is no content] is strictly larger than [image: there is no content], since [image: there is no content]. To be specific, assume that [image: there is no content] satisfies Table 1, we have


Table 1. Distribution p.







	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]










[image: there is no content]



(105)






[image: there is no content]



(106)







Based on Propositions 4 and 5, we conclude that LCoR dominates LCoF, in terms of achieving better coding rates with smaller alphabet sizes of the encoders for computing g. As a direct conclusion, we have:



Theorem 12.

In the sense of Körner–Marton, LCoF is not optimal.





Remark 23.

The key property underlying the proof of Proposition 5 is that the characteristic of a finite field must be a prime while the characteristic of a finite ring can be any positive integer larger than or equal to 2. This implies that it is possible to construct infinitely many discrete functions for which using LCoF always leads to a suboptimal achievable region compared to linear coding over finite non-field rings. Examples include [image: there is no content] for [image: there is no content] and prime [image: there is no content] (note: the characteristic of [image: there is no content] is [image: there is no content] which is not a prime). One can always find an explicit distribution of sources for which linear coding over [image: there is no content] strictly dominates linear coding over each and every finite field.





As mentioned, [image: there is no content] given by (79) is sometimes strictly smaller than [image: there is no content]. This was first shown by Ahlswede–Han [5] for the case of g being the modulo-two sum. Their approach combines the linear coding technique over a binary field with the standard random coding technique. In the following, we generalize the result of Ahlswede–Han ([5], Theorem 10) to the settings, where g is arbitrary, and, at the same time, LCoF is replaced by its generalized version, LCoR.



Consider function [image: there is no content] admitting


[image: there is no content]



(107)




where [image: there is no content] and [image: there is no content]’s are functions mapping [image: there is no content] to [image: there is no content]. By Lemma 5, a discrete function with a finite domain is always equivalent to a restriction of some function of format (107). We call [image: there is no content] from (107) a pseudo nomographic function over ring [image: there is no content].



Theorem 13.

Let [image: there is no content]. If [image: there is no content] is of format (107), and [image: there is no content] satisfying


∑j∈TRj>T\S0max0≠I≤lRlog|R|log|I|H(X|VS)−H(YR/I|VS)+I(YT;VT|VTc),∀∅≠T⊆S,



(108)




where ∀j∈S0, [image: there is no content]; ∀j∈S\S0, [image: there is no content], [image: there is no content]’s are discrete random variables such that


[image: there is no content]



(119)




and [image: there is no content], [image: there is no content], then [image: there is no content].





Proof. 

The proof can be completed by applying the tricks from Lemmas 2 and 3 to the approach generalized from Ahlswede–Han ([5], Theorem 10). Details are found in Appendix C. ☐





Remark 24.

The achievable region given by (108) always contains the SW region. Moreover, it is in general larger than the [image: there is no content] from (79). If [image: there is no content] is the modulo-two sum, namely [image: there is no content] and [image: there is no content]’s are identity functions for all [image: there is no content], then (108) resumes the region of Ahlswede–Han ([5], Theorem 10).






7. Conclusions


7.1. Right Linearity


Careful readers might have noticed that the encoders we used so far are actually left linear mappings. By symmetry, almost all related statements can be easily reproved for right linear mappings (encoders). As an example, the following corresponds to Theorem 2.



Theorem 14.

For any [image: there is no content],


RΦ′=R1,R2,⋯,Rs∈Rs|∑i∈TRilog|Ii|log|Ri|>rT,IT,∀∅≠T⊆S,∀0≠Ii≤rRi,



(110)




where [image: there is no content] and [image: there is no content], is achievable with (right) linear coding over the finite rings [image: there is no content].



By time sharing,


[image: there is no content]



(111)




where [image: there is no content] is given by (110), is achievable with (right) LCoR.






7.2. Field, Ring, Rng and Group


Conceptually speaking, LCoR is in fact a generalization of the linear coding technique proposed by Elias [2] and Csiszár [3] (LCoF), since a field must be a ring. However, as seen in Section 4, analyzing the decoding error for the ring version is in general substantially more challenging than in the case of the field version. Our approach crucially relies on the concept of ideals. A field contains no non-trivial ideal but itself. Because of this special property of fields, our general argument for finite rings will render to a simple one when only finite fields are considered.



