

  Complex Dynamics of an SIR Epidemic Model with Nonlinear Saturate Incidence and Recovery Rate




Complex Dynamics of an SIR Epidemic Model with Nonlinear Saturate Incidence and Recovery Rate







Entropy 2017, 19(7), 305; doi:10.3390/e19070305




Article



Complex Dynamics of an SIR Epidemic Model with Nonlinear Saturate Incidence and Recovery Rate



Qianqian Cui 1, Zhipeng Qiu 1, Wenbin Liu 2 and Zengyun Hu 3,4,*





1



School of Science, Nanjing University of Science and Technology, Nanjing 210094, China






2



Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China






3



State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China






4



Department of Geography, Hong Kong Baptist University, Kowloon, Hong Kong, China









*



Correspondence: Tel.: +86-991-782-3131







Received: 10 May 2017 / Accepted: 21 June 2017 / Published: 27 June 2017



Abstract:



Susceptible-infectious-removed (SIR) epidemic models are proposed to consider the impact of available resources of the public health care system in terms of the number of hospital beds. Both the incidence rate and the recovery rate are considered as nonlinear functions of the number of infectious individuals, and the recovery rate incorporates the influence of the number of hospital beds. It is shown that backward bifurcation and saddle-node bifurcation may occur when the number of hospital beds is insufficient. In such cases, it is critical to prepare an appropriate amount of hospital beds because only reducing the basic reproduction number less than unity is not enough to eradicate the disease. When the basic reproduction number is larger than unity, the model may undergo forward bifurcation and Hopf bifurcation. The increasing hospital beds can decrease the infectious individuals. However, it is useless to eliminate the disease. Therefore, maintaining enough hospital beds is important for the prevention and control of the infectious disease. Numerical simulations are presented to illustrate and complement the theoretical analysis.
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1. Introduction


Classical susceptible-infectious-removed (SIR) epidemic models with bilinear incidence rate typically have at most one endemic equilibrium; the disease will die out when the basic reproduction number is less than unity and will persist otherwise [1,2,3,4]. However, in practice, many infectious diseases exhibit multiple peaks or periodic oscillations during the outbreak. Therefore, various nonlinear incidence rates have been proposed recently due to the fact that they can produce rich dynamics for the epidemic models.



Liu et al. [5] used the following form of nonlinear saturated incidence rate to incorporate the effect of behavioral changes


[image: there is no content]



(1)




where [image: there is no content] measures the infection force of the disease, [image: there is no content] describes the inhibition effect from the behavioral change of the susceptible individuals when the number of infectious individuals increases, [image: there is no content] are positive constants and [image: there is no content] is non-negative constant [6,7]. The nonlinear function [image: there is no content] given in (1) has three types, for details one can see [7]. Capasso and Serio [8] used the case when [image: there is no content], i.e., [image: there is no content], to represent a “crowding effect” or “protection measure” in investigating the cholera epidemic in Bari in 1973. Due to the nonlinearity and saturation property of these incidence rates, SIR epidemic models usually possess multiple endemic equilibria and rich nonlinear dynamics [5,6,7,8,9,10,11,12]. Furthermore, a compartmental model with nonlinear incidence rate is usually used to explore the impact of intervention strategies on the transmission dynamics of infectious diseases. Therefore, it is essential to investigate the dynamics of this type of epidemic model to prevent and control the spread of infectious diseases.



On the other hand, the resources of health system availability to the public determines how well the diseases are controlled. Particularly, the capacity of the hospital settings and effectiveness and efficiency of the treatment may influence the recovery rate [13]. In classical epidemic models, the recovery rate is usually assumed to be proportional to the number of infected, which means that the resources of the health system are quite sufficient for the infectious disease [1]. In fact, the number of health care workers and the facilities of the hospital including medical apparatus and equipment, the number of hospital beds and medicines available to the public are limited, especially during the outbreak of the disease. For instance, during the severe acute respiratory syndrome (SARS) outbreaks in 2003, the Chinese government had to create the first and only SARS hospital, Beijing Xiaotangshan Hospital, to treat the larger number of SARS patients, as the normal public-health system and capacity in Beijing City were unable to cope with the rapidly increasing number of SARS cases [9,14]. Hence, the capacity of the health care system from both a modeling and analysis of the view should be considered.



