
entropy

Article

Self-Organized Patterns Induced by Neimark-Sacker,
Flip and Turing Bifurcations in a Discrete
Predator-Prey Model with Lesie-Gower
Functional Response

Feifan Zhang, Huayong Zhang *, Shengnan Ma, Tianxiang Meng, Tousheng Huang and
Hongju Yang

Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University,
Beijing 102206, China; china907a@163.com (F.Z.); msn0107@163.com (S.M.);
mengtianxiangdemon@163.com (T.M.); linghuo2007@163.com (T.H.); yanghongjujj@outlook.com (H.Y.)
* Correspondence: rceens@ncepu.edu.cn; Tel.: +86-010-61773936; Fax: +86-010-80799258

Academic Editor: Gunnar Pruessner
Received: 19 April 2017; Accepted: 1 June 2017; Published: 7 June 2017

Abstract: The formation of self-organized patterns in predator-prey models has been a very hot topic
recently. The dynamics of these models, bifurcations and pattern formations are so complex that
studies are urgently needed. In this research, we transformed a continuous predator-prey model
with Lesie-Gower functional response into a discrete model. Fixed points and stability analyses
were studied. Around the stable fixed point, bifurcation analyses including: flip, Neimark-Sacker
and Turing bifurcation were done and bifurcation conditions were obtained. Based on these
bifurcation conditions, parameters values were selected to carry out numerical simulations on
pattern formation. The simulation results showed that Neimark-Sacker bifurcation induced spots,
spirals and transitional patterns from spots to spirals. Turing bifurcation induced labyrinth patterns
and spirals coupled with mosaic patterns, while flip bifurcation induced many irregular complex
patterns. Compared with former studies on continuous predator-prey model with Lesie-Gower
functional response, our research on the discrete model demonstrated more complex dynamics and
varieties of self-organized patterns.

Keywords: flip bifurcation; Neimark-Sacker bifurcation; Turing bifurcation; pattern formation;
predator-prey system

1. Introduction

Predator-prey systems are some of the essential ecological systems in Nature. The dynamic
behaviors of the predator-prey system have captured the interest of both biologists and ecologists [1–5].
There are a substantial number of predator-prey system models. Recently, the formation of patterns has
become a very hot topic [6–9]. This is because the formation process demonstrates self-organization
of spatial heterogeneity, and shows system complexity directly and visibly. This visible complexity
matches well what has been found in real ecosystems, however, the dynamics of predator-prey systems
are so complex that more studies are still needed to explore the mechanism of pattern formation.

Reaction-diffusion models are commonly used to investigate spatially extended predator-prey
systems [6–8,10–14]. Through Turing bifurcation, reaction-diffusion models have successfully revealed
the pattern formation mechanism in many different ecosystems [2,12,13,15–17]. Simulations have
shown a variety of patterns such as spots, stripes, labyrinth, spirals, gaps, and so on [6,10,13]. Different
reaction-diffusion models focus on different functional responses that describe different predation
relationships. There are a variety of responses [18], such as Lesie-Gower functional responses [19,20],
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Beddington-DeAngelis functional responses [14,21–24] and so on. Among these functional responses,
the Leslie-Gower formulation is based on the assumption that a reduction in a predator population has
a reciprocal relationship with per capita availability of its preferred food. Indeed, Leslie [19] introduced
a predator-prey model where the carrying capacity of the predator is proportional to the number of its
prey. This interesting formulation for predator dynamics has been discussed by Leslie and Gower [20]
and Pielou [25].

In expressing predator-prey models, two main types of models are considered—continuous
models and discrete models—with the latter showing more advantages in revealing complex nonlinear
dynamics. A classic example is the discrete logistic model that exhibits period-doubling cascade and
a route to chaos [21]. On the contrary, the continuous logistic model shows a simple “S” form curve,
but never demonstrates the above dynamic complexity. Through a variety of bifurcations, discrete
models can generate periodic orbits, invariant circles, periodic windows, chaotic behavior and so on.
More importantly, in predator-prey systems, births and deaths of bionts are discrete events, which
means continuous models only make sense for very large populations. Many researchers think that
discrete models can reveal the discontinuous properties (such as a patchy environment or a fragmented
habitat) of predator-prey systems [26]. Besides, discrete models may exhibit new dynamic behaviors.
For example, Han et al. found that Turing instability and Turing patterns can occur in a simple discrete
competitive Lotka-Volterra system rather than the continuous one [27].

In this research, we will transform a well-recognized continuous predator-prey model into
a discrete model. The continuous model incorporates the Holling-type-II and the modified Lesie-Gower
functional responses, that can be shown as:{

∂H
∂T = (a1 − b1H − c1P

H+k1
)H + D1(

∂2 H
∂X2 + ∂2 H

∂Y2 )
∂P
∂T = (a2 − c2P

H+k2
)P + D2(

∂2P
∂X2 +

∂2P
∂Y2 )

(1)

where H and P are the densities of prey and predators, respectively. (X,Y) is the spatial position of
species when they move in a two dimensional space. D1 and D2 are the diffusion coefficients of prey
and predator respectively. a1 is the growth rate of prey H. a2 describes the growth rate of predator P.
b1 measures the strength of competition among individuals of species H. c1 is the maximum value of
the per capita reduction of H due to P. c2 has a similar meaning to c1. k1 measures the extent to which
environment provides protection to prey H. k2 has a similar meaning to k1 relatively to the predator P.
With scaling transformations:

t = a1T, u(t) = b1
a1

H(T), v(t) = c2b1
a1a2

P(T), x = X( a1
D1

)
1
2 , y = Y( a1

D1
)

1
2

a = a2c1
a1c2

, b = a2
a1

, e1 = b1k1
a1

, e2 = b1k2
r1

, δ = D2
D1

,
(2)

the continuous model can be expressed as:
∂u
∂t = ∂2u

∂x2 +
∂2u
∂y2 + u(1− u)− auv

u+e1
= ∂2u

∂x2 +
∂2u
∂y2 + f (u, v)

∂v
∂t = δ( ∂2v

∂x2 +
∂2v
∂y2 ) + b(1− v

u+e2
)v = δ( ∂2v

∂x2 +
∂2v
∂y2 ) + g(u, v)

. (3)

The local dynamics of this continuous model (3) has been studied in [28,29], and the global stability
of a similar model has been investigated in [30]. A similar model with delay is studied in [31,32],
and a three dimensional similar model with the same functional responses is studied in [33–35]. In [36],
several Turing and Hopf bifurcation patterns were obtained by the continuous model (3). We can see
that this model is well recognized.

A few researchers found that more complex dynamics could be generated through discretizing the
continuous model [26,37–40]. Based on the approach in prior studies [26,37–39], here we investigated
the complex dynamics via transforming the continuous model (3) to a discrete model. In the analysis
of the discrete model, fixed points and stability analysis were studied. Three types of bifurcation
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analysis were conducted, including flip bifurcation, Neimark-Sacker bifurcation and Turing bifurcation.
Then numerical simulations were carried out under these bifurcation conditions, to show the complex
dynamics and the formation self-organized patterns with this discrete model. Discussions focused on
the types of self-organized patterns, and the relations between bifurcations and pattern types.

