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Abstract: Probabilities in quantum physics can be shown to originate from a maximum entropy principle.

Keywords: quantum measurement; Born-rule; density operator; symmetry

1. Introduction

Ever since quantum physics was discovered at the beginning of the 20th century, there has been
a debate about its interpretation. The mathematical formalism does not allow a direct, descriptive
interpretation of quantum-objects in space and time and seems to be underdetermined [1] with regard
to its ontological structure. As a consequence, there are multiple interpretations/ontologies available
today. A particular topic has always been the role and nature of the probabilities in quantum physics.
A cornerstone of quantum theory is the fact that the world is empirically and epistemically probabilistic.
This means that agents are able to assign probabilities to future events, which are then empirically
tested by multiple trials of experiments on identical systems. We also include the term “epistemic”,
because of the fact that, although there are today deterministic models of the quantum realm [2],
it seems that their values are knowable only modulo randomly distributed initial conditions. The fact
that nature shows probabilistic patterns and that agents can theoretically predict and then empirically
find them in experiments is by no means self-evident. We will see that once we have defined how
physical properties are represented in the theory, we only need two additional, plausible assumptions
on how agents empirically gather data and draw conclusions, to uniquely define the theory. The fact
that experimental (statistical) frequencies coincide with the probabilities is built into the theory and
thence logically no surprise. Again, what is astounding though, is that nature plays the game and
allows such a theory in the first place.

There has been a long debate on how to interpret randomness in quantum physics [3]. There are, at
first sight, three different kinds of probabilities. The first category consists of the probabilities, which
arise from pure quantum states through the Born-rule [4]. These are sometimes considered as the “true”
quantum-probabilities. The second category consists of the weights in mixed states and the third one of
the frequencies found in multiple trials of an experiment on identical quantum systems. There naturally
arises the quest for an underlying principle, common to all categories. Since agents can choose to
do a single experiment only, the frequency definition seems to fall short as the common principle.
On the other hand and in view of what we said earlier, it also seems a bold standpoint to say that
the probabilities are merely subjective [5]. The fact that nature allows a theory, where agents by
experiments can test probabilities arising from that theory, does say something about nature itself,
of which agents, admittedly, are a part. A further interpretation, which works for the single trial,
is the one of propensities [6]. There is a vast literature on the philosophical question of the true
nature of probabilities, which we are unable to cover here [7]. We will add a specific unifying view
and argue in this paper that the probabilities in quantum theory can be understood as the result of
symmetry under permutations in combination with Laplace’s law of indifference, i.e., a maximum
entropy principle.
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2. Quantum Physics

The ansatz for the mathematical theory of quantum physics is to represent a physical quantity
as a self-adjoint operator A ∈ L(H) in the space of linear operators over a state space H, which
carries the structure of a complex Hilbert space of some dimension d ∈ N. The values, which
this quantity can assume in an experiment, are the corresponding eigenvalues λk ∈ R, k ≤ d,
of A. We have to find a way to assign probabilities to these eigenvalues, a task which is equivalent
to assigning probabilities to the orthogonal projection operators {Πk}k≤d ∈ L(H), which project
states in H to eigenstates corresponding to the λk. If agents assign a probability p0 to a projection
operator Π0, which is common to two families of orthogonal projectors, {Πk}k≤d, {Γk}k≤d, and do
corresponding experiments, they would like to be sure that, if they find the frequency p0, the results
describe the same event Π0. This is a non-contextuality condition (note that the set of (conditional)
probabilities over realized values is contextual, as a theorem by Kochen–Specker [8] and an example
by Hardy [9] show). A famous theorem from Gleason [10] says that to any non-contextual measure
µ on the sets of projectors {Π}H over a Hilbert space H of dimension d ≥ 3, there exists a unique
positive semi-definite, self-adjoint operator $ of trace class one, called density operator, such that
µ(Π) = tr($Π) for all Π. This is the Born-rule. The theorem defines the appropriate measures as well
as the quantum states, which are identified with the density-operators $. There is a special class S(H)

of density-operators, called pure states. Every vector, |ψ〉 ∈ H , defines a corresponding pure state
$ = |ψ〉〈ψ|, which is the projection operator onto |ψ〉. The set of density operators, D(H) ⊂ L(H),
is the set of all convex combinations of pure states S(H) ⊂ D(H). The weights corresponding to
the convex combinations are the second category of probabilities mentioned above. As important as
Gleason’s theorem of course is, because it technically defines the right quantum-probabilities, it does
not say much about their nature/interpretation.