Based on the World Health Organization (WHO) Statistical Information System, hospital bed-population ratio (HBPR), the number of available hospital beds per 10,000 population, is used by health planners as a method of estimating resource availability to the public [13,15]. To study the impact of HBPR, Shan and Zhu [13] proposed the following nonlinear recovery rate function of the number of hospital beds per 10,000 population b and the number of infective individuals I


[image: there is no content]



(2)




where [image: there is no content], [image: there is no content] ([image: there is no content] are, respectively, the minimum and maximum per capita recovery rates. Parameter b is considered as a measure of available hospital resource. Their study showed that the SIR model with standard saturate incidence and recovery rate (2) has rich and interesting dynamics such as backward bifurcation, saddle-node bifurcation, Hopf bifurcation and cusp type of Bogdanov–Takens bifurcation of codimension 3. Recently, Abdelrazec et al. [16] applied the recovery rate (2) to investigate the impact of available resources of the health system on the spread and control of dengue fever, which could be helpful for public health authorities in their planning of a proper resource allocation for the control of dengue transmission.



Motivated by these points, our model thus incorporates both nonlinear incidence rate and recovery rate to well control the emerging infectious. In other words, the combined effects of government intervention and hospitalization condition are considered to prevent an outbreak. However, it is more natural to consider perturbations of contagion coefficients through the Wiener process or treat them directly as random variables since the transmission coefficients are usually unknown in practice (see, for example, [17,18] and references therein). Here, we focus on the deterministic epidemic model and leave the consideration of randomness in epidemiological model as our future work. Therefore, in this paper, we investigate the following deterministic epidemic model with a nonlinear incidence rate and recovery rate:


[image: there is no content]



(3)




with [image: there is no content] defined in (2). In system (3), [image: there is no content] and [image: there is no content] are the numbers of susceptible, infectious and recovered individuals at time t, respectively; [image: there is no content] is the recruitment rate of the population; [image: there is no content] is the per capital natural death rate of the population; [image: there is no content] is the per capita disease-induced death rate; [image: there is no content] is the per capita recovery rate of infectious individuals incorporating the impact of the capacity and limited resources of the health care system, and [image: there is no content] is the number of available hospital beds per 10,000 population.



The organization of this paper is as follows. In the next section, we investigate the existence and classification of the equilibria for system (3). In Section 3, we analyze the nonlinear dynamics for system (3) such as forward bifurcation, backward bifurcation, saddle-node bifurcation and Hopf bifurcation. In Section 4, the numerical simulations are obtained to verify our results. A brief discussion is then presented and conclusions are presented in the final section.




2. Existence and Classification of Equilibria


Since the first two equations in system (3) are independent of variable R, it suffices to consider the following reduced system:


[image: there is no content]



(4)







It should be noted that the total population number [image: there is no content] satisfies the equation [image: there is no content] which implies that [image: there is no content] as [image: there is no content]. Therefore, the biologically feasible region


[image: there is no content]








is a positively invariant with respect to model (4).



2.1. Existence of Equilibria


It is obviously that system (4) always admits a disease-free equilibrium [image: there is no content]. Following the techniques of van den Driessche and Watmough [19], the basic reproduction number of system (4) can be expressed as




[image: there is no content]



(5)





The endemic equilibrium of system (4) can be obtained by solving the following algebraic equations


A−βSI1+αI−dS=0,βS1+αI−d−ϵ−μ(b,I)=0.



(6)







From the second equation of (6), we have


[image: there is no content]



(7)







Substituting (7) into the first equation of (6) leads to


[image: there is no content]



(8)




where


[image: there is no content]











Let [image: there is no content], then


Δ0=d2δ12(1−R0)2+[((β+αd)b−d)(μ1−μ0)+(β+αd)bδ0]2+2dδ1[((β+αd)b−d)(μ1−μ0)−(β+αd)bδ0](1−R0),








where [image: there is no content] and [image: there is no content]. We will use these two notations in the whole paper. If [image: there is no content], the roots of (8) read


I1=−a1−Δ02a0,I2=−a1+Δ02a0.



(9)







If [image: there is no content], the two roots [image: there is no content] and [image: there is no content] of (8) coalesce into a unique root with multiplicity 2 denoted as [image: there is no content]. If [image: there is no content], system owns endemic equilibrium [image: there is no content] with


Si=(d+ϵ+μ(b,Ii))(1+αIi)β,i=1,2.











If [image: there is no content], the two endemic equilibria [image: there is no content] and [image: there is no content] coalesce into one endemic equilibrium [image: there is no content], where


[image: there is no content]











Based on the above statements, we investigate the existence of equilibria in the following three cases.

	
Case 1. [image: there is no content].



In this case, it is easy to show that [image: there is no content], [image: there is no content] and [image: there is no content]. Then, quadratic Equation (8) has a unique positive root [image: there is no content]. That is, system (4) has a unique endemic equilibrium [image: there is no content].



	
Case 2. [image: there is no content].



