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Abstract: Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a specific
location is needed for design of hydraulic and civil infrastructure facilities. A key step in the
estimation or flood frequency analysis (FFA) is the selection of a suitable distribution. More than
one distribution is often found to be adequate for FFA on a given watershed and choosing the best
one is often less than objective. In this study, the generalized beta distribution of the second kind
(GB2) was introduced for FFA. The principle of maximum entropy (POME) method was proposed to
estimate the GB2 parameters. The performance of GB2 distribution was evaluated using flood data
from gauging stations on the Colorado River, USA. Frequency estimates from the GB2 distribution
were also compared with those of commonly used distributions. Also, the evolution of frequency
distribution along the stream from upstream to downstream was investigated. It concludes that the
GB2 is appealing for FFA, since it has four parameters and includes some well-known distributions.
Results of case study demonstrate that the parameters estimated by POME method are found
reasonable. According to the RMSD and AIC values, the performance of the GB2 distribution is
better than that of the widely used distributions in hydrology. When using different distributions
for FFA, significant different design flood values are obtained. For a given return period, the design
flood value of the downstream gauging stations is larger than that of the upstream gauging station.
In addition, there is an evolution of distribution. Along the Yampa River, the distribution for FFA
changes from the four-parameter GB2 distribution to the three-parameter Burr XII distribution.

Keywords: entropy theory; principle of maximum entropy (POME); GB2 distribution; flood
frequency analysis

1. Introduction

Estimation of flood magnitude for a given recurrence interval T (T-year flood) at a given location
is essential for the design of hydraulic and civil infrastructure facilities, such as dams, spillways,
levees, urban drainage, culverts, road embankments, and parking lots. A key step in flood frequency
estimation or analysis (FFA) is the selection of a suitable frequency distribution [1]. Commonly
used distributions for flood frequency analysis include Gumbel, gamma, generalized extreme value
(GEV), Pearson type III (P-III), log-Pearson type III (LP-III), Weibull, and log-normal (LN). Some of
these distributions have been adopted in different countries. For example, the P-III distribution has
been adopted in China and Australia as a standard method for hydrologic frequency analysis [2–4].
The LP-III distribution has been adopted in the United States and the GEV distribution in Europe.

Mielke and Johnson investigated the use of two special cases of the generalized beta distribution
of the second kind, namely gamma and log normal distributions, for flood frequency analysis [5].
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Wilks investigated the performance of eight three-parameter probability distributions for precipitation
extremes using annual and partial duration data from stations in the northeastern and southeastern
United States [6]. He found that the beta-κ distribution best described the extreme right tail of annual
extreme series, and the beta-P distribution was best for the partial duration data.

Recently, some generalized frequency distributions have been used for hydrologic frequency
analysis. For example, Perreault et al. presented a family of distributions, named Halphen distributions,
for frequency analysis of hydrometeorological extremes [7]. Papalexiou and Koutsoyiannis used the
generalized gamma distribution and generalized beta distribution of the second kind (GB2) for
rainfall frequency analysis across the world and showed that these distributions were appropriate
for worldwide rainfall data [8]. The greatest advantage of these generalized distributions is that
they provide sufficient flexibility to fit a large variety of data sets, which facilitates the selection and
comparison of different distributions. For instance, the GB2 distribution includes the exponential,
Weibull, and gamma distributions as special cases. Since the GB2 distribution has four parameters,
logically it should perform better than 3-parameter distributions, such as GEV, P-III, LP-III or LN-III.
Papalexiou and Koutsoyiannis concluded that the GB2 distribution was a suitable model for rainfall
frequency analysis because of its ability to describe both J-shaped and bell-shaped data [8]. The other
advantages of the GB2 distribution can be summarized as: (1) the GB2 distribution can model positive
or negative skewness which is an advantage over distributions, such as lognormal, with only positive
skew; (2) it can jointly estimate both location and shape parameters, while many other distributions,
such as exponential, logistic, normal, etc., usually focus on location only; and (3) it can better capture
the long right or left tail. Because of these advantages, the GB2 distribution was employed in this study.

The second step in flood frequency analysis is to estimate parameters of the selected distribution.
There are several standard parameter estimation methods, such as moments, maximum likelihood,
L-moments, probability weighted moments, and least square. Among these methods, the maximum
likelihood (ML) and L-moment methods are widely used in hydrology. In addition, the principle of
maximum entropy (POME) has been applied to parameter estimation [9,10]. Singh and Guo indicated
that POME method was comparable to ML and L-moment methods, and for certain situations, POME
method was superior to these two methods [11]. Therefore, the POME method was considered in this
study for parameter estimation.