Even though our analysis for the ring scenario is more complicated than that for finite field scenarios, linear encoders working over some finite rings are in general considerably easier to implement in practice. This is because the implementation of finite field arithmetic can be quite demanding. Normally, a finite field is given by its polynomial representation, operations are carried out based on the polynomial operations (addition and multiplication) followed by the polynomial long division algorithm. In contrast, implementing arithmetic of many finite rings is a straightforward task. For instance, the arithmetic of modulo integers ring [image: there is no content], for any positive integer q, is simply the integer modulo q arithmetic.



In addition, it is also very interesting to consider instead linear coding over rngs. It will be even more intriguing should it turn out that the rng version outperforms the ring version in the computing problem (Problem 1), in the same manner that the ring version outperforms its field counterpart. It will also be interesting to see whether the idea of using rng provides more understanding of the problems from [6,8].



Some works, including [24,25,26], have proposed to implement coding over a simpler algebraic structure, that of a group. Seemingly, this corresponds to a more universal approach since both fields and rings are also groups. However, one subtle issue is often overlooked in this context. Namely, the set of rings (or rngs) is not a subset of the set of groups, since several non-isomorphic rings (or rngs) can be defined on one and the same group. For instance, given two distinct primes p and q, up to isomorphism,

	
there are 2 finite rngs of order p, while there is only one group of order p;



	
there are 4 finite rngs of order [image: there is no content];



	
there are 11 finite rngs of order [image: there is no content] (if [image: there is no content], then 4 of them are rings, namely [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] [27]), while there are only 2 groups of order [image: there is no content], both of which are Abelian;



	
there are 22 finite rngs of order [image: there is no content];



	
there are 52 finite rngs of order 8;



	
there are [image: there is no content] finite rngs of order [image: there is no content] ([image: there is no content]), while there are 5 groups of order [image: there is no content], 3 of which are Abelian.





Therefore, there is no one-to-one correspondence between rings (field or rngs) and groups, in either direction. Furthermore, from the point of view of formulating a multivariate function, one is highly restricted by using groups, compared to rings (rng or field). Specifically, it is well-known that every discrete function defined on a finite domain is essentially a restriction of some polynomial function over a finite ring (rng or field). Although non-Abelian structures (non-Abelian groups) have the potential to lead to important non-trivial results [28], they are very difficult to handle theoretically and in practice. The performance of non-Abelian group block codes can be quite bad [29].




7.3. Final Remarks


This paper establishes achievability theorems regarding linear coding over finite rings for Slepian–Wolf data compression. Our results include related work from Elias [2] and Csiszár [3] regarding linear coding over finite fields as special cases in the sense of characterizing the achievable region. We have also proved that, for any Slepian–Wolf scenario, there always exists a sequence of linear encoders over some finite rings (non-field rings in particular) that achieves the data compression limit, the Slepian–Wolf region. Thus, with regard to existence, the optimality issue of linear coding over finite non-field rings for data compression is confirmed positively.



In addition, we also address the problem of source coding for computing, Problem 1. Results of Körner–Marton [4], Ahlswede–Han ([5], Theorem 10) and [7] are generalized to corresponding ring versions. Based on these, it is demonstrated that LCoR dominates its field counterpart for encoding (infinitely) many discrete functions.









Appendix A. Supporting Lemmata


Lemma A1.

Let [image: there is no content] be a finite ring, X and Y be two correlated discrete random variables, and [image: there is no content] be the sample space of X with [image: there is no content]. If [image: there is no content] contains one and only one proper non-trivial left ideal [image: there is no content] and [image: there is no content], then there exists injection [image: there is no content] such that


[image: there is no content]



(A1)









Proof. 