2. Model and Stability Analysis

2.1. A Discrete Predator-Prey Model

In this research, the above continuous model Equation (3) will be transformed to a discrete model.
We consider the model on a N × N lattice, and the two variables can be expressed as u(i,j,t) and v(i,j,t)
(i,j ∈ {1,2,3, . . . N} and t ∈ Z+), that represent the prey density and the predator density in lattice (i,j)
at time t, respectively. According to the former research works of [26,37–39], there are two stages,
reaction stage and diffusion stage, when we discretize the continuous model (3). The diffusion stage is
considered firstly as: {

u′(i,j,t) = u(i,j,t) +
τ
h2∇2

du(i,j,t)

v′(i,j,t) = v(i,j,t) +
τ
h2 δ∇2

dv(i,j,t)
, (4)

where τ and h are the time interval and space interval. ∇2
d denotes the discrete form of the Laplacian

operator. Note that the whole research is using periodic boundary conditions. Then we consider the
reaction stage: {

u(i,j,t+1) = f1(u′(i,j,t), v′(i,j,t))
v(i,j,t+1) = g1(u′(i,j,t), v′(i,j,t))

, (5)

in which: {
f1(u, v) = u + τ f (u, v)
g1(u, v) = v + τg(u, v)

. (6)

Equations (4)–(6) including both diffusion and reaction stages are defined as our discrete model.

2.2. Fixed Points and Stability

As we obtain a new discrete model, fixed points and stability analysis need to be investigated.
The fixed points should satisfy:

∇2
du(i,j,t) = ∇2

dv(i,j,t) = 0. (7)

Then we get: {
u′(i,j,t) = u(i,j,t)

v′(i,j,t) = v(i,j,t)
, (8)

and: {
u(i,j,t+1) = f1(u(i,j,t), v(i,j,t))
v(i,j,t+1) = g1(u(i,j,t), v(i,j,t))

. (9)

The above equation can be expressed as the following map:(
u
v

)
→
(

u + τu(1− u)− τauv
u+e1

v + τb(1− v
u+e2

)v

)
. (10)

Thus the fixed points of the map can be shown as:

(u1, v1) = (0, 0), (11a)

(u2, v2) = (0, e2), (11b)

(u3, v3) = (1, 0), (11c)
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(u4, v4) = (u∗, v∗). (11d)

in which, (u*,v*) is the positive solution of the following equations:{
u2 + (a + e1 − 1)u + ae2 − e1 = 0

v = u + e2
. (12)

Therefore, the sufficient and necessary condition of u* > 0, v* > 0 can be obtained as:

(a + e1 − 1)2 − 4(ae2 − e1) > 0, 1− a− e1 +
√
(a + e1 − 1)− 4(ae2 − e1) > 0. (13)

The stability of the fixed points can be studied through a Jacobi matrix with spatially homogeneous
perturbations, that is shown as:

J =

 1 + τ[1− 2u− ave1
(u+e1)

2 ]
−τau
u+e1

τbv2

(u+e2)
2 1 + τ(b− 2bv

u+e2
)

. (14)

Substituting (u1,v1) into J, we can get:

J|(u1,v1)
=

[
1 + τ 0

0 1 + τb

]
. (15)

As 1 + τ > 1, 1 + τb > 1, thus (u1,v1) is unstable. Substituting (u2, v2) into J, we can get:

J|(u2,v2)
=

[
1 + τ(1− ae2

e1
) 0

τb 1− τb

]
. (16)

When 1 < ae2/e1 < 1 + 2/τ and 0 < b < 2/τ, (u2,v2) is stable. Substituting (u3,v3) into J, we can get:

J|(u3,v3)
=

[
1− τ − τa

1+e1

0 1 + τb

]
. (17)

The stability requires |1− τ| < 1 and |1 + τb| < 1, that is 0 < τ < 2 and τ < 0. But this is
a contradiction. Thus (u3, v3) is unstable.

Substituting (u4, v4) into J, we can get:

J|(u4,v4)
=

[
a11 a12

a21 a22

]
. (18)

In which:

a11 = 1 + τ[1− 2u∗ − a(u∗ + e2)e1

(u∗ + e1)
2 ], a12 =

−τau∗

u∗ + e1
, a21 = τb, a22 = 1− τb (19)

Let:
tr0 = a11 + a22, (20)

∆0 = a11a22 − a12a21. (21)

The eigenvalues can be obtained as:

λ1,2 =
tr0 ±

√
tr02 − 4∆0

2
. (22)
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Therefore (u4, v4) is stable only when:{
∆0 < 1

−(1 + ∆0) < tr0 < 1 + ∆0
. (23)

2.3. Bifurcation Analysis

In this subsection, we focus on the bifurcation analysis at fixed point (u4,v4). Parameter conditions
of three bifurcations are obtained, including Neimark-Sacker bifurcation, flip bifurcation and Turing
bifurcation. The detailed progress of each bifurcation analysis is shown in Appendix A.

3. Numerical Simulations

Simulations will be carried out for each bifurcation calculated in Section 2.3. (Appendix A).
Bifurcation diagrams and phase portraits will be shown to interpret the system dynamics when
Neimark-Sacker bifurcation or flip bifurcation conditions occur. The emergence of Turing bifurcation
is also demonstrated by simulating the variations of eigenvalues (curve of Equation (A43)).
And then self-organized patterns will be shown with the corresponding parameters under each
bifurcation condition.

3.1. Bifurcation Diagram and Phase Portrait

Figure 1 shows variations of u versus the parameter τ when the parameter values satisfy the flip
bifurcation conditions. When τ > 2.3267, the fixed point is asymptotically stable. When τ = 2.3267,
the system starts to bifurcate around a fixed point. With the increase of τ, the stable states of the
system go through (not only these states) period-2 (τ = 2.5 as shown in Figure 1b), period-4 (τ = 2.72 as
shown in Figure 1c), period-10 (τ = 2.77 as shown in Figure 1d) and then complex periodic oscillations
(τ = 2.83 as shown in Figure 1e).Entropy 2017, 19, 6 of 22 
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Figure 1. Bifurcation diagram and phase portraits of flip bifurcation. (a) Bifurcation diagram with 
parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 1.35; =2 0.2e , b = 1.35. (b, c, d, e) Phase portraits with 

parameter (b) τ = 2.5; (c) τ = 2.72; (d) τ = 2.77; (e) τ = 2.83. 

Figure 2 shows the variations of u versus parameter τ when the parameter values satisfy the 
Neimark-Sacker bifurcation conditions. Note that this bifurcation diagram has no visible periodic 
windows. When τ < 2.8291, the fixed point is asymptotically stable. When τ = 2.8291, the system starts 
to bifurcate around a fixed point. With the increase of τ, the states of the system increase, but the 
system always follows the invariant circle. For example, when τ = 3, Figure 2b shows how the 
bifurcation drives the system from a fixed point (with 1% random perturbations) to the invariant 
circle in the phase plane (u,v). 

Figure 1. Cont.
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Figure 1. Bifurcation diagram and phase portraits of flip bifurcation. (a) Bifurcation diagram with
parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 1.35; e2 = 0.2, b = 1.35. (b–e) Phase portraits with parameter
(b) τ = 2.5; (c) τ = 2.72; (d) τ = 2.77; (e) τ = 2.83.