Another aspect of FFA that is of interest is how the flood frequency distribution evolves from
upstream to downstream along a river. The drainage area along the river increases from upstream to
downstream. It is interesting to investigate if the same frequency distribution applies at all gauging
stations along the stream.

The objective of this study therefore is to employ the GB2 distribution for flood frequency
analysis (FFA). The specific objectives are to: (1) estimate the GB2 distribution parameters using the
principle of maximum entropy; (2) evaluate the performance of the GB2 distribution and compare it
with commonly used distributions in hydrology; (3) select the best distribution; and (4) discuss the
evolution of frequency distribution and its parameters along the river.

2. GB2 Distribution

The generalized beta distribution of the second kind, denoted as GB2, is a four-parameter
distribution and can be expressed as:

f (x) =
r3

βB(r1, r2)
(

x
β
)

r1r3−1
(1 + (

x
β
)

r3
)
−(r2+r1)

(1)

where B(·) is the beta function; β is the scale parameter, β > 0; and r1 > 0, r2 > 0, and r3 > 0 are
the shape parameters. Parameter r3 represents the overall shape; parameter r1 governs the left
tail; parameter r2 controls the right tail; and β is a scale parameter and depends on the unit of
measurement. These parameters allow the distribution to be able to fit data having very different
histogram shapes. It can simulate both the J-shaped and bell-shaped distributions. Parameters r1 and
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r2 together determine the skewness of the distribution. The general shapes of GB2 probability density
distribution were shown in Figure 1.
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Figure 1. Shapes of PDF of GB2 distribution.

When analyzing extreme rainfall, Papalexiou and Koutsoyiannis showed that the GB2 distribution
is a very flexible four-parameter distribution [8]. By fixing certain parameters, the GB2 distribution can
yield some well-known distributions, such as the beta distribution of the second kind (B2), the Burr
type XII, generalized gamma (GG), and so on. These distributions can be treated as special or limiting
cases of the GB2 distribution, as shown in Figure 2. Some of these special cases have been applied in
hydrological frequency analysis. For example, Shao et al. employed the Burr type XII distribution for
flood frequency analysis [2].
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Figure 2. The GB2 distribution and its special cases (where BR12 means the Burr XII distribution; BR3
means the Burr III distribution; B2 means the beta distribution of second kind; Fisk means log-logistic
distribution; L means the Lomax distribution; IL means inverse Lomax distribution; GA distribution
means the gamma distribution; GN means the generalized normal distribution; W means the Weibull
distribution and EXP means the exponential distribution).
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3. Estimation of Parameters of GB2 Distribution by POME Method

The GB2 distribution parameters were determined using the principle of maximum entropy
(POME). The POME method involves the following steps: (1) specification of constraints;
(2) maximization of entropy using the method of Lagrange multipliers; (3) derivation of the relation
between Lagrange multipliers and constraints; (4) derivation of the relation between Lagrange
multipliers and distribution parameters; and (5) derivation of the relation between distribution
parameters and constraints. These steps are discussed in Appendix A. Here only steps (1) and
(5) are outlined.

Flood discharge is considered as a random variable X, which ranges from 0 to infinite.
Its probability distribution function (PDF) and cumulative distribution function (CDF) are denoted as
f (x) and F(x) respectively, where x is a specific value of X. Since constraints encode the information that
can be given for the random variable, following Singh (1998), the constraints for the GB2 distribution
can be expressed as:

∞∫
0

f (x)dx = 1 (2a)

∞∫
0

f (x) ln xdx = E(ln x) (2b)

∞∫
0

f (x) ln(1 + (
x
β
)

r3
)dx = E(ln(1 + (

x
β
)

r3
)) (2c)

The first constraint is the total probability law, the second constraint is the mean of log values or
the geometric mean, and the third constraint is the mean of log of scaled values raised to a power and
then shifted by unity.

Following the derivation in Appendix A, the relation between parameters and constraints can be
expressed as:

− ln β− 1
r3

ϕ(r1) +
1
r3

ϕ(r2) = −E(ln x)
βr3 ϕ(r2)− βr3 ϕ(r1 + r2) = −E(βr3. ln(1 + ( x

β )
r3.))

− ln β + 1
r3

2 ϕ′(r1) +
1

r3
2 ϕ′(r2) = var(ln x)

ϕ′(r2)− ϕ′(r1 + r2) = var(ln(1 + ( x
β )

r3.))

(3)

where φ(.) is the digamma function; and φ′(.) is the trigamma function. Detailed information for
deriving these relationships can be found in Appendix A.

4. Flood Frequency Analysis

For FFA, three problems were addressed. First, the GB2 distribution was tested using observed
flood data, and was compared with commonly used distributions in hydrology. Second, a method
for selecting the best distribution was discussed. Third, flood frequency analysis was carried out at
several gauging stations from upstream to downstream, and the evolution of frequency distribution
along the stream was investigated.

