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Abstract: Information geometry enables a deeper understanding of the methods of statistical
inference. In this paper, the problem of nonlinear parameter estimation is considered from a geometric
viewpoint using a natural gradient descent on statistical manifolds. It is demonstrated that the
nonlinear estimation for curved exponential families can be simply viewed as a deterministic
optimization problem with respect to the structure of a statistical manifold. In this way, information
geometry offers an elegant geometric interpretation for the solution to the estimator, as well as the
convergence of the gradient-based methods. The theory is illustrated via the analysis of a distributed
mote network localization problem where the Radio Interferometric Positioning System (RIPS)
measurements are used for free mote location estimation. The analysis results demonstrate the
advanced computational philosophy of the presented methodology.

Keywords: information geometry; statistical manifolds; nonlinear estimation; natural gradient;
maximum likelihood estimation

1. Introduction

Information geometry, pioneered by Rao in the 1940s [1] and further developed by Chentsov [2],
Efron [3,4] and Amari [5,6], considers the statistical relationships between families of probability
densities in terms of the geometric properties of Riemann manifolds. It is the study of intrinsic
properties of manifolds of probability distributions [7], where the ability of the data to discriminate
those distributions is translated into a Riemannian metric. Specifically, the Fisher information gives
a local measure of discrimination of the distributions which immediately provides a Riemannian
metric on the parameter manifold of the distributions [1]. In particular, the collection of probability
density functions called curved exponential families, which encapsulate important distributions in
many real world problems, have been treated using this framework [5].

The main tenet of information geometry is that many important notions in probability theory,
information theory and statistics can be treated as structures in differential geometry by regarding
a space of probabilities as a differentiable manifold endowed with a Riemannian metric and a family
of affine connections, including but not exclusively, the canonical Levi-Civita affine connection [6].
By providing a means to analyse the Riemannian geometric properties of various families of probability
density functions, information geometry offers comprehensive results about statistical problems simply
by considering them as geometrical objects. Information geometry opens new prospect to study the
intrinsic geometrical nature of information theory and provides a new way to deal with statistical
problems on manifolds. For example, Smith [8] studied the intrinsic Cramér-Rao bounds on estimation
accuracy for the estimation problems on arbitrary manifolds where the set of intrinsic coordinates is
not apparent, and derived the intrinsic bounds in the examples of covariance matrix and subspace
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estimation. Srivastava et al. [9,10] addressed the geometric subspace estimation and target tracking
problems under a Bayesian framework. Bhattacharya and Patrangenaru [11] treated the general
problem of estimation on Riemannian manifolds.

As this new general theory reveals the capability of defining a new perspective on existing
questions, many researchers are extending their work on this geometric theory of information to
new areas of application and interpretation. For example, a most important milestone in the area
of signal processing is the work of Richardson where the geometric perspective clearly indicates
the relationship between turbo-decoding and maximum-likelihood decoding [12]. The results of
Amari et al. on the information geometry of turbo and low-density parity-check codes extend the
geometrical framework initiated by Richardson to the information geometrical framework of dual
affine connections [13]. Other investigations include the geometrical interpretation of fading in wireless
networks [14]; the geometrical interpretation of the solution to the multiple hypothesis testing problem
in the asymptotic limit developed by Westover [15]; and a geometric characterization of multiuser
detection for synchronous DS/CDMA channels [16]. Recently, the framework of information geometry
has been applied to address issues in the application of sensor networks such as target resolvability [17],
radar information resolution [18] and passive sensor scheduling [19,20].

In this paper, we mainly focus on the nonlinear estimation problem and illustrate how it can
benefit from the powerful methodologies of information geometry. The geometric interpretation for the
solution to the maximum likelihood estimation for curved exponential families and the convergence
of the gradient-based methods (such as Newton’s method and the Fisher scoring algorithm) are
demonstrated via the framework developed by Efron and Amari et al. Our essential motivation of
this work is to provide some insights into the nonlinear parameter estimation problems in signal
processing using the theory of information geometry. By gaining a better understanding of the existing
algorithms through the use of information geometric method, we are, hopefully, enabled to derive
better algorithms for solving non-linear problems.