Figure 2 shows the variations of u versus parameter τ when the parameter values satisfy the
Neimark-Sacker bifurcation conditions. Note that this bifurcation diagram has no visible periodic
windows. When τ < 2.8291, the fixed point is asymptotically stable. When τ = 2.8291, the system
starts to bifurcate around a fixed point. With the increase of τ, the states of the system increase,
but the system always follows the invariant circle. For example, when τ = 3, Figure 2b shows how the
bifurcation drives the system from a fixed point (with 1% random perturbations) to the invariant circle
in the phase plane (u,v).
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bifurcation. (a) Bifurcation diagram with parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.4548; (b) Phase 
portraits with parameter τ = 3.1750; (c) τ = 3.250; (d) τ = 3.69. 

Figure 2. Bifurcation diagram with no periodic windows and phase portrait of Neimark-Sacker
bifurcation. (a) Bifurcation diagram with parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.3739; (b) Phase
portraits with parameter τ = 3.

Figure 3 shows another Neimark-Sacker bifurcation situation. Note that this bifurcation diagram
has several periodic windows. When τ < 3.1087, the fixed point is asymptotically stable and the
bifurcation point of the system is determined at τ = 2.1087.

As the value of τ increases, the stable states of the system experience several stages, such as
invariant circle (τ = 3.1750 as shown in Figure 3b), period-6 (τ = 3.5250 as shown in Figure 3c), and then
invariant circle again (τ = 3.69 as shown in Figure 3d).
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Figure 3. Bifurcation diagram with periodic windows and phase portrait of Neimark-Sacker bifurcation.
(a) Bifurcation diagram with parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.4548; (b) Phase portraits with
parameter τ = 3.1750; (c) τ = 3.250; (d) τ = 3.69.

Turing bifurcation can be shown through the variations of eigenvalues λ(k,l) as shown in Figure 4.
In Figure 4a, we can see that the effects of the perturbation numbers k and l are symmetric. Thus we let
k = l, and we can get the variations of eigenvalues versus l as shown in Figure 4b. When there is no
perturbation, the system stays at the fixed point. When the diffusion coefficient δ = 2, the eigenvalues
of the system remain at less than 1 with the increase of perturbation number l. But when the diffusion
coefficient δ increases more than δc, the eigenvalues will exceed 1 with the increase of l and Turing
bifurcation occurs.
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Initial conditions are set as fixed points with heterogeneous random disturbance (1%). Given the 
parameter values under each bifurcation condition, the formation of patterns can be obtained after t 
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Figure 5. Spot patterns induced by Neimark-Sacker bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b 
= 0.3739, δ = 1, h = 8; (a) τ = 2.84; (b) τ = 2.86. Simulations are carried out on 100 × 100 lattices with 
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Figure 4. Variations of eigenvalues λm(k,l) with perturbation numbers k and l. Parameters: a = 1.1,
e1 = 0.3, e2 = 0.2, b = 0.3739, τ = 2, h = 8; (a) δ = 10; (b) Let k = l, three curves of eigenvalues λm(k,l) are
shown with parameter δ = 10, δ = 4.5 and δ = 2 respectively.
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3.2. Formation of Self-Organized Patterns

In order to investigate the formation of self-organized patterns under the above bifurcation
conditions, simulations will be carried out on 100 × 100 lattices with periodic boundary conditions.
Initial conditions are set as fixed points with heterogeneous random disturbance (1%). Given the
parameter values under each bifurcation condition, the formation of patterns can be obtained after
t = 2000. Patterns will be shown only in terms of variable u, as the patterns of variable v are similar.

Figure 5 shows the patterns induced by Neimark-Sacker bifurcation. The parameters a = 1.1,
e1 = 0.3, e2 = 0.2, b = 0.3739 and τ = 2.84 satisfy the Neimark-Sacker bifurcation conditions. We can
see that spot patterns are formed through self-organization of variable u. With the increase of τ,
the patterns become more isolated.

Entropy 2017, 19, 8 of 22 

 

As the value of τ increases, the stable states of the system experience several stages, such as 
invariant circle (τ = 3.1750 as shown in Figure 3b), period-6 (τ = 3.5250 as shown in Figure 3c), and 
then invariant circle again (τ = 3.69 as shown in Figure 3d). 

Turing bifurcation can be shown through the variations of eigenvalues λ(k,l) as shown in Figure 
4. In Figure 4a, we can see that the effects of the perturbation numbers k and l are symmetric. Thus 
we let k = l, and we can get the variations of eigenvalues versus l as shown in Figure 4b. When there 
is no perturbation, the system stays at the fixed point. When the diffusion coefficient δ = 2, the 
eigenvalues of the system remain at less than 1 with the increase of perturbation number l. But when 
the diffusion coefficient δ increases more than δc, the eigenvalues will exceed 1 with the increase of l 
and Turing bifurcation occurs. 

(a) (b) 

Figure 4. Variations of eigenvalues λm(k,l) with perturbation numbers k and l. Parameters: a = 1.1, e1 = 
0.3, e2 = 0.2, b = 0.3739, τ = 2, h = 8; (a) δ = 10; (b) Let k = l, three curves of eigenvalues λm(k,l) are shown 
with parameter δ = 10, δ = 4.5 and δ = 2 respectively. 

3.2. Formation of Self-Organized Patterns 

In order to investigate the formation of self-organized patterns under the above bifurcation 
conditions, simulations will be carried out on 100 × 100 lattices with periodic boundary conditions. 
Initial conditions are set as fixed points with heterogeneous random disturbance (1%). Given the 
parameter values under each bifurcation condition, the formation of patterns can be obtained after t 
= 2000. Patterns will be shown only in terms of variable u, as the patterns of variable v are similar. 

(a) (b) 

Figure 5. Spot patterns induced by Neimark-Sacker bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b 
= 0.3739, δ = 1, h = 8; (a) τ = 2.84; (b) τ = 2.86. Simulations are carried out on 100 × 100 lattices with 
periodic boundary conditions. Initial conditions are set as fixed points with heterogeneous random 
disturbance (1%). After t = 2000, the patterns can be obtained. 

Figure 5. Spot patterns induced by Neimark-Sacker bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2,
b = 0.3739, δ = 1, h = 8; (a) τ = 2.84; (b) τ = 2.86. Simulations are carried out on 100 × 100 lattices with
periodic boundary conditions. Initial conditions are set as fixed points with heterogeneous random
disturbance (1%). After t = 2000, the patterns can be obtained.

Figure 6 shows the patterns of variable u induced by Neimark-Sacker bifurcation. Parameters
a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.373 and τ satisfy the Neimark-Sacker bifurcation conditions. We can
see that with the increase of τ, patterns are formed through the self-organization of u. Moreover,
these patterns transit from the irregular pattern in Figure 6a to spiral patterns in Figure 6b–d, and the
wavelength of the spirals decreases gradually. Spiral patterns are some of the patterns that are often
recorded in the studies of predator-prey systems [41].