2.1. Probabilities of Mixed States

The simplest case is the second category, namely the probability weights of mixed states.
In the mixed case, there are ex-ante probabilities pa ≥ 0, a ≤ M, ∑a≤M pa = 1, which generate
states of the form

$ = ∑
a≤M

pa$a, (1)

where the {$a = |ψa〉 〈ψa | }a≤M are (non-necessarily orthogonal) pure states. These probabilities
are considered to be of classical type, i.e., uncertainties about a possible set of preparations.
Since the rational numbers Q are dense in R, we may assume that, with an arbitrarily small error,
pa = ra/qa, r, q ∈ N+. Let Q = ∏a≤M qa and Qa = ∏a′≤M, a′ 6=a qa, respectively. We can then set
N = Q and ma = Qara to get a number of N states

{
$ak $a

}
a≤M, k≤ma

with probabilities pak = 1/N
and aggregate probabilities pa = ma/N. This way, the probabilities pa clearly reflect the indifference
principle resulting from the permutation-symmetry of (1).

2.2. Probabilities of Pure States

We now consider a system S represented by a pure state |ψ〉 ∈ H with resolution in the eigenbasis
| ea〉 , 1 ≤ a ≤ M, of a self-adjoint operator A ∈ L(H), |ψ〉 = ∑a≤M ψa| ea〉 , ψa ∈ C. We can form
the corresponding pure state $ψ = |ψ〉〈ψ| with matrix-entries

(
$ψ

)
aa′ = ψaψ∗a′. The Born rule then

assigns probabilities

pa =
|ψa|2

‖ψ‖2 , (2)
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to the projectors $a = | ea〉 〈ea |, a ≤ M. Assume that there is an additional system E with orthonormal
basis states {|n〉}n≤N , which is initially in the base state $0 = |0〉〈0| . A measurement of some state $

by the probe E is an operation U on the joint system $joint = |0〉〈0| ⊗ $

U(|0〉〈0| ⊗ $)U∗, (3)

where U is unitary UU∗ = Id (this follows from the fact that a general interaction
evolution U(t) = e−(i/})Ht is unitary). A general unitary transformation on a tensor-product, expressed
in the respective bases, can be written as a matrix

U = Σan, a′n′uan, a′n′ | a〉|n〉 〈a′ | 〈n′ |= Σnn′Ann′ ⊗ |n〉 〈n′ |, (4)

where the operators Ann′ are given by Ann′ = ∑aa′ una, n′a′ |a〉〈a′|. We denote the diagonal sub-block
An0 simply by An. Since U is unitary, we have

〈0|UU∗|0〉 = Σn An A∗n = Id. (5)

Conversely, we can choose any set of operators An satisfying the resolution of
the identity-condition (5) to define a measurement on an initial joint state $joint = |0〉〈0|

⊗
$. We now

have the necessary elements in place to give the main argument.
Assume there is a second system E with basis {|n}n5N and an observer who would like to

know in what state $a = | ea〉 〈ea | the system S is in, by making an appropriate measurement U on
the joint system $joint = |0〉〈0|

⊗
$ψ. If that is possible in the first place, then, having no additional

knowledge, the observer does not, a priori, know in what state |n〉, n ≤ N, the probe will be after
the measurement and before observation, leading to permutation-symmetry. Let the underlying pure
state |ψ〉 ∈ H have coefficients ψa =

√
maeiϕa , ma ∈ N, ϕa ∈ R (since the rational numbers Q

are dense in R, the choice of ma ∈ N is general enough). The probe E can be chosen appropriately
coarse-grained (this coarse-graining is first introduced in [11] in the context of many-worlds) such that
N = ∑a≤M ma. The observer is after the measurement and before observation in a situation where,
by lack of further information, she will by Laplace’s principle of indifference a priori attribute to each
outcome 〈n|U

(
|0〉〈0|

⊗
$ψ

)
U∗|n〉 equal probability pn = 1/N, n ≤ N. This attribution is equivalent

to maximizing the entropy function H(p) = −∑N
n = 1 pn log(pn). The observer can therefore write

down in the spirit of (1) an average of outcomes

$̃ = Σn≤N
1
N

(
〈n|U

(
|0〉〈0|

⊗
$ψ

)
U∗|n〉

)
= Σn≤N

1
N
(

An$ψ A∗n
)
. (6)

For our purpose, we now chose the operators An to be the scaled projectors{
P̃ak (1/

√
ma)Pa

}
a≤M, k≤ma

to the basis-states | ea〉 , a ≤ M. Note that we have replaced

the simple-index n by the double-index ak. This choice is consistent with the demands of
a measurement, since the P̃ak satisfy (5)

Σn≤N P̃∗n P̃n = Σa≤MΣk≤ma P̃∗ak
P̃ak = Σa≤MP∗a Pa = Id. (7)

Therefore, we can write (6) in the following form

$̃ = Σn≤N
1
N

(
P̃n$ψ P̃∗n

)
= Σa≤MΣk≤ma

1
N

(
P̃∗ak

$ψ P̃ak

)
= Σa≤M

1
N
(

Pa$ψP∗a
)
= Σa≤M

ma

N
$a. (8)
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Comparing Equation (8) with Equation (1), we see that $̃ can be viewed as a mixed state
with probabilities

pa =
ma

N
=
|ψa|2

‖ψ‖2 , (9)

which is the Born-rule.
Before we turn to consider the frequencies, let’s have a look at composite systems $12 ∈ D(H ⊗ H).