The work described in this paper consists of the following aspects. Firstly, an iterative maximum
likelihood estimator (MLE) for estimating non-random parameters with measurement of the curved
exponential distributions is presented. The estimator belongs to the gradient-based methods that
operate on statistical manifolds and can be seen as a generalization of Newton’s method to families
of probability density functions and their relevant statistics. Its interpretation in terms of differential
and information geometry provides insight into its optimality and convergence. Then, by utilizing
the properties of exponential families and thus identifying the parameters on statistical manifolds,
the implementation of the presented MLE algorithm is simplified via reparametrization. Furthermore,
it is shown that the associated stochastic estimation problem reduces to a deterministic optimization
problem with respect to the measures (statistics) defined over the distributions. Finally, an example
of a one-dimensional curved Gaussian is presented to demonstrate the method in the manifold.
A practical example of distributed mote network localization using the Radio Interferometric
Positioning System (RIPS) measurements is given to demonstrate the issues addressed in this paper.
The performance of the estimator is discussed.

In the next section, classical nonlinear estimation via natural gradient MLE for curved exponential
families is derived. The reparametrization from local parameters to natural parameters and expectation
parameters is highlighted. In Section 3, the principles of information geometry are introduced.
Further, the geometric interpretation for the presented iterative maximum likelihood estimator and
the convergence of the developed algorithm is demonstrated via the properties of statistical manifolds.
In Section 4, a one parameter estimation example is presented to illustrate the geometric operation of
the algorithm. The performance and efficiency of the algorithm are further demonstrated via a mote
localization example using RIPS measurements. Finally, conclusions are made in Section 5.
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2. Nonlinear Estimation via Natural Gradient MLE

In probability and statistics, exponential families (including the normal, exponential, Gamma,
Chi-squared, Beta, Poisson, Bernoulli, multinomial and many others) are an important class of
distributions naturally considered. There is a framework for selecting a possible alternative
parameterization of these distributions, in terms of the natural parameters, and for defining useful
statistics, called the natural statistics of the families. When the natural parameters in exponential
families are nonlinear functions of some “local” parameters, the distributions involved are in the curved
exponential families. While curved exponential families which encapsulate important distributions
are more suitable to describe many real world problems, the estimation of local parameters is often
non-trivial because of the nonlinearity in parameters.

In this section, a natural gradient based maximum likelihood estimator is derived to address
a nonlinear estimation problem for curved exponential families. Although the estimator has been
well-known as the Fisher scoring method in the literature, the interpretation of its iterative operations
via the theory of information geometry is interesting and will be presented in the following section.

The general form of a curved exponential family [5] can be expressed as

p(x|u) = exp
{

C(x) + θT(u)F(x)− ϕ
(
θ(u)

)}
= p

(
x|θ(u)

)
(1)

where x ∈ Ω is a vector valued measurement, θ = {θ1, . . . , θn} are the natural coordinates or canonical
parameters, u denote local parameters and F(x) = {F1(x), . . . , Fn(x)} are sufficient statistics for
θ = {θ1, . . . , θn}, and functions on the measurement space with elements denoted by x. The function
ϕ is called the potential function of the exponential family and it is found from the normalisation
condition

∫
Ω pθ(x)dx = 1, i.e.,

ϕ(θ) = log
∫

Ω
exp

{
C(x) +

n

∑
i

(
θiFi(x)

)}
dx (2)

The term “curved” comes from the fact that the distribution in Equation (1) is defined by
a smooth embedding u −→ θ(u) from the manifold parameterized by u into the canonical exponential
family p(x|θ).

As an example, a curved Gaussian distribution with local parameter u ∈ Rm, mean µ(u) ∈ Rn

and covariance Σ(u) ∈ Rn×n is expressed as

x ∼ N
(

µ(u), Σ(u)
)

(3)

By reparameterization, the standardized natural parameters (θ, Θ) of a curved Gaussian
distribution are found to be

θ = Σ−1(u) µ(u) (4)

Θ = −1
2

Σ−1(u) (5)

The sufficient statistics of the Gaussian distribution in Equation (3) is

F(x) = {x, xxT} (6)

and the potential function expressed in terms of local parameters (µ, Σ) is given by

ϕ(µ, Σ) =
1
2

µTΣ−1µ +
1
2

log |Σ|+ n
2

log 2π. (7)

where the superscript T signifies the transpose operation and n is the cardinality of µ ∈ Rn.
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Let l(θ, x) = log p(x|θ) be the log likelihood of a general family of distributions p(x|θ) as in
Equation (1), and∇θ the Jacobian matrix of the natural parameter θ as a function of the local parameters
u. We may write the following equations by using Equation (1)