4.1. Flood Data

Flood data from eight gauging stations on the Colorado River and its tributaries, as shown in
Figure 3, were considered to test the performance of the GB2 distribution and discuss the evolution of
frequency distribution along the river. The Colorado River is the principal river of the Southwestern
United States and northwest Mexico. It rises in the central Rocky Mountains, flows generally southwest
across the Colorado Plateau and through the Grand Canyon. The basin boundary consists of mountains
that are 13,000 to 14,000 feet (3962.4 m to 4267.2 m) high in Wyoming, Colorado, and Utah; and the
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boundary drops to elevations of less than 1000 feet (304.8 m) at Hoover Dam. The northern part of the
river basin in Colorado and Wyoming is a mountainous plateau that ranges from 5000 to 8000 feet
(1524 m to 2438 m) in elevation, which encompasses deep canyons, rolling valleys, and intersecting
mountain ranges. The central and southern portions of the basin in eastern Utah, northwestern New
Mexico, and northern Arizona consist of rugged mountain ranges interspersed with rolling plateaus
and broad valleys. In general, the mountains in the southern part of the basin are much lower than
those in the northern part. Of the eight gauging stations considered in this study, gauging stations or
sites 1, 2 and 3 are on the Yampa River which is a secondary tributary of the Colorado River. Sites 4,
5, 6, 7 and 8 are on the mainstream of the Colorado River. Site 8 is near the location of the Hoover
Dam. The data of these gauging stations is directly downloaded from USGS (United States Geological
Survey) website. The characteristics of flow data of these gauging stations, including length of the
data, mean, standard deviation, skewness, and kurtosis, were calculated, as shown in Table 1. Since
there is a dam, named Glenn Canyon, regulating the river flow past Lees Ferry (shown in Figure 3),
the characteristics of the flow at the Hoover dam (site 8) are quite different from those at sites 4, 5, 6
and 7 upstream. It can be seen from Table 1 that for sites 1 to 7 the mean values increase from upstream
to downstream, as more rainfall or water flows into the river. Since the standard deviation is related
to the flood magnitude, it also increases with the mean value. For site 8, considering the impact of
reservoir operation, some streamflow was stored in the reservoir, which leads that the streamflow at
site 8 is reduced. The skewness is positive for all gauging stations, indicating that the right tail is longer
or fatter than the left side and the mass of distribution is concentrated on the left side. Kurtosis is a
measure of the peakedness of the probability distribution. The skewness and kurtosis values in the
mainstream are generally lower than those in the tributaries.
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Table 1. Characteristics of the gauging stations used in the study.

River No. Gaging Station Drainage Area
(Square Miles)

Length
of Data

Mean Value
(ft3/s)

Standard
Deviation Skewness Kurtosis

Yampa
River

1 Below Stagecoach Reservoir 228 1957–2014 315 189 0.91 3.49
2 Steamboat Springs 567 1904–2013 3630 1115 0.26 2.94
3 Near Maybell 3383 1904–2013 10,419 3657 0.90 4.88

Colorado
River

4 Near Dotsero 4390 1941–2013 9870 4450 0.39 2.59
5 Near Cameo 7986 1934–2013 19,049 7687 0.26 2.68
6 Near Colorado-Utah 17,847 1951–2013 26,714 13,936 0.84 3.53
7 Near Cisco 24,100 1884–2013 34,329 16,520 0.36 2.31
8 Hoover Dam 171,700 1934–2013 26,131 6831 1.37 5.83

4.2. Performance Measures

For evaluating the performance of the GB2 distribution, two measures were employed: (1) the
root mean square deviation (RMSD); and (2) the Akaike information criterion (AIC). These methods
assess the fitted distribution at a site by summarizing the deviations between observed discharges and
computed discharges.

A frequently used method for assessing the goodness-of-fit of a function is the RMSD [12].
This method was used by NERC (1975) for ranking candidate distributions [13]. RMSD can be
expressed as:

RMSD =

√√√√ 1
n

n

∑
i=1

(
Qthe(i)−Qemp(i)

Qemp(i)

)2

(4)

where n is the sample size; Qthe is the computed discharge at the ith plotting position. Qemp denotes
the observed ith smallest discharge. The value of RMSD is from 0 to 1. The samller is, the better the
distribution fits.

AIC is a measure of the relative quality of statistical models for a given set of data. It also includes
a penalty that is an increasing function of the number of estimated parameters. The AIC value was
calculated as [14]:

AIC = n(ln (MSE)) + 2 K (5)

where K is the number of parameters of the distribution, and MSE was calculated by

MSE =
1
n

n

∑
i=1

(
Qthe(i)−Qemp(i)

)2 (6)

Given a set of candidate models for the data, the preferred model is the one with the minimum
AIC value.