In this case, we have [image: there is no content], [image: there is no content] and [image: there is no content]. Quadratic Equation (8) has no positive root if [image: there is no content] and a unique positive root [image: there is no content] if [image: there is no content]. One can verify that [image: there is no content] is equivalent to


[image: there is no content]



(10)







In the case of [image: there is no content], [image: there is no content] guarantees the inequality (10) holds. Then, system (4) has a unique endemic equilibrium [image: there is no content].



	
Case 3. [image: there is no content].



In this case, we have that [image: there is no content] and [image: there is no content]. It is easy to show that (8) has no positive root if [image: there is no content], and inequality (10) implies that [image: there is no content] if and only if [image: there is no content]. Therefore, Equation (8) has no positive root if [image: there is no content], that is, system (4) has no endemic equilibrium when [image: there is no content].



If [image: there is no content], then [image: there is no content]. The number of roots for Equation (8) determined by [image: there is no content], namely, Equation (8) has no positive root if [image: there is no content], one root [image: there is no content] of multiplicity 2 if [image: there is no content], and two positive roots [image: there is no content] and [image: there is no content] if [image: there is no content]. Next, we determine the signs for [image: there is no content]. By considering [image: there is no content] as a quadratic equation of variable [image: there is no content], a straightforward computation derives that [image: there is no content] when [image: there is no content] or [image: there is no content]; [image: there is no content] when [image: there is no content], [image: there is no content], and [image: there is no content] when [image: there is no content], where


[image: there is no content]








and


[image: there is no content]











Notice that [image: there is no content]. Therefore, system (4) has no endemic equilibrium if [image: there is no content], one endemic equilibrium [image: there is no content] of multiplicity 2 if [image: there is no content], and two endemic equilibria [image: there is no content] and [image: there is no content] if [image: there is no content].








Summarizing the discussions above, we have the following results.



Theorem 1. 

For system (4),

	1. 

	
The disease-free equilibrium [image: there is no content]always exists.




	2. 

	
If [image: there is no content], there exists a unique endemic equilibrium [image: there is no content].




	3. 

	
If [image: there is no content], there exists a unique endemic equilibrium [image: there is no content]provided by [image: there is no content]; otherwise, there is no endemic equilibrium.




	4. 

	
If [image: there is no content], and

	(a) 

	
if [image: there is no content], there is no endemic equilibrium;




	(b) 

	
if [image: there is no content], system (4) has two endemic equilibria [image: there is no content]and [image: there is no content]when [image: there is no content], and these two equilibria coalesce into one endemic equilibrium [image: there is no content]when [image: there is no content]; otherwise, there is no endemic equilibrium.


















2.2. Types of Equilibria


In this section, we investigate the stabilities of the equilibria for system (4). Let [image: there is no content] be any equilibrium of system (4). Then, the Jacobian matrix [image: there is no content] of system (4) around [image: there is no content] can be expressed as


[image: there is no content]



(11)







The corresponding characteristic equation of [image: there is no content] is


[image: there is no content]



(12)




where [image: there is no content] and [image: there is no content] are the trace and the determinant of matrix [image: there is no content], respectively.



Theorem 2. 

For system (4),

	1. 

	
if [image: there is no content][image: there is no content]is an attracting node;




	2. 

	
if [image: there is no content][image: there is no content]is a hyperbolic saddle;




	3. 

	
if [image: there is no content][image: there is no content]is a non-hyperbolic, and

	(a) 

	
If [image: there is no content][image: there is no content]is a saddle-node of codimension 1.




	(b) 

	
If [image: there is no content][image: there is no content]is a semi-hyperbolic attracting node of codimension 2.

















Proof. 

Direct calculation yields that [image: there is no content] and [image: there is no content] are the two roots of the Jacobian matrix [image: there is no content] at disease-free equilibrium [image: there is no content]. Then, [image: there is no content] is an attracting node if [image: there is no content], while it is a hyperbolic saddle if [image: there is no content].



If [image: there is no content], the second eigenvalue is zero. To determine the type of [image: there is no content], we first transform the disease-free equilibrium [image: there is no content] of system (4) into the origin. Let [image: there is no content] and [image: there is no content]; then, we have


[image: there is no content]



(13)







Expanding system (13) in Taylor series at [image: there is no content] to the second order, it follows that


[image: there is no content]



(14)







Using the transformation


[image: there is no content]








then we can rewrite system (14) as


[image: there is no content]



(15)







If [image: there is no content], it is unnecessary to calculate the center manifold, and system (15) already shows that [image: there is no content] is a saddle-node.