Figure 7 shows the patterns of variable u induced by Turing bifurcation. Parameters a = 1.1,
e1 = 0.3, e2 = 0.2, b = 0.1781 and τ = 0.1, 0.2 do not satisfy Neimark-Sacker bifurcations or flip bifurcation
conditions, but the addition of δ = 30 and h = 6 make Turing bifurcation occur. We can see that
a labyrinth pattern is formed through the self-organization of u. With the increase of τ, the stripes in
the labyrinth pattern become broader.

Figure 8 shows the pattern of variable u induced by Turing bifurcation. Parameters a = 1.1, e1 = 0.3,
e2 = 0.2, b = 0.3739 and τ = 2.8, 2.82 do not satisfy Neimark-Sacker bifurcations or flip bifurcation
conditions, but addition of δ = 3.2 and h = 6 make Turing bifurcation occur. We can see that complex
patterns are formed through the self-organization of u. The parameter values of Figures 7 and 8 both
satisfy the Turing bifurcation conditions, but the types are quite different from each other. The patterns
in Figure 8 are like spiral patterns coupled with irregular mosaics. Note that the patterns in Figure 8 are
similar as those in Figure 6. The reason may be that the value of τ is very close to the Neimark-Sacker
bifurcation point, that is τ = 2.8291.
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heterogeneous random disturbance (1%). After t = 2000, the patterns can be obtained.
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Figure 9 shows the pattern induced by flip bifurcation. Parameters a = 1.1, e1 = 0.3, e2 = 0.2, b = 1.2 
and τ satisfy the flip bifurcation conditions. We can see that patterns are formed through the self-
organization of variable u. The type of pattern is quite difficult to define, but they can be reflected by 
the phase portrait above, that are similar to those in Figure 1. Figure 9a–d show the patterns 
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doubling cascade, patterns become more and more fractal. 

Figure 7. Labyrinth pattern induced by Turing bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2,
b = 0.1781, δ = 30, h = 6; (a) τ = 0.1; (b) τ = 0.2. Simulations are carried out on 100 × 100 lattices with
periodic boundary conditions. Initial conditions are set as fixed points with heterogeneous random
disturbance (1%). After t = 2000, the patterns can be obtained.
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Figure 8. Complex patterns induced by Turing bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2,
b = 0.3739, δ = 3.2, h = 6; (a) τ = 2.8; (b) τ = 2.82. Simulations are carried out on 100 × 100 lattices with
periodic boundary conditions. Initial conditions are set as fixed points with heterogeneous random
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Figure 9 shows the pattern induced by flip bifurcation. Parameters a = 1.1, e1 = 0.3, e2 = 0.2,
b = 1.2 and τ satisfy the flip bifurcation conditions. We can see that patterns are formed through
the self-organization of variable u. The type of pattern is quite difficult to define, but they can be
reflected by the phase portrait above, that are similar to those in Figure 1. Figure 9a–d show the
patterns generated by period-2, period-4, period-6 and multi-period behaviors. Due to the effect of
period-doubling cascade, patterns become more and more fractal.
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behaviors. We can see that these patterns are quite different from each other, which shows the 
distinguishing effects of these three types of instabilities (based on three bifurcation situations).  

These self-organized patterns can also be classified into two categories: stationary patterns and 
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the other patterns. In the stationary patterns, the spatial distribution of predator and prey remains 
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Figure 9. Patterns induced by flip bifurcation. Parameters: a = 1.1, e1 = 0.3, e2 = 0.2, b = 1.2, δ = 2, h = 10;
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4. Discussion and Conclusions

We have transformed a well-recognized continuous predator-prey model into a discrete model.
During the transformation, the iteration process is considered in two stages: diffusion stage and then
reaction stage. Fixed points and stability analysis are studied. Three types of bifurcation analysis are
performed for the discrete model, including flip bifurcation, Neimark-Sacker bifurcation, and Turing
bifurcation. With parameter values satisfying bifurcation conditions, numerical simulations are carried
out to show the self-organized patterns of the predator-prey model.

From the pattern simulations, we can see that Turing instability leads to the formation of spatial
patterns of labyrinth and complex patterns of spirals coupled with mosaics, Neimark-Sacker bifurcation
induces the formation of spots and spiral patterns, and flip bifurcation induces the formation of
irregular patterns corresponding to period-2, period-4 and many complex periodic behaviors. We can
see that these patterns are quite different from each other, which shows the distinguishing effects of
these three types of instabilities (based on three bifurcation situations).

These self-organized patterns can also be classified into two categories: stationary patterns and
oscillatory patterns. Oscillatory patterns include the spiral patterns, and stationary patterns include
the other patterns. In the stationary patterns, the spatial distribution of predator and prey remains
stationary and the system dynamics will not change with time. In the oscillatory patterns, the dynamics
of predator and prey is always varying spatially and temporally as time goes on. One of important
characteristics of the oscillatory patterns is spatiotemporal chaos, which results in the formation of
complex and diverse spiral patterns.

Compared with previous studies on a continuous predator-prey model with Lesie-Gower
functional response [36], the simulations on our discrete model with same functional response show
not only that all the patterns were obtained by the continuous model, but also many special patterns
can be induced by flip bifurcation and a special type of pattern is induced by Turing bifurcation.
This proves that discrete models can generate more self-organized patterns. The most important
reason is, especially in our model, the import of time interval τ gives more possibility to the system to
generate these complex dynamics. Furthermore, we think the variations of τ reflect the multiple time
scale in the real ecosystems. The conclusions of this research can be summarized as follows:

1. The discrete predator-prey model with Lesie-Gower functional response can generate
many complex dynamics including three types of bifurcations, which are flip bifurcation,
Neimark-Sacker bifurcation and Turing bifurcation.

2. A variety of self-organized patterns can be formed through the discrete predator-prey model
with Lesie-Gower functional response and the above three bifurcations. These patterns consist of
spots, transitional patterns from spots to spirals, spirals, spirals coupled with mosaics, labyrinths,
and many other complex patterns generated by flip bifurcation.

3. Among the studies on predator-prey models with Lesie-Gower functional response, this research
may develop a special perspective to interpret the how self-organized patterns are generated.
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Appendix A

Appendix A.1. Flip Bifurcation Analysis

The occurrence of flip bifurcation [42] requires one of the two eigenvalues of J|(u4,v4)
satisfies

λ = −1. If we give ∆0 = −tr0 − 1, in which:

∆0 = a11a22 − a12a21 = 1 + τAτ + τBτ2, (A1)

τA = 1− 2u∗ − a(u∗ + e2)e1

(u∗ + e1)
2 − b, (A2)

τB = [1− 2u∗ − ae1(u∗ + e2)

(u∗ + e1)
2 ](−b) +

abu∗

(u∗ + e1)
. (A3)

Equations (A1)–(A3) lead to:

τ0 =
4

−τA +
√

τA
2 − 4τB

, (A4a)

or:
τ0 =

4

−τA −
√

τA
2 − 4τB

. (A4b)

The two eigenvalues of J(u3, v3) become λ1 = −1 and λ2 = 1 + tr0(τ0). Meanwhile,
the occurrence of flip bifurcation requires |λ2| 6= 1, that is:

τ0

(
1− 2u∗ − a(u∗ + e2)e1

(u∗ + e1)
2 − b

)
6= 2, 4. (A5)

Considering τ as a dependent variable, and let:

x = u− u∗, y = v− v∗, τ̃ = τ − τ0, (A6)

we can get a new map:

 x
y
τ̃

→


a11x + a12y + a13
2 x2 + a14xy + a15xτ̃ + a16yτ̃ + a17

6 x3 + a18
2 x2y

+ a19
2 x2τ̃ + a110xyτ̃ + O

(
(|x|+ |y|+ |τ̃|)4

)
a21x + a22y + a23

2 x2 + a24
2 y2 + a25xy + a26xτ̃ + a27yτ̃ + a28

6 x3 + a29
2 x2y

+ a210
2 xy2 + a211

2 x2τ̃ + a212
2 y2τ̃ + a213xyτ̃ + O

(
(|x|+ |y|+ |τ̃|)4

)
τ̃

. (A7)

where O
(
(|x|+ |y|+ |τ̃|)4

)
is a function with at least four order in the variables (x, y, τ̃), and:

a11 = 1 + τ

(
1− 2u∗ − ae1(u∗ + e2)

(u∗ + e1)
2

)
, a12 = − aτu∗

u∗ + e1
, a13 = 2τ

(
−1 +

ae1(u∗ + e2)

(u∗ + e1)
3

)
, (A8a)

a14 = − ae1τ

(u∗ + e1)
2 , a15 = 1− 2u∗ − ae1(u∗ + e2)

(u∗ + e1)
2 , a16 = − au∗

u∗ + e1
, a17 =

−6τae1(u∗ + e2)

(u∗ + e1)
4 , (A8b)

a18 =
2ae1τ

(u∗ + e1)
3 , a19 = −2 +

2ae1(u∗ + e2)

(u∗ + e1)
3 , a110 = − ae1

(u∗ + e1)
2 , (A8c)

a21 = bτ, a22 = 1− bτ, a23 = − 2bτ

u∗ + e2
, a24 = − 2bτ

u∗ + e2
, a25 =

2bτ

u∗ + e2
, a26 = b, (A8d)
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a27 = −b, a28 =
6bτ

(u∗ + e2)
2 , a29 = − 4bτ

(u∗ + e2)
2 , a210 =

2bτ

(u∗ + e2)
2 , a211 = − 2b

u∗ + e2
, (A8e)

a212 = − 2b
u∗ + e2

, a213 =
2b

u∗ + e2
. (A8f)

According to Guckenheimer and Holmes [42], an effective method for bifurcation analysis is
by applying the center manifold theorem, that enables us to restrict our attention to the flow within
the center manifold, but we need to transform the map to the normal form. Applying the invertible
transformation: (

x
y

)
=

(
a12 a12

−1− a11 λ2 − a11

)(
x̃
ỹ

)
, (A9)

we can get:  x̃
ỹ
τ̃

→
 −1 0 0

0 λ2 0
0 0 1


 x̃

ỹ
τ̃

+
1

a12(1 + λ2)

 F1(x̃, ỹ, τ̃)

F2(x̃, ỹ, τ̃)

0

. (A10)

in which:

F1(x̃, ỹ, τ̃) = a2
12

(
a13(λ2−a11)

2 − a12a23
2

)
(x̃ + ỹ)2 − a12a24

2 ((1 + a11)x̃− (λ2 − a11)ỹ)
2

−a12(a14(λ2 − a11)− a12a25)(x̃ + ỹ)((1 + a11)x̃− (λ2 − a11)ỹ) + a12(a15(λ2 − a11)− a12a26)(x̃τ̃ + ỹτ̃)

−(a16(λ2 − a11)− a12a27)((1 + a11)x̃τ̃ − (λ2 − a11)ỹτ̃) + a3
12

(
a17(λ2−a11)

6 − a12a28
6

)
(x̃ + ỹ)3

−a2
12

(
a18(λ2−a11)

2 − a12a29
2

)
(x̃ + ỹ)2((1 + a11)x̃− (λ2 − a11)ỹ)−

a2
12a210

2 (x̃ + ỹ)((1 + a11)x̃− (λ2 − a11)ỹ)
2

+a2
12

(
a19(λ2−a11)

2 − a12a211
2

)
(x̃ + ỹ)2τ̃ − a12a212

2 ((1 + a11)x̃− (λ2 − a11)ỹ)
2τ̃

−a12(a110(λ2 − a11)− a12a213)(x̃τ̃ + ỹτ̃)((1 + a11)x̃− (λ2 − a11)ỹ) + O
(
(|x̃|+ |ỹ|+ |τ̃|)4

)
,

(A11a)

F2(x̃, ỹ, τ̃) = a2
12

(
a13(1+a11)

2 + a12a23
2

)
(x̃ + ỹ)2 + a12a24

2 ((1 + a11)x̃− (λ2 − a11)ỹ)
2

−(a14(1 + a11) + a12a25)(a12(x̃ + ỹ))((1 + a11)x̃− (λ2 − a11)ỹ) + a12(a15(1 + a11) + a12a26)(x̃τ̃ + ỹτ̃)

−(a16(1 + a11) + a12a27)((1 + a11)x̃τ̃ − (λ2 − a11)ỹτ̃) + a3
12

(
a17(1+a11)

6 + a12a28
6

)
(x̃ + ỹ)3

−a2
12

(
a18(1+a11)

2 + a12a29
2

)
(x̃ + ỹ)2((1 + a11)x̃− (λ2 − a11)ỹ) +

a2
12a210

2 (x̃ + ỹ)((1 + a11)x̃− (λ2 − a11)ỹ)
2

+a2
12

(
a19(1+a11)

2 + a12a211
2

)
(x̃ + ỹ)2τ̃ + a12a212

2 ((1 + a11)x̃− (λ2 − a11)ỹ)
2τ̃

−a12(a110(1 + a11) + a12a213)(x̃τ̃ + ỹτ̃)((1 + a11)x̃− (λ2 − a11)ỹ) + O
(
(|x̃|+ |ỹ|+ |τ̃|)4

)
.

(A11b)

The center manifold WC(0, 0, 0) of (A10) at the fixed point (0, 0, 0) is then determined. According
to the center manifold theorem [42], a center manifold WC(0, 0, 0) exists and can be approximately
represented by the following expression:

WC(0, 0, 0) =
{
(x̃, ỹ, τ̃) ∈ R3

∣∣∣ỹ = h∗(x̃, τ̃), h∗(0, 0) = 0, Dh∗(0, 0) = 0
}

, (A12)

where h∗(x̃, τ̃) is assumed to be [42]:

h∗(x̃, τ̃) = d0τ̃ + d1 x̃2 + d2 x̃τ̃ + d3τ̃2 + O
(
(|x̃|+ |τ̃|)3

)
. (A13)

Applying map (A10) on both sides of the Equation ỹ = h∗(x̃, τ̃), we can obtain:

d0τ̃ + d1

(
−x̃ + F1(x̃,h∗(x̃,τ̃),τ̃)

a12(1+λ2)

)2
+ d2τ̃

(
−x̃ + F1(x̃,h∗(x̃,τ̃),τ̃)

a12(1+λ2)