4.3. Evaluation of GB2 Distribution

Annual maximum flood peak data from four gauging stations, namely sites 2, 6, 7 and 8 in
Figure 3, were selected. The empirical frequencies were calculated first. The purpose of defining the
empirical distribution is to compare it with selected theoretical distributions in order to verify whether
they fit sample data.

Many plotting positions are proposed, most of which can be expressed in general form:

Pi =
i− a

n + 1− 2a
(7)

where a is a constant having values from 0 to 0.5 in different formula, 0.5 for Hazen’s formula, 0.3 for
Chegadayev’s formula, zero for Weibull’s formula, 3/8 for Blom’s formula, 1/3 for Tukey’s formula,
and 0.44 for Gringorten’s formula.
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Among these formulars, Gringorten’s formular is recoganized by lots of researchers, especially
for GEV, gumbel, exponential, Generalized pareto distributions which have been widely used for flood
frequency analysis [15–20]. The Gringorten formula is also used for GB2 distribution. For normal,
generalized normal and Gamma distributions, the Blom’s formula is recommended [21,22]. For Pearson
type 3 and log Pearson type 3 distributions, Weibull’s formula is recommended [18,21]. The GB2
distribution was employed to fit the annual maximum (AM) series of the four sites. The distribution
parameters were estimated using Equation (3) and given in Table 2. The fitted GB2 distributions and
empirical frequency of each AM series are shown in Figure 4. In the left of Figure 4, the line represents
the fitted distribution and circle the empirical frequencies of observations. Results show that the
marginal distributions fit the empirical data well. Histograms of AM flood peak series fitted by the
GB2 distribution for the gauging stations on the Colorado River are shown in the right section of
Figure 4. It also indicates that the GB2 distribution can successfully be fitted to empirical histograms.

Several distributions, including normal, exponential, gamma, Gumbel, generalized normal,
pearson type III, log Pearson type III, generalized Pareto, and generalized extreme-value that are
commonly used in hydrology, were fitted to the AM series at this site. The L-moment method was
used to estimate the parameters of these distributions.

Table 2. Parameters of the GB2 distribution for the gauging stations along the Colorado River.

Number Location r1 r2 r3 β

4 Near Dotsero 1.58 60.30 1.75 85.11
5 Near Cameo 1.12 77.57 2.53 112.93
6 Near Colorado-Utah 3.94 83.08 0.94 69.05
7 Near Cisco 2.73 76.82 1.07 80.90
8 Hoover Dam 10.59 434.72 1.31 43.62
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Singh and Guo compared the POME method with the L-moment method, and indicated that the
two methods are comparable [11,23,24]. Therefore no matter what method is used, it has little influence
on the value of the T-year design discharge. The Kolmogorov-Smirnov test was used here to compare
a sample with a reference probability distribution. The p-value was calculated and given in Table 3
as well. The higher or more close to 1 the p-value is the more similar the theoretical and empirical
distributions are. It is indicated from Table 3 that the p-value of GB2 distribution is 1 or close to 1,
which demonstrates that the GB2 distribution fit the data better. Table 3 also listed the RMSD and AIC
values computed for the fitted GB2 distribution using Equations (4)–(7). The smaller the RMSD and
AIC values are, the better the distribution fits. For the site streamboat springs, the GB2 and generalized
normal distributions have the smallest RMSD values, which is equal to 0.025. For the site Near Cisco,
the GB2 has the smallest RMSE values, which is equal to 0.061. For the site Near Colorado-Utah,
the GB2 and gamma distributions have the smallest RMSE value. For the site Hoover dam, the GB2
distribution has the smallest RMSE value. Since the GB2 distribution have more parameters, the AIC
values of GB2 distribution are larger than those of generalized normal, Gamma and GEV distributions.
Thus, generally GB2 distribution gives a getter fit.
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Table 3. RMSE and AIC values of different distributions.