∇l(θ, x) = ∇
{

θT(u)F(x)− ϕ (θ(u))
}

= ∇θT(u) [F(x)− η(u)]
(8)

where
η(u) ∆

= E{F(x)} (9)

is called the expectation parameter which connects to θ(u) by the well known Legendre
transformation [5], and

∇ϕ(u) = ∇θT(u)∇θϕ(θ) = ∇θT(u)η(u) (10)

Both the expectation parameter η and Fisher information matrix G(θ) can be obtained by
differentiating the potential function ϕ(θ) with respect to natural parameters [21]

ηi =
∂

∂θi
ϕ(θ)

∆
= E

{
Fi(x)

}
(11)

gij(θ) =
∂2

∂θi∂θj
ϕ(θ)

∆
= E

{[
Fi(x)− E(Fi(x))

][
Fj(x)− E(Fj(x))

]T
}

(12)

The maximum likelihood estimator û of the curved exponential family satisfies the following
likelihood equation

∇l(û) = ∇ log p(x|u) = ∇θT(û) [F(x)− η(û)] = 0 (13)

Here l(û) is an objective function to be maximized with parameter u. It was pointed out by Amari
in [22] that the geometry of the Riemannian manifold must be taken into account when calculating the
steepest learning directions on a manifold. He suggested the use of natural gradient (NAT) updates
for the optimization on a Riemannian manifold, i.e.,

unew = u + λG−1(u)∇l(u) (14)

where λ is a positive learning rate that determines the step size and G(u) denotes the Riemannian
metric matrix of the manifold.

For a parameterized family of probability distributions on a statistical manifold, the Riemannian
metric is defined as the Fisher information matrix (FIM) [1]. For the curved exponential family in
Equation (1), the FIM with respect to the local parameter u is

G(u) = ∇θT(u)G(θ)∇θ(u) (15)

where G(θ) is the FIM with respect to the natural parameter θ. A recursive MLE of curved exponential
families can then be implemented as follows

u(k+1) = u(k) + λG−1(u(k))∇l(u(k))

= u(k) + λG−1(u(k))∇θT(u(k))
[

F(x)− η(u(k))
] (16)

where θ(u) and η(u) denote the natural parameter and expectation parameter of the distribution,
respectively. F(x) is the sufficient statistics for the measurement x.

The covariance (CRLB) of the recursive MLE estimator u(k+1) is the inverse of Fisher information
matrix G−1(u(k+1)), where

G(u(k+1)) = ∇θT(u(k+1))G
(
θ(u(k+1))

)
∇θ(u(k+1)) (17)

The proposed algorithm is summarized in Algorithm 1.
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Algorithm 1: The natural gradient based iterative MLE algorithm.

1. Distribution reparameterization

p(x|u) = exp
{

C(x) + θT(u)F(x)− ϕ
(
θ(u)

)}
= p

(
x|θ(u)

)
Identify the natural parameter θ(u), sufficient statistics F(x) and potential function ϕ

(
θ(u)

)
.

2. Find expectation parameter η and Fisher information metric G to construct manifold of the
curved exponential family p

(
x|θ(u)

)
,

η(u) = Eθ

(
F(x)

)
= ∇θϕ(θ)

G(θ) = Covθ

(
F(x)

)
= ∇θ∇T

θ ϕ(θ), G(u) = ∇θT(u)G(θ)∇θ(u)

3. Input initial conditions

u(0), G(u(0)) = ∇θT(u(0))G[θ(u(0))]∇θ(u(0))

4. Set step size e(k) > ε > 0, k = 0,

while e(k) > ε

Loop for the (k + 1)th iteration

u(k+1) = u(k) + λG−1(u(k))∇θT(u(k))
[

F(x)− η(u(k))
]

G(u(k+1)) = ∇θT(u(k+1))G
(
θ(u(k+1))

)
∇θ(u(k+1))

Update step size
e(k+1) = ||(u(k) − u(k+1)||

k + 1→ k

end

The above natural gradient approach has a similar structure as the common gradient-based
algorithms, such as the well-known steepest descent method, Newton’s method and Fisher scoring
algorithm. However, it does distinguish itself from the others in the following points:

• The natural gradient estimator updates the underlying manifold metric G (i.e., FIM) at each
iteration as well, which evaluates the estimate accuracy.