Based on the center manifold theorem [20], the center manifold [image: there is no content] of system (15) at origin can be approximately represented by


[image: there is no content]



(16)







If [image: there is no content], we can restrict system (15) to the center manifold [image: there is no content] as follows:


[image: there is no content]











Therefore, [image: there is no content] is a semi-hyperbolic attracting node if [image: there is no content]. This proof is completed. ☐





Theorem 3. 

For system (4), [image: there is no content]is a hyperbolic saddle whenever it exists and [image: there is no content]is an anti-saddle whenever it exists. More precisely, if we denote [image: there is no content]where [image: there is no content]and [image: there is no content]are given in (23), then

	1. 

	
if [image: there is no content], [image: there is no content]is a repelling node or focus;




	2. 

	
if [image: there is no content], [image: there is no content]is a weak focus or a center;




	3. 

	
if [image: there is no content], [image: there is no content]is a attracting node or focus.











Proof. 

Denoting the endemic equilibrium point as [image: there is no content], the corresponding characteristic equation of [image: there is no content] is


[image: there is no content]



(17)




where


TrJ(E¯)=−(β+αd+αδ0)I¯3+(2b(β+αd+αδ0)+d)I¯2(b+I¯)2(1+αI¯)−(b(β+αd+αδ1)+2d+μ0−μ1)bI¯+b2d(b+I¯)2(1+αI¯),



(18)




and


[image: there is no content]



(19)







Let [image: there is no content], then [image: there is no content] can be rewritten as


[image: there is no content]



(20)







We prove the sign of [image: there is no content] in two cases. If [image: there is no content], it follows from Theorem 1 that [image: there is no content] once the endemic equilibrium exists. Since [image: there is no content] for all [image: there is no content], then there must exist a unique [image: there is no content] such that [image: there is no content] when [image: there is no content], [image: there is no content] when [image: there is no content], and [image: there is no content] when [image: there is no content]. Simple computation derives that [image: there is no content]. Since [image: there is no content], then [image: there is no content] when [image: there is no content] exists and [image: there is no content] when [image: there is no content] exists. Therefore, [image: there is no content] is a hyperbolic saddle and [image: there is no content] is an anti-saddle. If [image: there is no content], [image: there is no content] is the unique endemic equilibrium for system (4). One can easily verify that [image: there is no content]. Therefore, [image: there is no content] is an anti-saddle node once it exists.



Rewriting (18) as follows:


[image: there is no content]



(21)




where


φ(I2)=(β+αd+αδ0)I23+(2b(β+αd+αδ0)+d)I22+(b(β+αd+αδ1)+2d+μ0−μ1)bI2+b2d.











Since [image: there is no content] satisfies Equation (8), then we can simplify [image: there is no content] as


[image: there is no content]



(22)




where


[image: there is no content]



(23)







Using Equations (21) and (22), we know that [image: there is no content] and [image: there is no content] have the opposite sign. Thus, if [image: there is no content], [image: there is no content] is a repelling node or focus; if [image: there is no content], [image: there is no content] is an attracting node or focus; and if [image: there is no content], [image: there is no content] could be a weak focus or a center. ☐





Theorem 4. 

If [image: there is no content]and [image: there is no content]or [image: there is no content]and [image: there is no content], then the unique disease-free equilibrium [image: there is no content]is globally asymptotically stable, whereas if [image: there is no content], it is unstable. If [image: there is no content]and [image: there is no content], then the endemic equilibrium [image: there is no content]is globally asymptotically stable.





Proof. 

It follows from Theorem 1 that system (4) has no endemic (or interior) equilibrium if [image: there is no content] and [image: there is no content] or [image: there is no content] and [image: there is no content], hence there is no closed orbit in the positive invariant region [image: there is no content]. Using Theorem 2 and Poincaré–Bendixson theory, we know that [image: there is no content] is globally asymptotically stable if [image: there is no content] and [image: there is no content] or [image: there is no content] and [image: there is no content], while it is unstable if [image: there is no content].



Next, we prove the stability of [image: there is no content]. The condition [image: there is no content] implies that [image: there is no content]. Thus, [image: there is no content] is locally stable. We use the Dulac criteria to prove the global stability of [image: there is no content] if [image: there is no content]. Define the Dulac function as


[image: there is no content]








and let


f=A−βSI1+αI−dSandg=βSI1+αI−dI−ϵI−μ(b,I)I.











After simple calculation, we have


∂(Bf)∂S+∂(Bg)∂I=−(β+αd+αδ0)I3+(2b(β+αd+αδ0)+d)I2I(b+I)2−(b(β+αd+αδ1)+2d+μ0−μ1)bI+b2dI(b+I)2.