Let


[image: there is no content]



(A2)




where [image: there is no content] is the set of all possible [image: there is no content]’s (maximum can always be reached because [image: there is no content] is finite, but it is not uniquely attained by [image: there is no content] in general). Assume that [image: there is no content] is the sample space (not necessarily finite) of Y. Let [image: there is no content], [image: there is no content] and [image: there is no content]. We have that


[image: there is no content]



(A3)






[image: there is no content]



(A4)




where


[image: there is no content]



(A5)






[image: there is no content]



(A6)






[image: there is no content]



(A7)




(Note: [image: there is no content] if [image: there is no content]. In addition, every element in [image: there is no content] can be uniquely expressed as [image: there is no content].) Therefore, (A1) is equivalent to


[image: there is no content]



(A8)




where [image: there is no content] by the grouping rule for entropy ([19], p. 49). Let


[image: there is no content]



(A9)




The concavity of the function H implies that


[image: there is no content]



(A10)




At the same time,


[image: there is no content]



(A11)




by the definition of [image: there is no content]. We now claim that


[image: there is no content]



(A12)




Suppose otherwise, i.e., [image: there is no content]. Let [image: there is no content] be defined as


[image: there is no content]



(A13)




(Note: [image: there is no content] is an element of [image: there is no content]. It can be uniquely presented as [image: there is no content] for some i and j.) We have that


[image: there is no content]



(A14)






[image: there is no content]



(A15)




It is absurd that [image: there is no content]! Therefore, (A8) is valid by (A10) and (A12), so is (A1). ☐





Lemma A2.

If both


[image: there is no content]



(A16)




are valid, and [image: there is no content], then


[image: there is no content]



(A17)









Proof [30].

Without loss of generality, we assume that [image: there is no content] which implies that [image: there is no content]. Let [image: there is no content], [image: there is no content], be the binary entropy function. By the grouping rule for entropy ([19], p. 49), (A17) equals to


[image: there is no content]



(A18)






[image: there is no content]



(A19)






[image: there is no content]



(A20)






[image: there is no content]



(A21)






[image: there is no content]



(A22)






[image: there is no content]



(A23)




Since [image: there is no content] is a concave function and [image: there is no content], then


[image: there is no content]



(A24)




Moreover, [image: there is no content] guarantees that


[image: there is no content]



(A25)




because [image: there is no content], ∀0≤c≤1, and [image: there is no content] if [image: there is no content]. Therefore, [image: there is no content] and (A17) holds. ☐





Lemma A3.

No matter which finite field [image: there is no content] is chosen, g given by (94) admits no presentation [image: there is no content], where [image: there is no content] for all feasible i.





Proof. 

Suppose otherwise, i.e., [image: there is no content] for some injections [image: there is no content] and [image: there is no content]. By (94), we have


ν(β1)=(k1∘μ1)(α1)+(k2∘μ2)(α0)+(k3∘μ3)(α0)=(k1∘μ1)(α0)+(k2∘μ2)(α1)+(k3∘μ3)(α1)ν(β3)=(k1∘μ1)(α1)+(k2∘μ2)(α1)+(k3∘μ3)(α0)=(k1∘μ1)(α0)+(k2∘μ2)(α0)+(k3∘μ3)(α1)⇒ν(β1)−ν(β3)=τ=−τ⇒τ+τ=0,



(A26)




where [image: there is no content]. Since [image: there is no content] is injective, (A26) implies that either [image: there is no content] or [image: there is no content] by Proposition 2. Noticeable that [image: there is no content], i.e., [image: there is no content], otherwise, [image: there is no content] which contradicts the assumption that [image: there is no content] is injective. Thus, [image: there is no content]. Let [image: there is no content]. Obviously, [image: there is no content] because of the same reason that [image: there is no content], and [image: there is no content] since [image: there is no content]. Therefore,


ν(β0)=(k1∘μ1)(α0)+(k2∘μ2)(α0)+(k3∘μ3)(α0)



(A27)






=(k1∘μ1)(α0)+(k2∘μ2)(α0)+(k3∘μ3)(α1)+ρ



(A28)






=ν(β3)+ρ



(A29)






=(k1∘μ1)(α1)+(k2∘μ2)(α1)+(k3∘μ3)(α0)+ρ



(A30)






=(k1∘μ1)(α1)+(k2∘μ2)(α1)+(k3∘μ3)(α1)+ρ+ρ



(A31)






=ν(β2)+0=ν(β2).



(A32)




This contradicts the assumption that [image: there is no content] is injective. ☐





Remark A1.

As a special case, this lemma implies that no matter which finite field [image: there is no content] is chosen, g defined by (94) has no polynomial presentation that is linear over [image: there is no content]. In contrast, g admits presentation [image: there is no content] which is a linear function over [image: there is no content].






