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Abstract: Information entropy and its extension, which are important generalizations of entropy,
are currently applied to many research domains. In this paper, a novel generalized relative entropy
is constructed to avoid some defects of traditional relative entropy. We present the structure of
generalized relative entropy after the discussion of defects in relative entropy. Moreover, some
properties of the provided generalized relative entropy are presented and proved. The provided
generalized relative entropy is proved to have a finite range and is a finite distance metric. Finally, we
predict nucleosome positioning of fly and yeast based on generalized relative entropy and relative
entropy respectively. The experimental results show that the properties of generalized relative
entropy are better than relative entropy.
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1. Background

The concept of entropy was proposed by T. Clausius as one of the parameters to reflect the degree
of chaos for the object. Later, research found that information was such an abstract concept that was
hard to make it clear to obtain its amount. Indeed, it was not until the information entropy was
proposed by Shannon that we had a standard measure for the amount of information. Then, some
related concepts based on information entropy have been proposed subsequently, such as cross entropy,
relative entropy and mutual information, which offered an effective method to solve the complex
problems of information processing. Therefore, the study of a novel metric based on information
entropy was significant in the research domain of information science.

Information entropy was first proposed by Shannon. Assuming an information source I is
composed by n different signals Ii, H(I), the information entropy of I was shown in Equation (1), where
pi =

amount of Ii
signal′s amount of I

denotes frequency of Ii, E() means mathematical expectation, k > 1 denotes the
base of logarithm. When k = 2, the unit of H(I) is bit.

H(I) = E(− logk pi) = −
n

∑
i=1

pi· logk pi (1)

Information entropy was a metric of the chaos degree for an information source. The bigger the
information entropy was, the more chaotic the information source, and vice versa. Afterwards cross
entropy was proposed based on information entropy, the definition was shown in Equation (2) where P
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denotes “real” distribution of information source, and Q denotes “unreal” distribution of information
source pi denotes frequency of components of P and qi denotes frequency of components of Q.

H(P, Q) =
n

∑
i=1

pi· logk
1
qi

(2)

Cross entropy also can act as the reaction of the similarity degree of component’s distributions
of the two information sources. H(P, Q) = H(P) if and only if all components’ distributions were
identical. A homologous metric was relative entropy, and this was also known as Kullback–Leibler
divergence. Its definition was shown in Equations (3) and (4), where Equation (3) was the definition of
relative entropy for the discrete random variables and Equation (4) was the definition of the continuous
random variables.

D(P||Q) =
n

∑
i=1

pi· logk
pi
qi

(3)

D(P||Q) =
∮

px· logk
px

qx
dx (4)

Relative entropy reflected the differences of the two information sources with different
distributions, the bigger the relative entropy was, the bigger the differences in the information sources
were, and vice versa. Subsequently, mutual information, another entropy-based metric was also
proposed. This included two random variables X and Y. Mutual information was defined as relative
entropy of p(x) and p(y) in I(X; Y) =
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x∈X,y∈Y p(x, y)· logk
p(x,y)

p(x)·p(y) . The value of mutual information
was non-negative. If and only if X and Y were independent variables with each other, was the value of
mutual information equal to zero.

Recently, there have been many extensions and applications of information entropy based on
metric. However, all of these information entropy-based methods have some defects. The two most
important defects are: (1) it is not a distance metric; (2) it does not have an upper bound.

So in this paper, Section 2 introduces related works with information entropy-based methods;
Section 3 provides a novel generalized relative entropy and prove some properties of the provided
entropy; Section 4 predicts nucleosome positioning based on generalized relative entropy and relative
entropy respectively; Section 5 summarizes the whole content.

2. Related Work

For years, many scholars have studied the applications of various entropy. Earlier,
Białynicki-Birula et al. deduced a new uncertain relationship in quantum mechanics based on
information entropy [1]. Uhlmann et al. applied relative entropy in digital integration, and proved
some properties of the interpolation theory [2]. Shore et al. deduced the principle of maximum entropy
and minimum cross entropy [3]. Fraser et al. analyzed the coordinate of singular factors [4]. Pincus et al.
analyzed the complex degree of the system by the entropy [5]. Afterwards, Hyvarinen et al. analyzed
independent component and projection pursuit based on entropy [6].