Number Distribution
Steamboat Springs Near Cisco Near Colorada-Utah Hoover Dam

p-Value RMSE AIC p-Value RMSE AIC p-Value RMSE AIC p-Value RMSE AIC

1 GB2 0.976 0.025 924.1 0.991 0.061 1384.1 1 0.047 852.7 1 0.036 1098.8
2 Normal 0.926 0.043 992.9 0.787 0.194 1502 0.839 0.221 1031 0.436 0.081 1236.2
3 Exponential 0.409 0.122 1306.8 0.336 0.171 1669.6 0.839 0.145 1036.4 0.919 0.055 1152.6
4 Gamma 1 0.045 1005.1 0.959 0.064 1512.8 1 0.047 842.5 0.692 0.057 1192.9
5 Gumbel 0.976 0.066 1143.5 0.959 0.088 1546.2 1 0.107 869.1 0.978 0.039 1122.3
6 Generalized normal 0.844 0.025 922.9 0.991 0.137 1455.5 1 0.083 852.8 0.978 0.039 1106.7
7 Pearson type III 0.976 0.035 953.2 0.991 0.1 1425 1 0.054 895.6 1 0.058 1146.8
8 Log Pearson type III 0.976 0.034 951.3 0.991 0.106 1431.5 1 0.054 893.1 1 0.052 1133
9 Generalized Pareto 0.976 0.078 1158 0.991 0.062 1386.1 1 0.09 960.2 1 0.054 1169

10 GEV 0.976 0.027 929.6 0.991 0.138 1450.1 1 0.128 865.5 1 0.036 1096.8
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In order to compare the POME with the current used method, the maximum likelihood (ML)
method was also employed for the parameter estimation of GB2 distribution. Taking the site Near
Colorada-Utah for an example, the estimated parameters by POME and ML method are given in
Table 4. The p-value, RMSE and AIC values are also given in Table 4. It is indicated that the parameters
obtained by the two method are more or less the same. And the RMSE and AIC values based on the
POME method are smaller.

Table 4. Parameters estimated by POME and ML methods for site Near Colorada-Utah.

Methods r1 r2 r3 β p-Value RMSE AIC

POME 2.14 24.78 1.40 157.18 1 0.0169 −357.76
ML 2.26 30.85 1.35 158.55 1 0.0170 −357.80

4.4. Flood Frequency Analysis

The Hoover dam is a multi-purpose dam, serving the needs of flood control, irrigation, water
supply, and hydropower generation. Therefore, it was desired to determine the most appropriate
distribution for FFA at the dam site. The T-year design flood at Hoover dam was calculated using each
distribution, as given in Table 5, and it can be seen that different distributions yielded significantly
different values. For example, the 1000-year design flood values calculated by the GB2 and gamma
distributions were 76,702 and 50,485 ft3/s, respectively. The RMSD and AIC values for GB2 distribution
(Gamma distribution) were 0.036 (0.057) and 1098.8 (1192.9), respectively, which indicates that the
performance of GB2 distribution is much better than that of the gamma distribution. It concludes that
if the gamma distribution were used, the design flood would be underestimated and potential flood
risk would be higher.

Table 5. Comparison of T-year design flood discharges (103 ft3/s) calculated by different distributions
for the Hoover dam site.

Number Return Period 1000 500 100 50 10

1 GB2 76.702 67.914 51.198 34.138 30.125
2 Normal 45.800 44.451 40.938 34.288 31.488
3 Exponential 68.561 63.583 52.024 35.486 30.508
4 Gamma 50.485 48.424 43.314 34.613 31.320
5 Gumbel 58.926 55.332 46.973 34.799 30.912
6 Generalized normal 50.513 49.271 45.325 35.732 31.485
7 Pearson type III 60.025 56.451 47.985 35.145 30.926
8 Log Pearson type III 69.568 64.494 52.713 35.639 31.858
9 Generalized Pareto 64.809 59.870 49.084 34.893 30.695

10 GEV 57.809 54.766 47.324 35.270 31.072

4.5. Change in Flood Frequency Distribution with Change in Drainage Area

The GB2 distribution was applied for FFA along the main stem of the Colorado River.
Four gauging stations (sites 4, 5, 6 and 7) from upstream to downstream were used, as shown in
Figure 3 and Table 6. These gauging stations were selected, because all these stations are on the
mainstream and no dam has been built on this reach. The drainage area and statistical characteristics
(including mean, skewness and kurtosis of the annual maximum data) of these stations were calculated,
as given in Table 1. The T-year design flood of these gauging stations was calculated, as shown in
Figure 5, in which the x-axis represents the return periods and the y-axis represents the design flood
values. Figure 5 shows that for a given return period, the design flood value of the downstream
gauging stations is larger than that of the upstream gauging stations. The increasing rates of drainage
area and T-year design flood values between the adjacent gauging stations were computed, as given
in Table 6, which indicates that the percentage increase of the drainage area was nearly the same as
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that of the design flood values. For instance, with the increase of drainage area up to 45% from the
gauging station near Dotsero to that near Cameo, the flood value increased by 43% on average. It is
also seen that from upstream to downstream, when the drainage area increased by 45%, 55% and
26%, the flood value increased by 43%, 42%, and 16%, respectively. It seems that in a mountainous
watershed, the upstream the reach is, the greater the impact the drainage area has on flood. This may
be because that the runoff coefficient is generally larger in the steep area.
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Figure 5. Flood values along the mainstream of the upper Colorado River.