(24)







It is not difficult to prove that if [image: there is no content], then [image: there is no content] always holds. By the Dulac criteria, system (4) has no closed orbits if [image: there is no content]. The proof is completed. ☐







3. Bifurcation


Noting that the reproduction number [image: there is no content] is the function of the parameters [image: there is no content] and parameter b has significant epidemiological meaning. Therefore, we consider [image: there is no content] and b as bifurcation parameters to describe the bifurcations in this paper. According to Theorems 1 and 4, we know that [image: there is no content] is globally asymptotically stable under the conditions [image: there is no content] and [image: there is no content], and system (4) has multiple equilibria when [image: there is no content]. Therefore, in the following, we study the bifurcations in the case of [image: there is no content].



3.1. Backward Bifurcation and Saddle-Node Bifurcation


Theorem 5. 

When [image: there is no content], system (4) undergoes forward bifurcation if [image: there is no content]; system (4) undergoes backward bifurcation if [image: there is no content], and system (4) undergoes pitchfork bifurcation if [image: there is no content].





Proof. 

Without loss of generality, we can choose [image: there is no content] as the bifurcation parameter. Let [image: there is no content]; here, [image: there is no content] is a perturbation parameter and [image: there is no content] corresponding to [image: there is no content]. Substituting [image: there is no content] into system (4) and using a similar calculation technique as in Theorem 2, we can reduce system (4) into the following center manifold:


[image: there is no content]



(25)




which is denoted as [image: there is no content]. Direct calculation yields that


f(0,0)=0,∂f∂X(0,0)=0,∂f∂μ1*(0,0)=0,∂2f∂X∂μ1*(0,0)=−1≠0,∂2f∂2X(0,0)=−βA(β+αd)bd2b−d2(μ1−μ0)βA(β+αd).











Based on Chapter 20.1D in [20], we know that system (25) undergoes a transcritical bifurcation if [image: there is no content]. Notice that [image: there is no content]. Therefore, when [image: there is no content] passes through [image: there is no content], system (4) undergoes forward bifurcation in the case of [image: there is no content], and it undergoes backward bifurcation if [image: there is no content].



If [image: there is no content], we can restrict system (4) to the center manifold as the following form:


X′=−μ1*X+βA((β+αd)d−β(μ1−μ0))d3(μ1−μ0)μ1*X2−δ0δ1(δ1+αA)2(μ1−μ0)A2X3+β2αAd3μ1*X3+o(|μ1*|2,|μ1*,X|4),



(26)




which is denoted as [image: there is no content]. Simple computation derives that


g(0,0)=0,∂g∂X(0,0)=0,∂g∂μ1*(0,0)=0,∂2g∂X∂μ1*(0,0)=0,∂2g∂X∂μ1*(0,0)=−1≠0,∂3g∂3X(0,0)=−δ0δ1(δ1+αA)2(μ1−μ0)A2<0.











Therefore, it follows from Chapter 20.1E in [20] that system (4) undergoes pitchfork bifurcation if [image: there is no content] in the case of [image: there is no content]. This proof is completed. ☐





Theorem 6. 

If [image: there is no content], and then system (4) undergoes saddle-node bifurcation when [image: there is no content]passes through [image: there is no content].





Proof. 

If [image: there is no content], it follows from Theorem 1 (iv) that two endemic equilibria [image: there is no content] and [image: there is no content] coalesce into a unique [image: there is no content]. One can easily obtain that 0 and [image: there is no content] are the two eigenvalues of characteristic equation for [image: there is no content]. Next, we only consider the case [image: there is no content].



Similar to the computational process in Theorem 2, we linearize system (4) at [image: there is no content] and diagonalize the linear part. After complication calculation, we can transform system (4) as the following system:


[image: there is no content]



(27)







Obviously, [image: there is no content] is a saddle-node point. Therefore, according to Chapter 20.1C in [20] and Theorem 1 (iv), we know that system (4) undergoes a saddle-node bifurcation when [image: there is no content] passes through the critical value [image: there is no content]. This proof is completed. ☐






3.2. Hopf Bifurcation


Next, we study the Hopf bifurcation of system (4). From the above discussion, Hopf bifurcation can only occur at endemic equilibrium [image: there is no content] and the necessary condition of Hopf bifurcation requires that [image: there is no content]. The proof of Theorem 3 implies that [image: there is no content] if and only if [image: there is no content], and [image: there is no content] if [image: there is no content] exists. Thus, the eigenvalues of [image: there is no content] have a pair of pure imaginary roots if and only if [image: there is no content]. Since [image: there is no content], then


[image: there is no content]



(28)







It follows from Theorem 3.4.2 in [21] that system (4) maybe undergo a Hopf bifurcation at endemic equilibrium [image: there is no content] if [image: there is no content].