To show the principle it is sufficient to look at binary systems.) The state $12 may be mixed or pure and
we can apply the findings in a straightforward way. The single components are given by the partial
trace $1/2 = tr2/1($12). If the state has the form $12 = $1 ⊗ $2, then we are in the separable case
and can apply the results in 2.1 and 2.2 to each individual component, which can be pure or mixed.
In case $12 is entangled, then the partial trace always produces a mixed state. When we now consider
frequencies, then the individual quantum systems might be single or composite, what is important
is that they are temporally separable in order to allow for statistics.

2.3. Frequencies

The theory so far does only cover single trials. Assume there is a density-operator $ ∈ D
and a complete set of projectors {Πk}k≤M. To find probabilities for a sequence of different outcomes
k1, . . . , kN , of N experiments on $ (this is done on N identically prepared systems) we can apply
Gleason’s theorem to the tensor product [5]

$N = $⊗ . . .⊗ $, (10)

to get
p(k1, . . . , kN) = tr

(
$NΠk1 ⊗ ...⊗ΠkN

)
= pk1 , . . . , pkN , (11)

with
pk = tr($Πk). (12)

So the outcomes of repeated measurements are identically and independently distributed
(i.i.d.). The probability for outcome k to occur nk times, k ≤ M, ∑k nk = N, is given by
the multinomial distribution

p(n1, . . . , nM) = (N!/n1!, . . . , nM!)pn1
1 , . . . , pnM

M . (13)

The individual counting functions nk are binomially distributed and hence E(nk) = Npk. For large
N the averages, nk, of the statistical counting functions approach the expectation values and therefore

nk/N ≈ pk. (14)

The fact that nk → E(nk), N → ∞, is due to the law of large numbers. The frequencies with their
implied principle of indifference (14) indeed replicate the probabilities. This is achieved by a strong
assumption in the theory, reflected in Equations (11), (13), and (14). It is the independence condition
for the multi-trial states $N , N ∈ N. Actually, it is itself a consequence of the assumption that agents
have maximal information about a system of N copies of a quantum state [5]. Independence implies
serial permutation-symmetry, i.e., the fact that it does not count in which sequence the results occur.
So in the case of multiple-trials the theory uses a stronger assumption than permutation-symmetry to
obtain the compatible frequency-probabilities (14). Can we weaken the assumption?
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It is remarkable that, due to the (infinite) de-Finetti theorem [12], the assumption of independence
can be weakened to the one of exchangeability, to still allow reasonable statistics. Exchangeability
stands for permutation-symmetry of the joint distribution of N trials Xn, n ≤ N,

$N(X1, . . . , XN) = $N

(
Xπ(1), . . . , Xπ(N)

)
, π ∈ Per(N),

and for consistency from step N to N− 1, $N−1 = tr$N . If satisfied, it can uniquely represent an N-trial
state $N by an integral over product states of form (10) by means of a measure µ on S(H)

$N =
∫
S(H)

µ($)$N . (15)

(The measure µ belongs to the second category of probabilities.) For states $N of form (15)
the statistical approach (14) works with some suitable adjustments (while the distributions are directly
integral averages over the product state-distributions, there holds a law of large numbers only
conditional to a suitable σ-algebra [13]). Whether we work with states of maximal information
(10) or states of form (15), in any case permutation-symmetry and the principle of indifference are key
features of the frequencies (14), derived in multiple-trials.

3. Conclusions

We have, in the exposition, not made use of any specific interpretation of quantum mechanics,
but relied on the original formalism only. We have seen that it is possible to interpret all
the probabilities in quantum physics as arising from permutation-symmetry and the principle of
indifference, which amounts to maximum entropy. For the single trial, this simply means that at
any single point in time we have a number of equiprobable states which can occur. In the case
of multiple trials, any single state can occur equiprobably at a number of different points in time.
Since permutation-symmetry is very natural and inherent in statistics, and since Laplace’s principle
is a basic rational intuition, which underlies elementary combinatorics, we feel that both together
are acceptable principles on which to base a theory of nature. So, given the projectors on Hilbert space
as the model-structure, the assumptions of non-contextuality and independence/exchangeability lead
together with the principle of indifference directly to both a formal and interpretative specification
of the probabilities in quantum physics. The thus specified probabilities are real in as much, as they
belong to a theory, in which agents and systems enter into a testable relationship. They are hence as
much features of agents as they are of the physical systems.
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