Table 6. Statistical characteristics of the four gauging stations, the increasing rate of drainage area and
flood discharge between adjacent gauging stations.

Number Locations
Drainage Area
(Square Miles)

Increase in
Drainage Area (%)

Increase in in Flood Value (%)

1000 500 100 50 10 Mean

4 Near Dotsero 11370 45 40 41 42 47 46 43
5 Near Cameo 20683 55 50 48 44 32 35 42
6 Near Colorado-Utah 46228 26 11 12 15 22 20 16
7 Near Cisco 62419

4.6. Evolution of Frequency Distribution along Stream

In order to determine the evolution of frequency distribution and its parameters along the river,
data from the Yampa River were applied, because this river is taken as one of the west’s last wild rivers
and has only a few small dams and diversions. The Yampa River with a length of 402 km, located in
northwestern Colorado, is a tributary of Green River and a secondary tributary of the Colorado River.
Data from three gauging stations along this river, designated as sites 1, 2 and 3 in Figure 6, were used.
The GB2 distribution was used to fit the AM series of each of the three gauging stations, as shown
in Table 7. It can be seen that shape parameters r1 and r2 decreased along the river. The value of r1

became close to be 1. When r1 equals 1, the GB2 distribution becomes the Burr XII distribution [25].
This distribution has been shown to reasonably fit the income distribution data [20,26,27] and has
recently been used in hydrology [2,28]. The PDF of Burr XII distribution can be written as:

f (x) =
r3

bB(1, r2)
(

x
b
)

1×r3−1
(1 + (

x
b
)

r3
)
−(r2+1)

=
r3r2

b
(

x
b
)

r3−1
(1 + (

x
b
)

r3
)
−(r2+1)

(8)

where b is the scale parameter. The Burr XII distribution was also used to fit the data at the gauging
station near Maybell of Yampa River. The estimated parameters of Burr XII distribution were: r2 = 1.94,
r3 = 4.19, and b = 12.33. The fitting results of the GB2 and Burr distributions for the gauging station
near Maybell are shown in Figure 7. For the gauging station near Maybell, parameters of the GB2
distribution estimated by POME method are nearly as the same as the parameters of the Burr XII
distribution estimated by MLE method. Thus, Burr XII distribution instead of GB2 distribution can be
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used for FFA at that station. In other words, the distribution for FFA changes from the four-parameter
GB2 distribution to the three-parameter Burr XII distribution along the Yampa River. There is an
evolution of distribution along this river. From Equation (1), the value of scale parameter β increases
with the mean value, because more water flows into the stream. Parameters r1 and r2 govern the left
and right tails, respectively. The smaller the value of r1, the fatter the left tail is; and the smaller the
value of r2, the fatter the right tail is. It can be seen from Table 7 that both r1 and r2 decrease along the
stream, which demonstrates that both the left and right tails become fatter, and the PDF values become
larger in these areas and lower in the central area.
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Table 7. Parameters of the GB2 distribution for four gauging stations along the Yampa River.

Number Location r1 r2 r3 β

1 Below stagecoach
Reservoir 17.44 15.25 0.55 2.10

2 Steamboat springs 1.20 5.49 3.59 5.81
3 Near Maybell 1.14 2.07 3.92 12.11
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5. Conclusions

The GB2 provides sufficient flexibility to fit a large variety of data sets. Papalexiou and
Koutsoyiannis introduced this distribution in hydrology and used it for rainfall frequency analysis [8].
In this study, the generalized beta distribution of the second kind (GB2) is introduced for FFA for the
first time. The POME method was proposed to estimate the parameters of GB2 distribution. Equations
of POME method was deduced by ourselves and given in Appendix A. The Colorado River basin was
selected as a case study to test the performance of GB2 distribution. Frequency estimates from the GB2
distribution were also compared with those of commonly used distributions in hydrology. In addition,
some characteristics of FFA in mountainous areas are discussed. The conclusions can be summarized
as follows:

(1) Results demonstrate that the GB2 is appealing for FFA, since it has four parameters which allows
the distribution to be able to fit data having very different histogram shapes, such as the J-shaped
and bell-shaped distributions. And by fixing certain parameters, the GB2 distribution can yield
some well-known distributions, such as the beta distribution of the second kind (B2), the Burr
type XII, generalized gamma (GG), and so on.

(2) The parameters estimated by POME method are found reasonable. Both the marginal
distributions and histograms indicates that the GB2 distribution can successfully be fitted to
empirical values using the POME method.