Next, we study the normal form of system (4). Let [image: there is no content] and [image: there is no content]; then, system (4) becomes


[image: there is no content]



(29)







Expanding system (29) in Taylor series at [image: there is no content] to the third order, we have


[image: there is no content]



(30)




where


a11=−βI21+αI2−d,a12=−βS2(1+αI2)2,a13=−β(1+αI2)2,a14=0,a15=−αβS2(1+αI2)3,a16=0,a17=−α2βS2(1+αI2)4,a18=0,a19=−αβ(1+αI2)3,








and


a21=βI21+αI2,a22=βS2(1+αI2)2−(μ1−μ0)b2(b+I2)2−δ0,a23=β(1+αI2)2,a24=0,a25=−αβS2(1+αI2)3+(μ1−μ0)b2(b+I2)3,a26=0,a27=α2βS2(1+αI2)4−(μ1−μ0)b2(b+I2)4,a28=0,a29=−αβ(1+αI2)3.











Using the translation


[image: there is no content]








we can rewrite system (30) as


[image: there is no content]



(31)




where


f(x,y)=−a13+a15a22a12a22a12x2−a15ω2a122y2+a13+2a15a22a12ωa12xy−a17ω3a123y3−2a19+3a17a22a12a22ωa122x2y+a19+3a17a22a12ω2a122xy2+a19+a17a22a12a222a122x3,








and


g(x,y)=a23+a22a25a12−a13a22a12−a15a222a122a22ωx2+a13a22a12+2a15a222a122−2a22a25a12−a23xy+a25−a15a22a12ωa12y2+a19a22a12+a17a222a122−a22a27a12−a29a222a12ωx3+2a29+3a22a27a12−3a17a222a122−2a19a22a12a22a12x2y+a27−a17a22a12ω2a122y3+a19a22a12+3a17a222a122−3a22a27a12−a29ωa12xy2.











Notice that system (31) is exactly the normal form of system (4). Based on Theorem 3.4.2 in [21], the discriminatory quantity [image: there is no content] is given by


[image: there is no content]








where [image: there is no content] denotes [image: there is no content], etc. Thus, after an extensive calculation, we have


σ=18a123ω2[−a12(a222+ω2)(a132a22+a15a22a23+a13a22a25−2a22a25−a19ω2−3a27ω2) +a123a22a232−a15(a13+2a25)(a222+ω2)2−a122(3a222a23a25+a23a25ω2+2a22a29ω2)].











If the discriminatory quantity [image: there is no content] is not zero, we have the following result.



Theorem 7.

System (4) undergoes a Hopf bifurcation at endemic equilibrium [image: there is no content]if [image: there is no content]. Moreover, if [image: there is no content](resp., [image: there is no content]), then at least one attracting (resp., repelling) limit cycle bifurcates from [image: there is no content].







4. Bifurcation Diagram and Simulation


The theoretical results in previous sections show that the dynamics of system (4) depend on the expressions of [image: there is no content] and [image: there is no content]. Therefore, in the following, we first analyze these expressions in the [image: there is no content] plane.



From the expression of the basic reproduction number [image: there is no content], we know that [image: there is no content] defines a straight line [image: there is no content] in [image: there is no content] plane


L0:μ1=βAd−d−ϵ.








[image: there is no content] defines a hyperbola [image: there is no content] in [image: there is no content] plane


Ca:b=βA−d(d+ϵ+μ0)(β+αd)(d+ϵ+μ1)≜fa(μ1).











One can easily verify that hyperbola [image: there is no content] and line [image: there is no content] intersects at point [image: there is no content], and [image: there is no content] is a decreasing convex function of [image: there is no content] with a horizontal asymptote [image: there is no content].



If [image: there is no content], we obtain the curves [image: there is no content] by solving b in term of [image: there is no content], where


CΔ±:b=βA(μ1−μ0)+δ0(dδ1−βA)±2β(μ1−μ0)δ0(dδ1−βA)(β+αd)δ12≜fΔ±(μ1).











A straightforward calculation leads to [image: there is no content] and [image: there is no content], which suggests that [image: there is no content] is tangent to the curve [image: there is no content] at the point [image: there is no content]. Furthermore, for any [image: there is no content], we have


[image: there is no content]








and


dfΔ−(μ1)dμ1<0,d2fΔ−(μ1)dμ12>0,limμ1→+∞fΔ−(μ1)=0.











Therefore, the curve [image: there is no content] under the curve [image: there is no content] is convex and decreasing with the asymptote [image: there is no content]. [image: there is no content] determines a curve [image: there is no content]


Cδ:−a1+Δ02a0m1+m2≜fδ(μ1,b),








where [image: there is no content] are given in (23). Furthermore, we define


Cb:b=d(μ1−μ0)(β+αd)(d+ϵ+μ1),Cμ:b=μ1−μ0−2dβ+αd+αδ1,








which will be used later.