)
+ d3τ̃2

−λ2
(
d0τ̃ + d1 x̃2 + d2 x̃τ̃ + d3τ̃2)− F2(x̃,h∗(x̃,τ̃),τ̃)

a12(1+λ2)
= O

(
(|x̃|+ |τ̃|)3

) . (A14)

Through Equation (A11), the coefficients d0, d1, d2, d3 in Equation (A14) can be determined as:

d0 = 0, (A15a)

d1 =
1

2
(
1− λ2

2
)((a24 − 2a14)(1 + a11)

2 + a12(a13 − 2a25)(1 + a11) + a2
12a23

)
, (A15b)
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d2 =
1

a12(1 + λ2)
2

(
a16(1 + a11)

2 + a12(a27 − a15)(1 + a11)− a2
12a26

)
, (A15c)

d3 = 0. (A15d)

Accordingly, we consider the map of (A7) restricted to the center manifold WC(0, 0, 0), that is
given by:

F : x̃ → −x̃ + µ1 x̃2 + µ2 x̃τ̃ + µ3 x̃2τ̃ + µ4 x̃τ̃2 + µ5 x̃3 + O
(
(|x̃|+ |τ̃|)4

)
. (A16)

The coefficients in (A16) are expressed by:

µ1 = 1
2(1+λ2)

(
a12(a13(λ2 − a11)− a12a23)− a24(1 + a11)

2 − 2(1 + a11)(a14(λ2 − a11)− a12a25)
)

, (A17a)

µ2 =
1

(1 + λ2)
(a15(λ2 − a11)− a12a26)−

(1 + a11)

a12(1 + λ2)
(a16(λ2 − a11)− a12a27), (A17b)

µ3 = 1
2(1+λ2)

{(a12a19 + 2a12a13d2 + 2a15d1)(λ2 − a11)− a12(2a26d1 + 2a12a23d2 + a12a211)

+2(1 + a11)(λ2 − a11)(a24d2 − a110) + 2d2(λ2 − 2a11 − 1)(a14(λ2 − a11)− a12a25)

+2a12a213(1 + a11)− a212(1 + a11)
2
}
+ d1(λ2−a11)

a12(1+λ2)
(a16(λ2 − a11)− a12a27)

, (A17c)

µ4 =
d2

(1 + λ2)
(a15(λ2 − a11)− a12a26) +

d2(λ2 − a11)

a12(1 + λ2)
(a16(λ2 − a11)− a12a27), (A17d)

µ5 = 1
6(1+λ2)

{
a12(a12a17 + 6a13d1)(λ2 − a11) + 3a2

12(1 + a11)a29 − 3a12a210(1 + a11)
2

+3(2a24d1 − a12a18)(1 + a11)(λ2 − a11) + 6d1(λ2 − 2a11 − 1)(a14(λ2 − a11)− a12a25)

−a2
12(6a23d1 + a12a28)

} . (A17e)

According to the flip bifurcation theorem described in Guckenheimer and Holmes [42],
the occurrence of flip bifurcation for map (39) requires that two discriminatory quantities η1 and
η2 are nonzero, that is:

η1 =

(
∂2F

∂w̃∂τ̃
+

1
2

∂F
∂τ̃

∂2F
∂w̃2

)
6= 0 at w̃ = 0 and τ̃ = 0, (A18a)

η2 =

(
1
6

∂3F
∂w̃3 +

(
1
2

∂2F
∂w̃2

)2)
6= 0 at w̃ = 0 and τ̃ = 0. (A18b)

A calculation on Equations (A18) obtains η1 = µ2 and η2 = µ5 + µ2
1. Considering all the above

calculations, the following description for the flip bifurcation can be stated:
If the conditions (A4a), (A5) and (A18) are satisfied, map (10) undergoes a flip bifurcation at (u4,v4).

Moreover, if η2 > 0, the period-two points bifurcating from (u4,v4) are stable; if η2 < 0, the bifurcating
period-two points are unstable.

Here we show the detailed calculation process of flip bifurcation. For example, given
a group of parameter values as a = 1.1, e1 = 0.3, e2 = 0.2, b = 1.35, then the fixed point
(u4,v4) can be obtained as (0.1464, 0.3464). According to Equation (4a), the critical point for
flip bifurcation is calculated as τ0 = 2.3267. When τ < τ0, the fixed point (u4,v4) is stable.
For example when τ = 2.3, the two eigenvalues of (u4,v4) are λ1 = −0.9771 and λ2 = 0.1685,
therefore (u4,v4) is a stable node. Let τ = τ0, the two eigenvalues are calculated as λ1 = −1
and λ2 = 0.1697. In this critical situation, we apply center manifold theorem to analyze the flip
bifurcation. Following the procedure described above, the map restricted to the center manifold
is F : x̃ → −x̃ + 8.6395x̃2 − 0.8596x̃τ̃ + 3.7132x̃2τ̃ + 30.7044x̃3 . From map F, the two discriminatory
quantities η1 and η2 are got as −0.8596 and 105.3454, and they are nonzero. According to the flip
bifurcation theorem, we know that the flip bifurcation indeed occurs. Besides, as η2 > 0, (u4,v4) loses
stability and two stable periodic points bifurcate from τ > τ0. For example when τ = 2.33, the two
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eigenvalues of (u4,v4) are λ1 = −1.0029 and λ2 = 0.1685, that shows that (u4,v4) becomes a saddle point,
and the two stable periodic points can be calculated as (0.1446,0.3415) and (0.1482,0.3512).

Appendix A.2. Neimark-Sacker Bifurcation Analysis

According to [42], The first condition of Neimark-Sacker bifurcation requires the eigenvalues at
fixed point λ1, λ2 are conjugate and their modules are 1, shown as:

λ2 = λ1, |λ1| = |λ2| = 1. (A19)

Then we get:
tr0

2 − 4∆0 < 0, ∆0 = 1. (A20)

We can obtain the Neimark-Sacker bifurcation point τ0:

τ0 = −τA
τB

= −
1− 2u∗ − a(u∗+e2)e1

(u∗+e1)
2 − b

[1− 2u∗ − ae1(u∗+e2)

(u∗+e1)
2 ](−b) + abu∗

(u∗+e1)

. (A21)

In order to analyze this conveniently, the fixed point (u4, v4) is translated to the origin when
conditions (43) are satisfied. Via the translation:

x = u− u∗, y = v− v∗, (A22)

map (10) is transformed into:

(
x
y

)
→

 a11x + a12y + a13
2 x2 + a14xy + a17

6 x3 + a18
2 x2y + O

(
(|x|+ |y|)4

)
a21x + a22y + a23

2 x2 + a24
2 y2 + a25xy + a28

6 x3 + a29
2 x2y + a210

2 xy2 + O
(
(|x|+ |y|)4

) . (A23)

In which a11, a12, a13, a14, a17, a18, a21, a22, a23, a24, a25, a28, a29, a210 have been shown above in
Equations (A8) with τ = τ0.