Appendix B. Proofs of Lemmas 4 and 5


Appendix B.1. Proof of Lemma 4


Let p be a prime such that [image: there is no content] for some integer m, and choose [image: there is no content] to be a finite field of order [image: there is no content]. By ([31], Lemma 7.40), the number of polynomial functions in [image: there is no content] is [image: there is no content]. Moreover, the number of distinct functions with domain [image: there is no content] and codomain [image: there is no content] is also [image: there is no content]. Hence, any function [image: there is no content] is a polynomial function.



In the meanwhile, any injections [image: there is no content] ([image: there is no content]) and [image: there is no content] give rise to a function


[image: there is no content]



(A33)




where [image: there is no content] is the inverse mapping of [image: there is no content]. Since [image: there is no content] must be a polynomial function as shown, the statement is established.



Remark A2.

Another proof involving Fermat’s little theorem can be found in [6].






Appendix B.2. Proof of Lemma 5


Let [image: there is no content] be a finite field such that [image: there is no content] for all [image: there is no content] and [image: there is no content], and let [image: there is no content] be the splitting field of [image: there is no content] of order [image: there is no content] (one example of the pair [image: there is no content] and [image: there is no content] is the [image: there is no content], where p is some prime, and its Galois extension of degree s). It is easily seen that [image: there is no content] is an s dimensional vector space over [image: there is no content]. Hence, there exist s vectors [image: there is no content] that are linearly independent. Let [image: there is no content] be an injection from [image: there is no content] to the subspace generated by vector [image: there is no content]. It is easy to verify that [image: there is no content] is injective since [image: there is no content] are linearly independent. Let [image: there is no content] be the inverse mapping of [image: there is no content] and [image: there is no content] be any injection. By ([31], Lemma 7.40), there exists a polynomial function [image: there is no content] such that [image: there is no content] Let [image: there is no content]. The statement is proved.



Remark A3.

In the proof, k is chosen to be injective because the proof includes the case that g is an identity function. In general, k is not necessarily injective.







Appendix C. Proof of Theorem 13


Choose [image: there is no content], such that [image: there is no content], ∀j∈S, [image: there is no content], ∀∅≠T⊆S, and [image: there is no content], where [image: there is no content], ∀j∈S\S0.



Appendix C.3. Encoding:


Fix the joint distribution p which satisfies (109). For all [image: there is no content], let [image: there is no content]. For all [image: there is no content], generate randomly [image: there is no content] strongly [image: there is no content]-typical sequences according to distribution [image: there is no content] and let [image: there is no content] be the set of these generated sequences. Define mapping [image: there is no content] as follows:

	
If [image: there is no content], then, ∀x∈Rn, [image: there is no content] where [image: there is no content] is fixed.



	
If [image: there is no content], then for every [image: there is no content], let [image: there is no content]. If [image: there is no content] and [image: there is no content], then [image: there is no content] is set to be some element in [image: there is no content]; otherwise [image: there is no content] is some fixed [image: there is no content].





Define mapping [image: there is no content] by randomly choosing the value for each [image: there is no content] according to a uniform distribution.



Let [image: there is no content]. When n is big enough, we have [image: there is no content]. Randomly generate a [image: there is no content] matrix [image: there is no content], and let [image: there is no content] ([image: there is no content]) be the function θj:x↦Mk→j(x),∀x∈Rn.



Define the encoder [image: there is no content] as the follows


[image: there is no content]



(A34)








Appendix C.4. Decoding:


Upon observing [image: there is no content] at the decoder, the decoder claims that


[image: there is no content]



(A35)




is the function of the generated data, if and only if there exists one and only one


[image: there is no content]



(A36)




such that aj=ηj(V^jn),∀j∈S, and [image: there is no content] is the only element in the set


[image: there is no content]



(A37)








Appendix C.5. Error:


Assume that [image: there is no content] is the data generated by the jth source and let [image: there is no content]. An error happens if and only if one of the following events happens.



	E1:

	
[image: there is no content];




	E2:

	
There exists some [image: there is no content], such that [image: there is no content];




	E3:

	
[image: there is no content], where [image: there is no content] and Vjn=ϕj′(Xjn),∀j∈S;




	E4:

	
There exists [image: there is no content], [image: there is no content], such that [image: there is no content], ∀j∈S;




	E5:

	
[image: there is no content] or [image: there is no content], i.e., there exists [image: there is no content], [image: there is no content], such that [image: there is no content] and [image: there is no content].