In 2000, Petersen et al. analyzed the optimization problem for the system with constraint of
the relative entropy [7]. Kwak et al. classified a sample based on mutual information between the
input information and the variable category [8]. Later, Pluim et al. analyzed the image matching
in medicine based on mutual information [9]. Arif et al. used the entropy to analyze the changes
of the center of gravity between the old and young in order to find a method of improving the
walking stability for the old [10]. Phillips et al. analyzed the distribution of species by maximum
entropy model [11]. Krishnaveni et al. analyzed the electroencephalogram of humans by mutual
information [12]. Afterwards, Wolf et al. researched area laws in quantum systems by using mutual
information and correlations [13]. Baldwin et al. utilized a maximum entropy model to find some
regularity about the selection of habitat of wild animal [14]. Verdu et al. combined the matching with
relative entropy and analyzed the relationship between both of them [15].
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In 2011, Batina et al. reviewed mutual information [16]. Audenaert studied the asymmetry
of relative entropy [17]. Gong et al. made the best of the scale-invariant feature transform (SIFT)
and mutual information to propose a method that can match the object precisely [18]. A novel
coarse-to-fine scheme for automatic image registration is proposed Giagkiozis et al. proposed a new
method that can take advantage of the knowledge of cross entropy to solve the problem of multi-object
programming [19]. Tang and Mao researched information entropy-based metrics for measuring
emergences in artificial societies [20].

In recent years, many scholars have studied entropy-based methods in recognition and
classification. Soares and Knobbe studied entropy-based discretization methods for ranking data [21].
Li et al. proposed a method to solve the problem of molecular docking using information entropy and
the ant colony genetic algorithm [22]. Ma et al. used information entropy to analyze the changes of
substance in the processes of chemical changes [23]. Kö et al. researched operational meaning of min-
and max-entropy [24]. In addition, Müller and Pastena studied a generalization of majorization based
on Shannon entropy [25]. Zhang et al. proposed a feature selection algorithm for fuzzy rough sets on
the basis of information entropy [26]. Guariglia et al studied some fractal properties of entropy [27].
Ebrahimzadeh et al. proposed the concept of logical entropy based on entropy, and applied it to a
quantum dynamical system [28]. Lopez-Garcia et al. proposed a method to make a prediction for
a traffic jam in a short period of time; they combined the genetic algorithm with cross entropy [29].
Sutter et al. studied the monotonicity of cross entropy [30]. Opper provided an estimator for the
relative entropy rate of path measures for stochastic differential equations [31]. Tang et al. studied an
EEMD-based multi-scale fuzzy entropy approach for complexity analysis in clean energy markets [32].

3. Generalized Relative Entropy

3.1. Structure of Generalized Relative Entropy

Nowadays, relative entropy is becoming one of the most important dissimilarity measures
between two multidimensional vectors. Let X(x1, . . . , xs) and Y(y1, . . . , ys) be two multidimensional
vectors, which are constituted by s components with different counts. The count of i-th component
is xi in vector X and yi in vector Y. Therefore, the relative entropy RE(X,Y), which denotes relation
from X to Y, is defined in Equation (5), where px(i)
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xi
∑s

i=1 xi
means the probability of xi in X for each i.

Herein, we define px(i)· log px(i)
py(i)

= 0 when px(i) = 0 in order to avoid form of equation 0· log 0. In
real application, ε > 0 is added in the denominator of log(), which is a very small positive number to
avoid form of equation log ∞.