Based on the above discussions and Theorem 1, let


Ω0=(μ1,b)|b>fΔ−(μ1),μ1>βA/d−d−ϵ,Ω1=(μ1,b)|b>0,μ0<μ1<βA/d−d−ϵ,Ω2=(μ1,b)|0<b<fΔ−(μ1),μ1>βA/d−d−ϵ.











Then, system (4) has no endemic equilibrium in region [image: there is no content], one endemic equilibrium [image: there is no content] in region [image: there is no content] and two equilibria [image: there is no content] and [image: there is no content] in region [image: there is no content]. The two equilibria in [image: there is no content] coalesce into one equilibrium [image: there is no content] on curve [image: there is no content]. For more intuitive observation, one can see Figure 1a.


Figure 1. (a) the bifurcation curve in the [image: there is no content] plane; and (b) the stability curve of equilibria in the [image: there is no content] plane.



[image: Entropy 19 00305 g001]






The stability of these equilibria can be observed in Figure 1b. According to Theorem 2, the disease-free equilibrium [image: there is no content] always exists, and it is locally asymptotically stable (L.A.S) in region [image: there is no content] and unstable in region [image: there is no content]. Furthermore, Theorem 4 suggests that [image: there is no content] is globally asymptotically stable (G.A.S) in region I (green region in Figure 1b). From Theorem 3, we know that [image: there is no content] is always unstable whenever it exists, and [image: there is no content] is unstable in region II (red region in Figure 1b) and is L.A.S. in region II1 (light blue region in Figure 1b). Moreover, Theorem 4 implies that [image: there is no content] is G.A.S in region II2 (blue region in Figure 1b). Finally, we choose a point (marked in black dot in Figure 1b) in the region III and plot its phase portrait in Figure 2. It is clear that the disease-free equilibrium [image: there is no content] and two endemic equilibria [image: there is no content] and [image: there is no content] coexist, and [image: there is no content] is L.A.S, [image: there is no content] is a saddle and [image: there is no content] is unstable.


Figure 2. Phase portrait of system (4) when [image: there is no content], [image: there is no content] and [image: there is no content] coexist. Here, [image: there is no content] = 1, [image: there is no content], [image: there is no content] and [image: there is no content].



[image: Entropy 19 00305 g002]






According to Theorem 5, system (4) undergoes forward bifurcation on [image: there is no content], backward bifurcation on [image: there is no content], pitchfork bifurcation when transversally passing through the line [image: there is no content] at point [image: there is no content] and saddle-node (SN) bifurcation on the curve [image: there is no content] when the two endemic equilibria coalesce into one endemic equilibrium [image: there is no content]. Hopf bifurcation occurs on the curve [image: there is no content] as proved in Theorem 7. Figure 3a shows the Hopf bifurcation curve in the [image: there is no content] plane. We choose one point [image: there is no content] marked with a black asterisk below the blue curve in Figure 3a, and plot the phase portrait at this point in Figure 3b. We can observe from Figure 3b that the trajectory (blue curve) starting at [image: there is no content] spirals outward to the stable limit curve (black curve) and the trajectory (red curve) starting at [image: there is no content] spirals inward to the stable limit curve. At point [image: there is no content], one can easily obtain that [image: there is no content] does not exist and [image: there is no content] exists, but it is unstable. Therefore, system (4) has a stable limit curve that enriches the unstable equilibrium [image: there is no content].


Figure 3. (a) Hopf bifurcation curve in [image: there is no content] plane. The black asterisk below the curve is the point we choose to plot the portrait in (b). Here, other parameters have the same values as in Figure 2.



[image: Entropy 19 00305 g003]






The typical bifurcation diagrams in [image: there is no content] plane can be seen in Figure 4. Figure 4a shows that there is a forward bifurcation at [image: there is no content] from disease-free equilibrium [image: there is no content] to a unique endemic equilibrium [image: there is no content] when [image: there is no content]. If we decrease b from 0.65 to 0.61, system (4) not only undergoes forward bifurcation but also undergoes Hopf bifurcation as shown in Figure 4b. In this case, a stable limit cycle bifurcated from forward Hopf bifurcation and disappears from the backward Hopf bifurcation. If we further decrease b to 0.07, we can observe from Figure 4c that the backward bifurcation and saddle-node bifurcation occur. This illustrates that the number of hospital beds plays an important role in controlling an infectious disease.