• Updates in the classical steepest descent types are performed via the standard gradient∇l(u) and
are well-matched to the Euclidean distance measure as well as the gradient adaptation. For the
cases where the underlying parameter spaces are not Euclidean but are curved, i.e., Riemannian,
−∇l(u) does not represent the steepest descent direction in the parameter space, and thus
the standard gradient adaptation is no longer appropriate. The natural gradient updates in
Equation (14) improve the steepest descent update rule by taking the geometry of the Riemannian
manifold into account to calculate the learning directions. In other words, it modifies the
standard gradient direction according to the local curvature of the parameter space in terms of the
Riemannian metric tensor G(u), thus offers faster convergence than the steepest descent method.

• The Newton method

unew = u− λ

[
∂2l(u)
∂u∂uT

]−1

∇l(u). (18)

improves the steepest descent method by using the second-order derivatives of the cost function,
i.e., the inverse of the Hessian of l(u) to adjust the gradient search direction. When l(u) is
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a quadratic function of u, the inverse of the Hessian is equal to G(u), and thus Newton’s method
and the natural gradient approach are identical [22]. However, in more general contexts, the two
techniques are different. Generally, the natural gradient approach increases the stability of the
iteration with respect to Newton’s method through replacing the Hessian by its expected value,
i.e., the Riemannian metric tensor G(u).

• The natural gradient approach is identical to the Fisher scoring method in cases where the Fisher
information matrix coincides with the Riemannian metric tensor of the underlying parameter
space. In such cases, the natural gradient approach is a Riemannian-based version of the Fisher
scoring method performed on manifolds, and it is very appropriate when the cost function is
related to the Riemannian geometry of the underlying parameter space [23]. Once these methods
are entered into the manifold, additional insights into their geometric meaning may be deduced
in the framework of differential and information geometry.

It is worth mentioning that a strategic choice of parameterizations of the cost function may result
in a faster convergence or a more meaningful implementation of an optimization algorithm, though it
is quite-often non-trivial. In the proposed iterative MLE algorithm in Equation (16), an alternative
parameterization of the curved exponential family, in terms of the natural and expectation parameters,
are employed. Through such a reparameterization, the implementation of the natural gradient updates
is facilitated by the relevant statistics of a curved exponential family.

3. Information Geometric Interpretation for Natural Gradient MLE

3.1. Principles of Information Geometry

(1) Definition of a statistical manifold: Information geometry originates from the study of
manifolds of probability distributions. Consider the parameterized family of probability distributions
S = { p(x|θ )}, where x is a random variable and θ = (θ1, . . . , θn) is a parameter vector specifying the
distribution. The family S is regarded as a statistical manifold with θ as its (possibly local) coordinate
system [24].

Figure 1 illustrates the definition of a statistical manifold. For a given state of interest θ in
the parameter space Θ ∈ Rn, the measurement x in the sample space X ∈ Rm is an instantiation
of a probability distribution p(x|θ ). Each probability distribution p(x|θ ) is labelled by a point
s(θ) in the manifold S. The parameterized family of probability distributions S = { p(x|θ )} forms
an n-dimensional statistical manifold where θ plays the role of a coordinate system of S.

(2) Fisher information metric: The metric is the object specifying the scalar product in a particular
point on a manifold in differential geometry. It encodes how to measure distances, angles and area at
a particular point on the manifold by specifying the scalar product between tangent vectors at that
point [25]. For a parameterized family of probability distributions on a statistical manifold, the FIM
plays the role of a Riemannian metric tensor [1]. Denoted by G(θ) = [gij(θ)], where

gij = E

{
∂ log p(x|θ)

∂θi
· ∂ log p(x|θ)

∂θj

}
, (19)

the FIM measures the ability of the random variable x to discriminate the values of the parameter θ′

from θ for θ′ close to θ.
(3) Affine connection and Flatness: The affine connection ∇ (The notation ∇ is also used to denote

the Jacobian in this paper. However, there should be no confusion from the context.) on a manifold
S defines a linear one-to-one mapping between two neighboring tangent spaces of the manifold.
When the connection coefficients of ∇ with respect to a coordinate system of S are all identically 0,
then ∇ is said to be flat, or alternatively, S is flat with respect to ∇. The curvature of a flat manifold is
zero everywhere. Correspondingly, flatness will result in considerable simplification of the geometry.
Intuitively, a flat manifold is one that “locally looks like” a Euclidean space in terms of distances and
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angles. Consequently, many operations on the flat manifold such as projection and orthogonality
become more closely analogous to the case of an Euclidean space.