RE(X, Y) = ∑s
i=1 px(i)· log

px(i)
py(i)

(5)

It is known that RE(X,Y) is not a distance metric because usually RE(X, Y) 6= RE(Y, X) when
X 6= Y. However, relative entropy does not have a finite upper bound, which means it can not be
easily used to measure difference between high dimensional vectors in real application. So in this
paper, based on definition of relative entropy, we present a generalized relative entropy d(X,Y) by
Equation (6), where s denotes the number of components and k ≥ 1 denotes the control parameter of
function d(), r = 0 when X = Y; r = 1 when X 6= Y. We believe the generalized relative entropy has
better properties than relative entropy. Moreover, it is a distance metric.

d(X, Y) =
s
∑

i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)
+ py(i)· log k·py(i)

px(i)+(k−1)py(i)

)
+ r· log

(
1 + 1

k−1

)2
(6)
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3.2. Properties of Generalized Relative Entropy

Theorem 1 will be presented to prove that the generalized relative entropy d() is a distance metric.
However, Lemmas 1 and 2 and Inferences 1 and 2 are presented first.

Lemma 1. ∑s
i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)

)
is constant nonnegative if px(i) ≥ 0, py(i) ≥ 0, ∑s

i=1 px(i) = 1,
k ≥ 1.

Proof. Because px(i)· log k·px(i)
(k−1)px(i)+py(i)

= −px(i) · log (k−1)px(i)+py(i)
k·px(i)

, (k−1)px(i)+py(i)
k·px(i)

≥ 0, we have
following Equation (7).

s

∑
i=1

(
px(i)· log

(k− 1)·px(i) + py(i)
k·px(i)

)
≤ log

s

∑
i=1

(k− 1)·px(i) + py(i)
k·px(i)

·px(i)

= log
(k− 1)·∑s

i=1 px(i) + ∑s
i=1 py(i)

k
= log 1 = 0

(7)

So ∑s
i=1 px(i)· log k·px(i)

(k−1)px(i)+py(i)
= −∑s

i=1 px(i)· log (k−1)px(i)+py(i)
k·px(i)

≥ 0
Lemma 1 is proved. �

Then, with consideration of condition that sign “=” appeared, we have Inference 1.

Inference 1. ∑s
i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)

)
is zero if and only if px(i) = py(i) for all i where px(i) ≥ 0,

py(i) ≥ 0, ∑s
i=1 px(i) = ∑s

i=1 py(i) = 1 and k ≥ 1.

Then, we have Lemma 2 and Inference 2 based on Lemma 1 and Inference 1 to prove upper bound
of d(X,Y).

Lemma 2. ∑s
i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)

)
≤ log k

k−1 if px(i) ≥ 0, py(i) ≥ 0, k ≥ 1, ∑s
i=1 px(i) = 1.

Proof. We have Equation (8) to prove Lemma 2 based on Equation (9).

s

∑
i=1

(
px(i)· log

k·px(i)
(k− 1)px(i) + py(i)

)
≤

s

∑
i=1

(
px(i)· log

k
k− 1

)
= log

k
k− 1

(8)

log
k·px(i)

(k− 1)px(i) + py(i)
≤ log

k·px(i)
(k− 1)px(i)

= log
k

k− 1
(9)

Lemma 2 is proved. �

Inference 2. Upper bound of d(X, Y) is 4· log k
k−1 where ∑s

i=1 px(i) = ∑s
i=1 py(i) = 1 and k ≥ 1.

Proof. We have Equation (10) to prove Inference 2 based on Lemma 2.

d(X, Y) =
s

∑
i=1

(
px(i)· log

k·px(i)
(k− 1)px(i) + py(i)

+ py(i)· log
k·py(i)

px(i) + (k− 1)py(i)

)
+ r

· log
(

1 +
1

k− 1

)2
≤ log

k
k− 1

+ log
k

k− 1
+ 2r· log

k
k− 1

(10)

Inference 2 is proved. �

After that, Theorem 1 is presented to prove d(X,Y) is a distance metric between two elements X
and Y with same diversity s and length n.
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Theorem 1. Function d() is a distance metric of elemental set E{} in space S(E{}, d()) where all elements in E
have same diversity s.

Proof. Let X and Y be two elements in E, px(i) and py(i) denote the frequency of the i-th
component in X or Y, k > 1 is a control parameter, s is the number of components in X and Y,
r = 0 when X = Y and r = 1 when X 6= Y, we have d(X, Y) = ∑s

i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)
+ py(i)

· log k·py(i)
px(i)+(k−1)py(i)

)
+ r· log

(
1 + 1

k−1

)2
from Equation (2). Then, we use following properties to prove

Theorem 1.