Figure 4. Bifurcation diagrams of system (4) in [image: there is no content] plane with different b. The blue curves represent the stable fix points or limit cycles and the red dashed curves represent the unstable fix points.



[image: Entropy 19 00305 g004]






To further explore the impact of the number of hospital beds, we also present the possible bifurcation diagrams in [image: there is no content] plane by fixing all the parameters except b. Figure 5 depicts some typical bifurcation diagrams in [image: there is no content] plane with different [image: there is no content]. If [image: there is no content], one can see from Figure 5a,b that increasing the beds can reduce the number of infectious individuals but can not eliminate the disease. Especially in the case of [image: there is no content], Hopf bifurcation occurs and a stable limit cycle bifurcated from forward Hopf bifurcation disappears from backward bifurcation. If [image: there is no content], backward bifurcation and saddle-node bifurcation may occur and the disease dies out when the value of b is above the curve [image: there is no content] based on Theorem 4 and Figure 1.


Figure 5. Bifurcation diagrams of system (4) in [image: there is no content] with different [image: there is no content].



[image: Entropy 19 00305 g005]






Finally, we investigate the effect of the nonlinear incidence rate. For the nonlinear saturate incidence rate [image: there is no content], it is known that larger [image: there is no content] reflects stronger inhibition effect caused by the infective individuals. Although the increasing of [image: there is no content] cannot reduce the basic reproduction number [image: there is no content], it does affect the dynamical behaviors of the system. Based on previous results, we can see from Figure 6a that backward bifurcation occurs on green lines, saddle-node bifurcation occurs on red curves and Hopf bifurcation happens on blue curves. Figure 6a and the magnified diagram Figure 6b also illustrate that the occurrence of backward bifurcation, saddle-node bifurcation and Hopf bifurcation shrink with increasing [image: there is no content]. That is to say, the strong inhibition effect will lower the complexity of the transmission of the infectious diseases. In other words, enhancing the public’s defensive “crowding effect” through education or medium is beneficial to control and prevent the spread of the infectious diseases. Furthermore, Figure 6 also implies that the stronger inhibition effect of the lower number of hospital beds will be needed to eliminate the diseases. It reveals that strengthened public defensive “crowding effect” can mitigate the demand for hospital beds in controlling the spread of the disease during an outbreak.


Figure 6. (a) impact of the nonlinear incidence rate on dynamical behaviors of system (3); (b) the magnified diagram of black box marked in figure (a). Besides [image: there is no content], other parameters have the same values as in Figure 2.



[image: Entropy 19 00305 g006]







5. Discussion


Due to the important biological significance of hospital beds, in this paper, we have investigated an SIR epidemic model to simulate the impact of a limited health care system in terms of the number of hospital beds. Theoretical analysis and numerical simulations illustrated that system (4) has at most three equilibria and possesses complex nonlinear dynamics. From Theorems 5–7 and Figure 4 and Figure 5, we have shown that system (4) can undergo backward bifurcation, saddle-node bifurcation and Hopf bifurcation due to the insufficient number of hospital beds.



If [image: there is no content], it follows from Theorem 3 and Figure 1b that [image: there is no content] is the unique endemic equilibrium, and it is stable if b is sufficiently large such that the values of b are all above the curve [image: there is no content]. Since [image: there is no content] and [image: there is no content], then [image: there is no content] is a monotone decreasing function of b and [image: there is no content] trends to some positive constant as b to infinity. That is, increasing the number of hospital beds can only reduce the number of the infectious, but cannot eliminate the infectious disease (see Figure 5a,b). If [image: there is no content], it follows from Theorem 3 and Figure 1b that the disease can be eliminated when the value of b above the curve is [image: there is no content]. This means that the basic reproduction number is not the only evaluation standard for the control and elimination of the disease. It also depends on the resources of the health care system such as the number of hospital beds.



The bifurcation analysis is carried out through reducing the three dimension model (3) to the planar system (4). The typical bifurcation curves and diagrams are shown in Section 4, and all of the results reveal that system (3) possesses complex dynamics such as forward bifurcation, backward bifurcation, saddle-node bifurcation and Hopf bifurcation. Contrasting to the results for the classic SIR epidemic models, we also find that the nonlinearity of incidence rate and recovery rate are important factors that lead to very rich dynamics. Moreover, we find that the dynamical behavior of system (3) not only depends on [image: there is no content] but also relies on the number of hospital beds and the inhibition effect caused by the infective individuals. Therefore, the public health makers should consider the combined effects of the government intervention strategies (such as education and medium) and hospitalization conditions to make guidelines in controlling the spread of infectious diseases. Hopefully, in the future, we can explore more theoretical results to control and eliminate infectious diseases, especially in the outbreak of diseases.
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