1k−θ
kθ

1( | )kp −x θ ( | )kp x θ

S

X

Θ 1( )ks −θ

( )ks θ

1k−x
kx

Figure 1. Definition of a statistical manifold.

It is worth mentioning that the flatness of a manifold is closely related to the definition of affine
connections as well as the choice of coordinate systems of the manifold. In 1972, Chentsov [2]
introduced a one-parameter family of affine connections called α-connections which were later
popularized by Amari [5]:

α
Γjim (θ) = Eθ

{
∂j∂i l(x, θ) ∂ml(x, θ)

}
+

1− α

2
Eθ

{
∂jl(x, θ) ∂il(x, θ) ∂ml(x, θ)

}
(20)

where
∂i =

∂

∂θi
and l(θ, x) = log p(x|θ). (21)

In Equation (20), α = 0 corresponds to the Levi-Civita connection (information connection).
The case α = −1 defines the e-connection (exponential connection) while α = −1 defines the
m-connection (mixture connection). An exponential family with natural parameter θ as the coordinate
system (parameterization) is a flat manifold under the e-connection while a mixture family with
expectation parameter η as the coordinate system is a flat manifold under the m-connection [24].
The e-connection and m-connection play an important role in statistical inference and geometrize the
estimation on the flat manifolds.

3.2. Information Geometric Interpretation for Natural Gradient MLE

Based on the principles of information geometry introduced above, the algorithm described in
Algorithm 1 can be explained via Figure 2, where the upper figure illustrates the estimation operation
in Euclidean space while an alternative view of the estimation operation on statistical manifolds is
analogously illustrated in the lower figure. In the upper figure, the local parameter u is to be estimated
from measurements (samples) x via the likelihood function p(x|u). When the measurement model is
nonlinear in the parameter, the underlying estimation of the local parameter is a nonlinear estimation
or filtering problem. Usually, linear signal processing problems can be routinely solved systematically
by the astute application of results from linear algebra. However, the nonlinear cases are not easy to
solve. The methodology of differential and information geometry are more adaptable and capable of
dealing with nonlinear problems.
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θ

( )F x

Natural 
parameter space

natural coordinate expectation coordinateθ η

ˆ ( )=η F xˆ ˆ( )f=θ η

u x

Local parameter 
space Sample space

Nonlinear estimation or filtering

Euclidean space

Statistical manifold

Expectation 
parameter space

Embedding

Flat Flat

Sufficient statistics
( )F x

Dual space

u
Deterministic optimization 

method

Conventional statistical 
problem

Information geometry 
perspective

( | )p x u

( ( ) | )p F x θ

η

Linear

Nonlinear
{ }= uS

{ ( | )}p= x θM

( )≡θ θ u
curve

Figure 2. Illustrates the nonlinear estimation concept in both Euclidean space and statistical manifolds
of the dual spaces of natural parameter θ and expectation parameter η. Top figure shows relations
between parameter spaces (left) and samples (right) and associated estimating mappings. Bottom figure
shows equivalent model for manifolds of parameter (left) and sample distributions (right). In both
cases, the aims are to estimate the most likely parameter values that predict the data, and vice-versa.

Given thatM = {p(x|θ)} signifies a general set of conditional distributions, the natural parameter
space {θ} ∈ An contains the distributions of all exponential families; to be regarded as an enveloping
space. Then the curved exponential family p(x|u) in the upper figure is smoothly embedded in
the enveloping space An, m ≤ n by distribution reparameterization u −→ θ(u), i.e., the curved
exponential family p(x|u) can be represented by a curve {θ = θ(u)} embedded in An. Consequently
the nonlinearity in the underlying estimation problem is completely characterized by the red curve
inside the natural parameter space.

The circle on the lower right side of Figure 2 is the expectation parameter space {η} ∈ Bn

or sampling space, which is dual to the natural parameter space A. The dots in the space B
signify the “realizations” of the sufficient statistics F(x) of the distribution p(x|θ) and they are
obtained from measurements (samples) x. Connected by the Legendre transformation the dual
enveloping sub-manifolds A and B (i.e., natural and expectation parameter spaces) are in one-to-one
correspondence [5]. By viewing the expression of the curved exponential families in Equation (1),
we observe that the newly formulated likelihood p (F(x)|θ) is linear, which indicates the possibility
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for linearly estimating the natural parameter θ by sufficient statistics F(x) firstly and then obtaining
the estimation of local parameter u by a deterministic mapping from θ to u.