Property 1. d(X, Y) ≥ 0 for every X and Y, d(X, Y) = 0 if and only if X = Y.

First, we know ∑s
i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)

)
is nonnegative from Lemma 1. It implies

∑s
i=1

(
py(i)· log k·py(i)

(k−1)py(i)+px(i)

)
≥ 0. Then, we know r· log

(
1 + 1

k−1

)2
≥ 0. So d(X, Y) =

∑s
i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)

)
+∑s

i=1

(
py(i)· log k·py(i)

px(i)+(k−1)py(i)

)
+r· log

(
1 + 1

k−1

)2
≥ 0, which

means Property 1 is proved.

Property 2. d(X, Y) = d(Y, X) for every X and Y.

It is known that the formation of d(X, Y) is symmetrical to d(Y, X) for every pair of vectors X and
Y, which means Property 2 is proved.

Property 3. D(X,Y) + d(Y,Z) ≥ d(X,Z).

First, if there are at least two elements in {X, Y, Z} that are equal, it is known that d(X, Y) +
d(Y, Z) ≥ d(X, Z) because in the three functions d(), one value is zero and other two values are the
same and nonnegative.

So, Equation (11) is used to describe d(X, Y) + d(Y, Z)− d(X, Z) when X 6= Y 6= Z.

d(X, Y) + d(Y, Z) −d(X, Z)

=
s
∑

i=1

(
px(i)· log k·px(i)

(k−1)px(i)+py(i)
+ py(i)

· log k·py(i)
px(i)+(k−1)py(i)

+ py(i)· log k·py(i)
(k−1)py(i)+pz(i)

+ pz(i)

· log k·pz(i)
pz(i)+(k−1)py(i)

− px(i)· log k·px(i)
(k−1)px(i)+pz(i)

− pz(i)

· log k·pz(i)
px(i)+(k−1)pz(i)

)
+ log

(
1 + 1

k−1

)2

(11)

Then, we have Equation (12) to prove Property 3 based on Lemmas 1 and 2.

d(X, Y) + d(Y, Z) −d(X, Z)

≥ log
(

1 + 1
k−1

)2
−

s
∑

i=1
px(i)· log k·px(i)

(k−1)px(i)+pz(i)

−
s
∑

i=1
pz(i)· log k·pz(i)

px(i)+(k−1)pz(i)
≥ 2· log k

k−1 − 2· log k
k−1

≥ 0

(12)

To summarize Properties 1–3, Theorem 1 is proved. �

Then, we use Theorem 2 to provide the range of d(X,Y) for all elements X and Y which were
combined with s components.
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Theorem 2. Range of d(X, Y) is {0} ∪ [2· log k
k−1 , 4· log k

k−1 ].

Proof.
Case (1) X = Y
When X = Y, we have d(X, Y) = d(X, X) = 0 by Inference 1.
Case (2) X 6= Y
When X 6= Y, we have d(X, Y) ≤ 4· log k

k−1 by Inference 2, and d(X, Y) ≥ 2· log k
k−1 by Lemma 1.

To summarize Cases 1 and 2, Theorem 2 is proved. �

In this way, the generalized relative entropy is provided and some properties are proved.

4. Experiment

4.1. Model Predicting Nucleosome Positoning

In this paper, we undertake some experiments in order to prove that generalized relative entropy
has better properties than relative entropy. We consider the following two species: fly and yeast, and
we use those datasets to predict nucleosome positioning. the datasets of fly are downloaded from
Supplementary data in [33], including 2900 core DNA sequences and 2850 linker DNA sequences of
147 bp, and the datasets of yeast are downloaded from Supporting Information S1 in [34], including
1880 core DNA sequences and 1740 linker DNA sequences of 150 bp.