The second condition for Neimark-Sacker bifurcation requires:

d =
d|λ(τ)|

dτ

∣∣∣∣
τ=τ0

=
1
2

τA + 2τ0τB√
1 + τ0τA + τ02τB

6= 0, (A24a)

(λ(τ0))
m 6= 1, m = 1, 2, 3, 4, (A24b)

in which:

λ(τ0), λ(τ0) =
tr0(τ0)

2
± i

2

√
4∆0(τ0)− tr02(τ0) = α± iβ, (A25)

i =
√
−1.

tr0(τ0) and ∆0(τ0) are described by Equations (19)–(21).
Thus, we can obtain:

τ0

[
1− 2u∗ − av∗e1

(u∗ + e1)
2 + b− 2bv∗

u∗ + e2

]
6= −2,−3. (A26)

Similar as previous flip bifurcation analysis, the Neimark-Sacker bifurcation analysis will be
performed based on the normal form of map (A23). Applying the invertible transformation:(

x
y

)
=

(
a12 0

α− a11 −β

)(
x̃
ỹ

)
, (A27)
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to map (A23), then the map becomes:(
x̃
ỹ

)
→
(

α −β

β α

)(
x̃
ỹ

)
+

1
a12β

(
F1(x̃, ỹ)
G1(x̃, ỹ)

)
. (A28)

where:

F1(x̃, ỹ) = a12β
( a12a13

2 + a14(α− a11)
)

x̃2 − a12a14β2 x̃ỹ + a2
12β
( a12a17

6 + a18
2 (α− a11)

)
x̃3

− a2
12a18β2

2 x̃2ỹ + O
(
(|x̃|+ |ỹ|)4

) , (A29a)

G1(x̃, ỹ) = a12

((
a14 − a24

2
)
(α− a11)

2 + a12
( a13

2 − a25
)
(α− a11)−

a2
12a23

2

)
x̃2 − a12a24β2

2 ỹ2

+a12β((a24 − a14)(α− a11) + a12a25)x̃ỹ− a2
12a210β2

2 x̃ỹ2

+a2
12

(
a12
( a17

6 −
a29
2
)
(α− a11)−

a2
12a28

6 +
( a18

2 −
a210

2
)
(α− a11)

2
)

x̃3

+a2
12β
((

a210 − a18
2
)
(α− a11) +

a12a29
2
)

x̃2ỹ + O
(
(|x̃|+ |ỹ|)4

)
. (A29b)

Let: {
F(x̃, ỹ) = F1(x̃,ỹ)

a12α2

G(x̃, ỹ) = G1(x̃,ỹ)
a12α2

, (A30)

The second-order and third-order partial derivatives of F1(x̃, ỹ) and G1(x̃, ỹ) at x̃ = 0 and τ̃ = 0
are calculated as:

Fx̃x̃ = a12a13 + 2a14(α1 − a11), Fx̃ỹ = −a14α2, Fỹỹ = 0, (A31a)

Fx̃x̃x̃ = a12
2a15 + 3a12a16(α1 − a11), Fx̃x̃ỹ = −a12a16α2, Fx̃ỹỹ = 0, Fỹỹỹ = 0, (A31b)

Gx̃x̃ =
1
α2

[
a12a13(α1 − a11)− a2

12a13 + 2a14(α1 − a11)
2 − 2a12a15(α1 − a11) + a24(α1 − a11)

2
]
, (A31c)

Gx̃ỹ = a12a15 − a14(α1 − a11)− a24(α1 − a11), Gỹỹ = a24α2, (A31d)

Gx̃x̃x̃ = 1
α2
[a2

12a15(α1 − a11)− a3
12a26 + 3a12a16(α1 − a11)

2 − 3a2
12a27(α1 − a11)− 3a12a28(α1 − a11)

2] (A31e)

Gx̃x̃ỹ = a2
12a27 − a12a16(α1 − a11) + 2a12a28(α1 − a11), Gx̃ỹỹ = −a12a28α2, Gỹỹỹ = 0. (A31f)

The third condition of Neimark-Sacker bifurcation requires:

aa = −Re

((
1− 2λ

)
λ

2

1− λ
ξ11ξ20

)
− 1

2
|ξ11|2 − |ξ02|2 + Re

(
λξ21

)
6= 0, (A32)

in which:
ξ20 =

1
8

((
Fx̃x̃ − Fỹỹ + 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ − 2Fx̃ỹ

))
, (A33a)

ξ11 =
1
4

((
Fx̃x̃ + Fỹỹ

)
+ i
(

Gx̃x̃ + Gỹỹ

))
, (A33b)

ξ02 =
1
8

((
Fx̃x̃ − Fỹỹ − 2Gx̃ỹ

)
+ i
(

Gx̃x̃ − Gỹỹ + 2Fx̃ỹ

))
, (A33c)

ξ21 =
1

16

((
Fx̃x̃x̃ + Fx̃ỹỹ + Gx̃x̃ỹ + Gỹỹỹ

)
+ i
(

Gx̃x̃x̃ + Gx̃ỹỹ − Fx̃x̃ỹ − Fỹỹỹ

))
. (A33d)
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After calculation, the third condition for Neimark-sacker can be expressed as:

aa = 1
32a2

12β2((1−α)2+β2)

{
P
(

2Fx̃x̃Gx̃x̃ + 2Gx̃x̃Gx̃ỹ + 2Gx̃ỹGỹỹ − FỹỹGx̃x̃ − FỹỹGỹỹ

)
−2PFx̃x̃Fx̃ỹ + Q

(
G2

x̃x̃ − G2
ỹỹ − F2

x̃x̃ + Fx̃x̃Fỹỹ − 2Fx̃x̃Gx̃ỹ − 2Fx̃ỹGx̃x̃ − 2Fx̃ỹGỹỹ

)}
− 1

32a2
12β2

[
F2

x̃x̃ +
(

Gx̃x̃ + Gỹỹ

)2
]
− 1

64a2
12β2

[(
Fx̃x̃ − 2Gx̃ỹ

)2
+
(

Gx̃x̃ − Gỹỹ + 2Fx̃ỹ

)2
]

+ 1
16a12β

{
α
(

Fx̃x̃x̃ + Gx̃x̃ỹ

)
+ β

(
Gx̃x̃x̃ + Gx̃ỹỹ − Fx̃x̃ỹ

)}
6= 0

, (A34)

in which:
P =

[
β(3− 4α)

(
α2 − β2

)
− 2αβ

(
(1− α)(1− 2α)− 2β2

)]
, (A35a)

Q =
[(

1− 3α + 2α2 − 2β2
)(

α2 − β2
)
+
(

6α− 8α2
)

β2
]
. (A35b)

When the conditions (A21), (A24), (A26), and (A34) are satisfied, Neimark-Sacker bifurcation
occurs at (u4,v4). Besides, when aa < 0 and d > 0, an attracting invariant circle bifurcates from (u4,v4)
for τ > τ0; and when aa > 0 and d > 0, a repelling invariant circle bifurcates for τ < τ0.