The nonlinear filtering is performed in the expectation parameter space B by projecting the
samples F(x) on to the sub-manifold represented by the red curve which signifies the embedding of
the curved exponential families in B. The process is also called m-projection. As mentioned earlier,
under both the e- and m-connections, the dual enveloping manifolds are flat. Therefore, the filtering
(m-projection) is analogous to the projection in a deterministic Euclidean space. In consequence,
the nonlinear estimation problem is finally realized as a deterministic optimization method.

The fundamental difference between the filter described here and existing nonlinear filters is
that the filtering process presented is performed linearly in the dual spaces of natural parameters and
expectation parameters under e- and m-connections, respectively. The filtering outcome is then mapped
to local parameter space. The estimator is optimal in the MLE sense and thus has no information loss
in the filtering process since it attains the CRLB [5].

The convergence of the nonlinear iterative estimator can be geometrically explained in information
geometric terms diagrammatically via Figure 3. The curved exponential family in Equation (1)
is represented by the curve FA ≡ {θ(u) : u ∈ Rm} in A and also by FB ≡ {η(u) : u ∈ Rm}
in the dual space B. Starting from an initial parameter u(k), the algorithm constructs a vector
Lu(k) ≡ {η̃(u(k)) = F(x)− η(uk))} from the current distribution represented by its expectation
parameter η(u(k)) to the measurement F(x). The projection of η̃(u(k)) to the tangent vector ∇θ(u(k))

of the natural parameter θ(u(k)) with respect to the metric G(u(k)) gives the steepest descent gradient
(natural gradient) to update the current estimates (where ∇θ(u(k)) is represented by the dashed arrow
in both A and B, while the natural gradient is represented by the solid arrow in B).

A

ˆ( )MLuη

AF

BF

ˆ( )MLuθ

ˆ( )MLu∇θ

ˆ( )MLu∇θ

( )F x

ˆMLuL

natural parameter 
space

expectation  parameter 
space

dual space

( )( )kη u
( 1)( )k+η u

( )∇θ u
natural gradient

( )ku
L

( 1)ku +L
( 1)( )ku +∇θ

( )( )ku∇θ

B

Figure 3. Convergence of the presented iterative maximum likelihood estimator (MLE) algorithm.

The iterations continue according to Equation (16) until the two vectors η̃(u(k)) and ∇θ(u(k))

are (approximately) orthogonal to each other, i.e., η̃(ûML) ⊥ ∇θ(ûML). The algorithm achieves
convergence with the steepest descent gradient G−1(u(k))∇θT(u(k))η̃(u(k)) vanishes and a solution to
the MLE Equation (13) is obtained by projecting the data F(x) onto FB orthogonally to ∇θ(u).

• Statistical problems can be described in manifolds in a number of ways. In the parameter
estimation problems as we have discussed here the parameter belongs to a curved manifold,
whereas the observations may lie on an enveloping manifold. The filtering process is thus
implemented by means of projection in the manifolds.
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• The iterative estimator is optimal in the MLE sense as the filtering itself involves no
information loss. The stochastic filtering problem becomes an optimization problem defined
over a statistical manifold.

• As seen from Algorithm 1, the algorithm implementation is relatively simple and straightforward
by distribution reparameterization and operating in the dual flat manifolds. Though a Newton
method-based MLE estimator can be derived directly via the likelihood. However, in most cases
the operation is not trivial.

• The initial guess is important to facilitate convergence of the estimator to the true value. This can
be varied and such initial value sampling may provide more certainty about reaching a global
minimum. This has not been examined here.

In the next section, two examples are given to demonstrate the implementation of the developed
estimator as well as its geometric interpretation.