(3) The performance of the GB2 distribution is better than that of the widely used distributions
in hydrology. For the site streamboat springs, the GB2 and generalized normal distributions
have the smallest RMSD values. For the site Near Cisco, the GB2 has the smallest RMSE values.
For the site Near Colorado-Utah, the GB2 and gamma distributions have the smallest RMSE
value. For the site Hoover dam, the GB2 distribution has the smallest RMSE value. Since the GB2
distribution have more parameters, the AIC values of GB2 distribution are larger than those of
generalized normal, Gamma and GEV distributions. Thus, generally GB2 distribution gives a
getter fit.

(4) When using different distributions for FFA, significant different design flood values are obtained.
It concludes that if the wrong distribution were used, the design flood would be underestimated
and potential flood risk would be higher.

(5) The design flood value increase with the drainage area. For a given return period, the design
flood value of the downstream gauging stations is larger than that of the upstream gauging
stations. In this study, the percentage increase of the drainage area was nearly the same as that
of the design flood values. It seems that in a mountainous watershed, the upstream the reach
is, the greater the impact the drainage area has on flood. This may be because that the runoff
coefficient is generally larger in the steep area.

(6) There is an evolution of distribution along this river. Along the Yampa River, the distribution
for FFA changes from the four-parameter GB2 distribution to the three-parameter Burr XII
distribution. And both r1 and r2 decrease along the stream, which demonstrates that both the left
and right tails become fatter, and the PDF values become larger in these areas and lower in the
central area, which means that when the drainage area become larger, the flood magnitudes has a
more significant variation.
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Appendix A. Estimation of Parameters of GB2 Distribution

The GB2 distribution parameters can be estimated by maximizing the Shannon entropy H(X)
which, for a random variable X, can be expressed as:

H(X) = −
∞∫

0

f (x) log f (x)dx (A1)

where f (x) is the probability density function (PDF). The principle of maximum entropy (POME)
indicates that the most appropriate PDF is the one that maximizes the value of entropy, given available
data and a set of known constraints [29].

Specification of Constraints: Following Singh, the constraints for the GB2 distribution can be
expressed as

∞∫
0

f (x)dx = 1 (A2a)

∞∫
0

f (x) ln xdx = E(ln x) (A2b)

∞∫
0

f (x) ln(1 + (
x
β
)

r3
)dx = E(ln(1 + (

x
β
)

r3
)) (A2c)

Method of Lagrange Multipliers for Maximizing Entropy: In the search for an appropriate probability
distribution for a given random variable, entropy should be maximized. In other words, the best fitted
distribution is the one with the highest entropy. The method of Lagrange multipliers was used to
obtain the appropriate probability distribution with the maximum entropy. Finally, the form of this
distribution is given as:

f (x) = exp(−λ0 − λ1 ln(x)− λ′2 ln(1 + (
x
β
)

r3
)) (A3a)

in which λ0, λ1,and λ′2 are the Lagrange multipliers. Let p = β−r3 . Then, Equation (A3a) can be
written as

f (x) = exp(−λ0 − λ1 ln(x)− λ′2 ln(1 + pxr3)) (A3b)

Let λ′2 = λ2
p and q = r3. Papalexiou and Koutsoyiannis defined the entropy-based PDF as:

f (x) = exp(−λ0 − λ1 ln(x)− λ2

p
ln(1 + pxq)) (A4)

Substitution of Equation (A4) in Equation (A2a) yields:

∞∫
0

f (x)dx =

∞∫
0

exp(−λ0 − λ1 ln(x)− λ2

p
ln(1 + pxq))dx = 1 (A5)

From Equation (A5):

exp(λ0) =
∞∫
0

exp(−λ1 ln x− λ2 ln(1 + pxq)/p)dx

=
∞∫
0

exp(−λ1 ln x) exp(− λ2
p ln(1 + pxq))dx

=
∞∫
0

x(−λ1)(1 + pxq)
(− λ2

p )dx

(A6)
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Let t = pxq. Then x = ( t
p )

1
q , and dx = 1

pq (
t
p )

1
q−1dt. Thus, Equation (A6) can be expressed as:

exp(λ0) =
∞∫
0

x(−λ1)(1 + pxq)
(− λ2

p )dx

=
∞∫
0
( t

p )
−λ1

q (1 + t)
−λ2

p 1
pq (

t
p )

1
q−1dt

=
∞∫
0

1
q p

λ1−1
q t

−λ1
q (1 + t)

−λ2
p t

1
q−1dt

(A7)

Let y = t
1+t . Then t = y

1−y , and dt = 1
(1−y)2 dy.