Let [image: there is no content], where [image: there is no content] and [image: there is no content] for [image: there is no content]. In the following, we show that [image: there is no content], [image: there is no content].



(a). By the joint AEP ([18], Theorem 6.9), [image: there is no content], [image: there is no content].



(b). Let [image: there is no content], [image: there is no content]. Then


[image: there is no content]



(A38)




For any [image: there is no content], because the sequence [image: there is no content] and [image: there is no content] are drawn independently, we have


[image: there is no content]



(A39)






[image: there is no content]



(A40)






[image: there is no content]



(A41)




when n is big enough. Thus,


PrE2,j|E2,c=PrLXjn=∅|E2,c=∏v∈Vj,ϵPrk→j(Xjn),v∉Tϵ<1−2−n[I(Yj;Vj)+δ/2]2n[I(Yj;Vj)+δ]→0,n→∞.



(A42)




where (A42) holds true for all big enough n and the limit follow from the fact that 1−1/aa→e−1, [image: there is no content] Therefore, [image: there is no content], [image: there is no content] by (A38).



(c). By (109), it is obvious that [image: there is no content] forms a Markov chain for any two disjoint nonempty sets [image: there is no content]. Thus, if [image: there is no content] for all [image: there is no content] and [image: there is no content], then [image: there is no content]. In the meantime, [image: there is no content] is also a Markov chain. Hence, [image: there is no content] if [image: there is no content]. Therefore, [image: there is no content].



(d). For all [image: there is no content], let [image: there is no content] and


[image: there is no content]



(A43)




By definition, [image: there is no content] and


Pr{E4|E4,c}=∑∅≠J⊆S∑V′∈ΓJPrηj(vj′)=ηj(Vjn),∀j∈J,V′∈Tϵ|E4,c=∑∅≠J⊆S∑V′∈ΓJPrηj(vj′)=ηj(Vjn),∀j∈J×PrV′∈Tϵ|E4,c



(A44)






[image: there is no content]



(A45)






[image: there is no content]



(A46)




where [image: there is no content]. Equality (A44) holds because the processes of choosing [image: there is no content]’s and generating [image: there is no content] are done independently. (A45) follows from Lemma A4 and the definitions of [image: there is no content]’s. (A46) is from Lemma A5.



Lemma A4.

Let [image: there is no content]. For any [image: there is no content] and positive integer n, choose a sequence [image: there is no content] ([image: there is no content]) randomly from [image: there is no content] based on a uniform distribution. If [image: there is no content] is an ϵ-typical sequence with respect to Y, then


[image: there is no content]



(A47)









Proof. 

Let [image: there is no content] be the event [image: there is no content], [image: there is no content], and [image: there is no content]. We have


[image: there is no content]



(A48)






[image: there is no content]



(A49)






[image: there is no content]



(A50)




since [image: there is no content] are generated independent. ☐





Lemma A5.

If [image: there is no content], and


[image: there is no content]



(A51)




then, ∀J={j1,j2,⋯,jJ}⊆{1,2,⋯,s},


[image: there is no content]



(A52)









(e). Let [image: there is no content] and [image: there is no content]. We have [image: there is no content], because [image: there is no content] contains the event that [image: there is no content] and V is unique. Therefore,


PrE5|E5,c=PrE5,2|E5,c=∑(X0n,V)∈Tϵ\(Xn,V)PrMX0n=MXn<∑0≠I≤lR∑Dϵ(Xn,I|V)\(Xn,V)PrMX0n=MXn








Choose a small [image: there is no content] such that [image: there is no content]. Then


[image: there is no content]



(A53)






[image: there is no content]



(A54)




where (A53) is from Lemmas 2 and 3 (for all large enough n and small enough [image: there is no content]) and (A54) is because [image: there is no content] for all [image: there is no content].



To summarize, by (a)–(e), we have [image: there is no content]. The theorem is established.