4. Examples of Implementation of Natural Gradient MLE

4.1. An One Parameter Estimation Example of Curved Gaussian Distribution

Consider a curved Gaussian distribution

x ∼ N (u, u2a2) (22)

where a is a constant and u is an unknown parameter to be estimated. The collection of distributions
specified by the parameter u constitute a one-dimensional curved exponential family, which can be
embedded in the natural parameter space A in terms of natural coordinates

θ1 =
1

a2u
, θ2 = − 1

2a2u2 (23)

which is a parabola (denoted by FA)

θ2 = − a2

2
θ2

1 (24)

in A. The underlying distribution in Equation (22) can be alternatively embedded in the expectation
parameter space B in terms of expectation coordinates

η1 = u, η2 = (a2 + 1)u2 (25)

which is also a parabola (denoted by FB)

η2 = (a2 + 1)η2
1 (26)

in B.
The tangent vector ∇θ(u) of the curve FA is

∇θ(u) =
1

a2u3 [−u, 1] (27)

The metric G(u) has only one component g in this case, and is

g =
2a2 + 1

a2u2 (28)

The sufficient statistics F(x) of the underlying distribution are

F(x) = {x, x2} (29)

and they are obtained from measurements (samples) x.
Figure 4 shows the two dual flat spaces (A and B) and illustrates the estimation process

implemented in them, where the blue parabolas in two figures denote the embeddings of the curved
Gaussian distribution specified by parameter u. Without loss of generality, a = 1, u = 2 are assumed.
The red arrows in two figures show the tangent vector ∇θ(u) of the curve FA while the two red
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dots on the parabolas denote the “realizations” of the distribution in Equation (22) specified by
the given parameter u = 2. One hundred observed data (measurements) are shown by the blue
dots in the expectation parameter space specified by coordinates (x, x2). The red asterisk denotes
the sufficient statistics F(x) obtained from the statistical mean of the measurements (samples).
By projecting the data F(x) on to the sub-manifold represented by FB orthogonally to ∇θ(u),
i.e., (F(x) − η(ûML)) ⊥ ∇θ(ûML), the MLE estimation of parameter u is obtained. By viewing
Equation (25) and Figure 4b, the estimation ûML = η̂1 is with high accuracy to the true value of u in
this example.
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Figure 4. Estimation example of one-dimensional curved Gaussian distribution. (a) Shows the
natural parameter space and embedding of the curved Gaussian distribution in it; (b) Shows the
dual expectation parameter space and the estimation process in it.

4.2. A Mote Localization Example via RIPS Measurements

The Radio Interferometric Positioning System (RIPS) is an efficient sensing technique for sensor
networks of small, low cost sensors with various applications. It utilizes radio frequency interference
to obtain a sum of distance differences between the locations of a quartet of the motes which is initially
reported in [26] and further discussed in [27]. In this paper, we take this mote localization problem via
RIPS measurements as an application of the presented natural gradient MLE.

(1) Problem description: The Radio Interferometric Positioning System (RIPS) measurement model
is described in [28]. A single RIPS measurement, as described in [26], involves four motes. A mote is a
node in a sensor network that is capable of performing some processing, gathering sensory information
and communicating with other connected nodes in the network. The main components of a sensor
mote are a microcontroller, transceiver, external memory, power source and sensing hardware device.
Figure 5 illustrates a collection of four motes A, B, C, D, where A, B and C are anchor motes (i.e., their
location states are already known) and D is a free mote with unknown location. Two motes act as
transmitters, sending a pure sine wave at slightly different frequencies. This results in an interference
signal at a low beat frequency that is received by the other two motes (acting as receivers). A sum of
range differences between the four motes can be obtained from the phase difference of the received
interference signals at the two receiver locations. If motes A and B serve as transmitters and motes C
and D form the receiver pair, then the corresponding RIPS measurement, denoted kA,B,C,D, measures
the distance differences

kA,B,C,D = ||XD − XA|| − ||XD − XB||
+ ||XB − XC|| − ||XA − XC||

(30)

which may be simply written as
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kA,B,C,D = dAD − dBD + dBC − dAC. (31)

In the absence of noise, two independent RIPS measurements can be found. Therefore, the other
independent measurement is given by

kA,C,B,D = dAD − dCD + dBC − dAB (32)

which uses motes A and C as a transmitter pair and B and D as a receiver pair.

B
Unknown

Anchors

XA XB

XDC
DXC

A

Figure 5. Radio Interferometric Positioning System (RIPS) measurement involving four sensors with
three known anchors and one unknown sensor.

The two independent RIPS measurements can be written as

k(u) =

[
kA,B,C,D
kA,C,B,D

]
=

 δab +
√
(xa − ux)2 + (ya − uy)2 −

√
(xb − ux)2 + (yb − uy)2

δac +
√
(xa − ux)2 + (ya − uy)2 −

√
(xc − ux)2 + (yc − uy)2

 (33)

where u = [ux, uy]′ is the unknown location of the free node D, and

δab = dBC − dAC

=
√
(xb − xc)2 + (yb − yc)2 −

√
(xa − xc)2 + (ya − yc)2

δac = dBC − dAB

=
√
(xb − xc)2 + (yb − yc)2 −

√
(xa − xb)2 + (ya − yb)2

are both known constants in which xi, yi, i = a, b, c, are the location coordinates of the three
anchor motes.