Since y(0) = 0 and y(∞) = 1, y ∈ [0, 1].

exp(λ0) =
1∫

0

1
q p

λ1−1
q ( y

1−y )
−λ1

q (1 + y
1−y )

−λ2
p ( y

1−y )
1
q−1 1

(1−y)2 dy

=
1∫

0

1
q p

λ1−1
q ( y

1−y )
−λ1+1

q −1
(1 + y

1−y )
−λ2

p 1
(1−y)2 dy

=
1∫

0

1
q p

λ1−1
q ( y

1−y )
−λ1+1

q −1
( 1

1−y )
−λ2

p +2
dy

=
1∫

0

1
q p

λ1−1
q (y)

1−λ1
q −1

(1− y)−
1−λ1

q +
λ2
p −1dy

= 1
q p

λ1−1
q B( 1−λ1

q ,− 1−λ1
q + λ2

p )

(A8)

The Lagrange multiplier λ0 can be calculated from Equation (A8) as:

λ0 = − ln q +
λ1 − 1

q
ln(p) + ln Γ(

1− λ1

q
) + ln Γ(−1− λ1

q
+

λ2

p
)− ln Γ(

λ2

p
) (A9)

From Equation (A4), the other equation for calculating λ0 can be defined as:

λ0 = ln(
∞∫

0

exp(−λ1 ln x− λ2

p
ln(1 + pxr3))dx) (A10)

Relation between Lagrange multipliers and constraints: Defining a′ = 1−λ1
q and b′ = − 1−λ1

q + λ2
p ,

differentiate Equation (A9) with respect to λ1 and λ2:

∂λ0
∂λ1

= ln p
q + ∂ ln Γ(a′)

∂a′
∂a′
∂λ1

+ ∂ ln Γ(b′)
∂(b′)

∂b′
∂λ1
− ∂ ln Γ(a+b′)

∂(a+b′)
∂(a+b′)

∂λ1

= ln p
q −

1
q ϕ(a′) + 1

q ϕ(b′)
(A11a)

∂λ0
∂λ2

= ∂ ln Γ(b′)
∂(b′)

∂b′
∂λ2
− ∂ ln Γ(a′+b′)

∂(a′+b′)
∂(a′+b′)

∂λ2

= 1
p ϕ(b′)− 1

p ϕ(a′ + b′)
(A11b)

where ϕ(.) is a digamma function. Differentiate Equation (A10) with respect to λ1 and λ2:

∂λ0

∂λ1
=

∞∫
0

ln x exp(−λ1 ln x− λ2
p ln(1 + pxq))dx

∞∫
0

exp(−λ1 ln x− λ2
p ln(1 + pxq))dx

= −E(ln x) (A12a)
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∂λ0

∂λ2
=

∞∫
0

xq exp(−λ1 ln x− λ2
p ln(1 + pxq))dx

∞∫
0

exp(−λ1 ln x− λ2
p ln(1 + pxq))dx

= −E(
ln(1 + pxq)

p
) (A12b)

Based on Equations (A11) and (A12), the relation between Lagrange multipliers and constraints
can be expressed as:

ln p
q
− 1

q
ϕ(a) +

1
q

ϕ(b) = −E(ln x) (A13a)

1
p

ϕ(b)− 1
p

ϕ(a + b) = −E(
ln(1 + pxq)

p
) (A13b)

Since there are four parameters, Equations (A13a) and (A13b) are not sufficient for calculating
parameters, and two additional equations are needed that are given as:

∂2λ0

∂2λ1
=

1
q2 ϕ′(a′) +

1
q2 ϕ′(b′) = var(ln x) (A14a)

∂2λ0

∂2λ2
= ϕ′(r2)− ϕ′(r1 + r2) = var(ln(1 + (

x
β
)

q
)) (A14b)

Relation between Lagrange multipliers and parameters: Substituting Equation (A8) in Equation (A4),
it is known that:

f (x) =
1

1
q p

λ1−1
q B( 1−λ1

q ,− 1−λ1
q + λ2

p )

x−λ1(1 + pxq)
− λ2

p (A15)

Equation (A15) is the GB2 distribution. Comparing Equation (1) with Equation (A15),
the following equations can be obtained:

λ1 = 1− r1q
λ2 = p(r2 +

1−λ1
q )

p = ( 1
β )

r3

q = r3

(A16)

Relation between parameters and constraints: Based on the relation between parameters and
constraints, and parameters and Lagrange multipliers, the relation between parameters and constraints
can be expressed as:

− ln β− 1
r3

ϕ(r1) +
1
r3

ϕ(r2) = −E(ln x)
βr3 ϕ(r2)− βr3 ϕ(r1 + r2) = −E(βr3. ln(1 + ( x

β )
r3.))

− ln β + 1
r3

2 ϕ′(r1) +
1

γ3
2 ϕ′(r2) = var(ln x)

ϕ′(r2)− ϕ′(r1 + r2) = var(ln(1 + ( x
β )

r3.))

(A17)
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