Appendix D. On Coding over Abelian Groups


As discussed in Section 2, since in this paper we focus on linear encoding, we need to work over a field or a ring. In general, most of the existing coding literature assumes coding over fields, especially when the focus is on linear encoding. Some both traditional and recent work, including [9,10,11], has however also considered (Abelian) groups, while significantly fewer results are available for coding over rings. In this appendix we elaborate on the relation between coding over fields, rings and groups in order to clearly show that our results in this paper are not subsumed by previous work on coding over groups. To highlight this fact even further, the following constitutes a counterexample to illustrate that “linear” operations over groups are not well-defined: In the case of the Abelian group [image: there is no content] (p is a prime), there are at least three distinct definitions of multiplication to define rings over G. These rings are isomorphic to either

	
the field [image: there is no content] which is commutative; or



	
the non-field ring


[image: there is no content]



(A55)




which is not commutative; or



	
the product ring [image: there is no content] which is commutative.





Suppose “linear operation over group G” is defined with respect to some multiplicative operation “*”, at the same time, this linear scheme over G includes the three distinct linear coding schemes defined over [image: there is no content], [image: there is no content] and [image: there is no content] simultaneously. We then conclude that the operation “*” is commutative and non-commutative at the same time, a contradiction.



To be more specific about the fundamental differences, beyond linearity, between coding over groups, as in e.g., [11], and coding over fields or rings we also provide the following list of additional remarks.



	(R1)

	
Consider the example given in ([11], Section VIII.B.1) for reconstruction of the modulo-two sum of binary symmetric sources [4]. On ([11], p. 1509), it reads “Rate points achieved by embedding the function in the Abelian groups [image: there is no content], [image: there is no content] are strictly worse than that achieved by embedding the function in [image: there is no content] while embedding in [image: there is no content] gives the Slepian–Wolf rate region for the lossless reconstruction of [image: there is no content]” ([image: there is no content] should be [image: there is no content] from the context, because coding over [image: there is no content] is not strictly worse than coding over [image: there is no content] for lossless reconstruct the original data [image: there is no content] [3].).



Ref. [11] clearly states that group coding over [image: there is no content] for encoding the modulo-two sum of symmetric sources gives only the Slepian–Wolf region. On the contrary, consider either the finite field [image: there is no content] or the non-field ring


[image: there is no content]



(A56)




(note: the underlying Abelian group defining [image: there is no content] and [image: there is no content] is [image: there is no content]). We claim that linear coding over either [image: there is no content] or [image: there is no content] for encoding the modulo-two sum of symmetric sources gives the Körner–Marton region [4]. This is because linear coding over finite field, e.g., [image: there is no content], is always optimal for the Slepian–Wolf problem, so is linear coding over non-field ring [image: there is no content] by Theorem 7. However, group coding over [image: there is no content] is not.



It is well-known that the Körner–Marton region is often strictly larger than the Slepian–Wolf region. Linear coding over the non-field ring [image: there is no content] (field [image: there is no content]), as a special case (nonlinear) coding over Abelian group [image: there is no content] must not achieve a region larger than the Slepian–Wolf region, leading to a contradiction.




	(R2)

	
Row 2 of TABLE III in [11] states that group coding over [image: there is no content] (achieving sum rate [image: there is no content]) is strictly worse than over the group [image: there is no content] (achieving sum rate 3) for lossless encoding of a quaternary function ([11], Section VIII.A). On the contrary, linear coding over the ring [image: there is no content] (with underlying Abelian group [image: there is no content]) always achieves a region containing the one achieved by linear coding over ring [image: there is no content]. This is implied by Theorem 3. By direct calculation, we have that linear coding over the ring [image: there is no content] (achieving sum rate 3) is strictly better than what is achieved by coding over over the Abelian group [image: there is no content] (achieving sum rate [image: there is no content]).




	(R3)

	
Finally, we emphasize that according to the Fundamental Theorem of (Finite) Abelian Group ([12], Theorem 5.25), up to isomorphism, every finite Abelian group is a direct sum of cyclic groups of prime-power order ([12], Proposition 5.27). This implies that every finite Abelian group can be represented via direct sum of modulo integers. However, many finite rings are not (isomorphic to) direct product of modulo integers, e.g., finite fields [image: there is no content] (when q is a power of a prime but is not a prime), matrix rings [image: there is no content] (when [image: there is no content] is any positive integer) and all non-commutative rings. For a fixed order (e.g., [image: there is no content] with p being a prime), the number of finite rings is often significantly bigger than the number of finite Abelian groups. For instance, there are 4 rings of order 4 while there are 2 groups of order 4.
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