The detailed calculation process of Neimark-Sacker bifurcation is shown below. For example,
given the parameter values as a = 1.1, e1 = 0.3, e2 = 0.2, b = 0.3739, then the fixed point (u4,v4) can
be obtained as (0.1464,0.3464). According to Equation (A21), the critical point for flip bifurcation
is calculated as τ0 = 2.8291. When τ < τ0, the fixed point (u4,v4) is stable. When τ = 2.82, the two
eigenvalues of (u4,v4) are λ1,2 = 0.6611 ± 0.7489i and |λ1,2| = 0.9989, therefore (u4,v4) is a stable
focus. When τ = τ0, the two eigenvalues become λ1,2 = 0.66 ± 0.7513i, and |λ1,2| = 1. According
to the Neimark-Sacker bifurcation theorem, we need to verify three other conditions to confirm the
occurrence of Neimark-Sacker bifurcation, conditions (A24), (A26) and (A34). Through calculation we
can have d = 0.1202 6= 0, tr0(τ0) = 1.32 6= 0, −1 and aa = −6.7517 6= 0. Therefore, the Neimark-Sacker
bifurcation indeed occurs. Besides, as aa < 0 and d > 0, (u4,v4) becomes unstable and an attracting
invariant circle emerges when τ > τ0. When τ = 2.84, the two eigenvalues are λ1,2 = 0.6587 ± 0.7542i
and |λ1,2| = 1.0013, therefore (u4,v4) is an unstable focus. The Neimark-Sackerbifurcation is verified
by the transition from stable focus to unstable focus.

Appendix A.3. Turing Bifurcation Analysis

Turing bifurcation requires two conditions [43]. First, a nontrivial homogeneous stationary state
exists and is stable to spatially homogeneous perturbations, that has been obtained in the above
section. Second, the stable stationary state is unstable to at least one type of spatially heterogeneous
perturbations. In order to do Turing bifurcation analysis of the discrete model, we should first obtain
the eigenvalues of discrete Laplacian operator ∇2

d. Considering the following equation:

∇2
dXij + λXij = 0, (A36)

with periodic boundary conditions Xi,0 = Xi,N , Xi,1 = Xi,N+1, X0,j = XN,j, X1,j = XN+1,j. According
to the method of Bai and Zhang [44], the eigenvalues of ∇2

d can be obtained as:

λkl = 4
(

sin2 φk + sin2 φl

)
, (A37)

in which φk = (k− 1)π/N, φl = (l − 1)π/N, and k, l ∈ {1, 2, 3, · · · , N}.
Spatially heterogeneous perturbations are introduced to perturb the stable homogeneous

stationary state (u4, v4). The spatially heterogeneous perturbations on u and v are given by:

ũ(i,j,t) = u(i,j,t) − u4, (A38a)

ṽ(i,j,t) = v(i,j,t) − v4. (A38b)
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Noticing ∇2
dũ(i,j,t) = ∇2

du(i,j,t) and ∇2
dṽ(i,j,t) = ∇2

dv(i,j,t). Substituting Equation (A38) into
Equations (4)–(6) leads to:

ũ(i,j,t+1) = a11

(
ũ(i,j,t) +

τ
h2∇2

dũ(i,j,t)

)
+ a12

(
ṽ(i,j,t) +

τ
h2 δ∇2

dṽ(i,j,t)
)
+ O

((∣∣∣ũ(i,j,t)

∣∣∣+ ∣∣∣ṽ(i,j,t)∣∣∣)2
)

, (A39a)

ṽ(i,j,t+1) = a21

(
ũ(i,j,t) +

τ
h2∇2

dũ(i,j,t)

)
+ a22

(
ṽ(i,j,t) +

τ
h2 δ∇2

dṽ(i,j,t)
)
+ O

((∣∣∣ũ(i,j,t)

∣∣∣+ ∣∣∣ṽ(i,j,t)∣∣∣)2
)

, (A39b)

where a11, a12, a21 and a22 are described by Equation (19). The two-order terms in Equation (A39)
can be ignored when the perturbations are small. Using the corresponding eigenfunction Xij

kl of the
eigenvalue λkl to multiply Equation (A39) gives:

Xij
kl ũ(i,j,t+1) = a11Xij

kl ũ(i,j,t) + a12Xij
kl ṽ(i,j,t) +

τ

h2 a11Xij
kl∇

2
dũ(i,j,t) +

τ

h2 a12δXij
kl∇

2
dṽ(i,j,t), (A40a)

Xij
kl ṽ(i,j,t+1) = a21Xij

kl ũ(i,j,t) + a22Xij
kl ṽ(i,j,t) +

τ

h2 a21Xij
kl∇

2
dũ(i,j,t) +

τ

h2 a22δXij
kl∇

2
dṽ(i,j,t). (A40b)

Summing Equation (A40) for all i and j obtains:

∑ Xij
kl ũ(i,j,t+1) = a11∑ Xij

kl ũ(i,j,t) + a12∑ Xij
kl ṽ(i,j,t) +

τ
h2 a11∑ Xij

kl∇
2
dũ(i,j,t)

+ τ
h2 a12δ∑ Xij

kl∇
2
dṽ(i,j,t)

, (A41a)

∑ Xij
kl ṽ(i,j,t+1) = a21∑ Xij

kl ũ(i,j,t) + a22∑ Xij
kl ṽ(i,j,t) +

τ
h2 a21∑ Xij

kl∇
2
dũ(i,j,t)

+ τ
h2 a22δ∑ Xij

kl∇
2
dṽ(i,j,t)

. (A41b)

Let ut = ∑ Xij
kl ũ(i,j,t+1) and vt = ∑ Xij

kl ṽ(i,j,t+1), Equation (A41) can be transformed into the
following form [27]:

ut+1 = a11

(
1− τ

h2 λkl

)
ut + a12

(
1− τ

h2 δλkl

)
vt, (A42a)

vt+1 = a21

(
1− τ

h2 λkl

)
ut + a22

(
1− τ

h2 δλkl

)
vt. (A42b)

Equation (A42) describe the dynamics of spatially heterogeneous perturbations integrating all the
lattices. If Equation (A42) converge, the discrete system will go back to the spatially homogeneous
stationary state. Only the divergence of Equation (A32) can lead to the breaking of homogeneous state
and the formation of Turing patterns. Calculating the two eigenvalues associated with Jacobian matrix
of Equation (A32) obtains:

λ±(k, l, τ) = −1
2

tr(k, l, τ)± 1
2

√
tr(k, l, τ)2 − 4∆(k, l, τ), (A43)

in which:
tr(k, l, τ) = tr0(τ) +

τ

h2 (a11(τ) + a22(τ)δ)λkl , (A44a)

∆(k, l, τ) = ∆0(τ)
(

1− τ

h2 λkl

)(
1− τ

h2 δλkl

)
. (A44b)

Here tr0(τ), ∆0(τ), a11(τ), and a22(τ) are denoted for reminding that they are dependent on τ.
Based on the two eigenvalues, define:

λm(k, l, τ) = max(|λ+(k, l)|, |λ−(k, l)|), (A45a)

λmm(τ) =
N

max
k=1,l=1

λm(k, l, τ)((k, l) 6= (1, 1)). (A45b)

λmm(τ) represents the maximal value of absolute modulus of both eigenvalues in (A45a). When
λmm(τ) > 1, Turing instability occurs; when λmm(τ) < 1, the discrete system stabilizes at the
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homogeneous states. Therefore, the threshold condition for the occurrence of Turing bifurcation
requires λmm(τ) = 1.
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