The following describes the processes of the experiments. Firstly, we introduce the definition
of k-nucleotide sequences combinations. This means the combination of four nucleotides (A or
G or C or T). Thus, di-nucleotide sequences have 16 combinations such as AA or AT. Next, we
introduce the processes of statistics taking fly datasets for an example. Firstly, we count the frequencies
of di-nucleotide sequences in core DNA sequences and liner DNA sequences, respectively, which
construct two real distributions p1x(i), p2x(i), where i represents the i-th di-nucleotide sequences.
Secondly, we count the frequencies of all di-nucleotide sequences for each DNA sequence and we
construct the unreal distribution py(i). Thirdly, we count the relative entropy between each DNA
sequence and the core sequences and the linker DNA sequences, respectively, which constructs two
dimensions feature vectors R(RE1, RE2). Then, we put them into the back propagation neural network
(BP neural network) to train a classification model to predict nucleosome positioning and use 10-fold
cross-validation to examine the quality of the model. Then, we count generalized relative entropy
between each DNA sequence and the core sequences and the linker DNA sequences, respectively,
which constructs two dimensions feature vectors R(d1, d2). The k ranges from 1.1 to 5. Then, we
put them into a BP neural network to train a classification model to predict nucleosome positioning
and use 10-fold cross-validation to examine the quality of the model. Next, we predict nucleosome
positioning of yeast datasets using the same methodology as for predicting nucleosome positioning of
the fly datasets.

4.2. Evaluations of the Equality of Predition

In this paper, four variables TP, FP, FN, TN are defined. TP represents the situation such that both
the prediction and the fact are the core DNA sequences. FP presents the situation that the linker DNA
sequences incorrectly predicted the core DNA sequences. FN represents the situation that the core
DNA sequences incorrectly predicted the linker DNA sequences. TN represents the situation that both
the prediction and fact are the linker DNA sequences. We define the following standard to examine
the quality of the prediction of a model [35].

Sn =
TP

TP + FN

Sp =
TN

TN + FP
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Acc =
TP + TN

TP + FN + TN + FP

Mcc =
TP× TN − FP× FN√

(TP + FN)(TP + FP)(TN + FN)(TN + FP)

where Sn represents sensitivity, Sp represents specificity, Acc represents accuracy, and Mcc represents
Mathew correlation coefficient.

4.3. Results and Analysis

We use 10-fold cross-validation to examine the quality of the model for fly datasets and yeast
datasets. From the following Table and Figures (Tables 1 and 2, Figures 1–4), we can come to the
conclusion that the results obtained by generalized relative entropy are better than relative entropy.
Besides, it is obvious that the values obtained by generalized relative entropy are higher than the
values obtained by relative entropy when k equals 2, 3.1 and 4.1 (Table 1). Meanwhile, we can see that
the values of Acc for yeast datasets are higher than fly datasets (Figure 1, Table 2), which illustrates
that nucleosome positioning is more easily obtained in yeast than fly.
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Table 1. The prediction results of fly datasets.

Method Acc Sn Sp Mcc

Relative entropy 0.7289 0.6837 0.7744 0.4603

Generalized
relative
entropy

(k = 2) 0.7426 0.7105 0.7763 0.4885
(k = 3.1) 0.7477 0.7215 0.7751 0.4970
(k = 4.1) 0.7485 0.7225 0.7762 0.4994

Table 2. The prediction results of yeast datasets.

Method Acc Sn Sp Mcc

Relative entropy 0.9843 0.9875 0.9809 0.9684
Generalized relative entropy (k = 2) 0.9901 0.9937 0.9860 0.9801

5. Conclusions

In this paper, we provided a novel distance metric based on relative entropy, which was called
generalized relative entropy. The generalized relative entropy surmounted the disadvantage of relative
entropy because it had an upper bound and satisfies the triangle inequality of distance. The properties
of the distance metric and upper bound were proved in this paper. Then, the range of the provided
generalized relative entropy was computed, and k ranges from 1.1 to 5. In order to validate the
advantages of generalized relative entropy, we predict nucleosome positioning of fly and yeast based
on generalized relative entropy and relative entropy, respectively. The experimental results show that
generalized relative entropy is better than relative entropy in nucleosome positioning. Finally, since
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there was a parameter k to control the generalized relative entropy, we believe that this metric can be
used in a variety of real applications by adjusted k.
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