Accordingly, a generic RIPS measurement model can be written as

x = k(u) + w, w ∼ N (0, Σ), Σ = σ2 I2×2 (34)

The underlying localization problem is to estimate the location of the free mote D based on RIPS
measurement in Equation (34), where we assume that the knowledge of anchor node locations are
known. The problem of locating the node D from RIPS measurements corrupted with Gaussian noise
in Equation (34) reduces to a nonlinear parameter estimation problem. We adopt the natural gradient
based MLE estimator described above to address it.

(2) Mote localization via RIPS measurements: Based on the RIPS measurement model in Equation (34),
we can write the likelihood function in the form

p(x|u) = |2πΣ|−
1
2 exp

{
−1

2
[x− k(u)]TΣ−1[x− k(u)]

}
(35)
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Rearranging Equation (35) to describe in terms of the canonical curved exponential family,
we obtain

p(x|u) = exp
{

C(x) + θT(u)F(x)− ϕ[θ(u)]
}

, (36)

which yields (The required quantities can be obtained directly from the standard relations between
Equations (4)–(7) for curved Gaussian distributions.)

θ(u) = Σ−1k(u) (37)

F(x) = x (38)

ϕ[θ(u)] = −1
4

tr(Θ−1θθT)− 1
2

log | −Θ|+ log π, Θ = −1
2

Σ−1 (39)

The expectation parameter and FIM on natural parameter are given by

η(u) = ∇θϕ(θ) = −1
2

Θ−1θ = k(u) (40)

G(θ) = ∇θ∇T
θ ϕ(θ) = −1

2
Θ−1 = Σ (41)

The Jacobian matrix of natural parameter θ with respect to local parameter u is given by

∇θ(u) = Σ−1∇uk(u) = Σ−1

 ∂kA,B,C,D
∂ux

∂kA,B,C,D
∂uy

∂kA,C,B,D
∂ux

∂kA,C,B,D
∂uy

 (42)

where
∂kA,B,C,D

∂ux
=

xb − ux√
(xb − ux)2 + (yb − uy)2

− xa − ux√
(xa − ux)2 + (ya − uy)2

(43)

∂kA,B,C,D

∂uy
=

yb − uy√
(xb − ux)2 + (yb − uy)2

−
ya − uy√

(xa − ux)2 + (ya − uy)2
(44)

∂kA,C,B,D

∂ux
=

xc − ux√
(xc − ux)2 + (yc − uy)2

− xa − ux√
(xa − ux)2 + (ya − uy)2

(45)

∂kA,C,B,D

∂uy
=

yc − uy√
(xc − ux)2 + (yc − uy)2

−
ya − uy√

(xa − ux)2 + (ya − uy)2
(46)

The FIM with respect to the local parameter u, i.e., Equation (15) becomes

G(u) = ∇θT(u)G(θ)∇θ(u) = ∇T
u k(u)Σ−1∇uk(u) (47)

Therefore, the iterative MLE estimator for estimating the location of a free mote using RIPS
measurements is implemented as

u(k+1) = u(k) + λ
[
∇uk(u(k))

]−1
[x− k(u(k))] (48)

G(u(k+1)) =
[
∇uk(u(k+1))

]T
Σ−1∇uk(u(k+1)) (49)

The covariance of the estimator u(k+1) is the inverse of the Fisher information matrix given in
Equation (49).

As with other gradient optimization algorithms, a reasonable guess of the initial state value u(0)

is required to facilitate the optimization converges to the correct local minimum. In this application,
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the initial state u(0) may be obtained from the RIPS measurements via the RIPS trilateration algorithm
described in [29], which is then used to calculate G(u(0)).

The performance of the proposed localization algorithm is illustrated by analyzing a scenario
illustrated in Figure 6. In this example, three RIPS nodes are located at (40, 50), (70, 50), and (60, 70) m.
The noise of a RIPS measurement is assumed to be zero-mean Gaussian with a standard deviation
σ = 1 m.
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Covariances

k=0 
k=5

k=10 
k=15

k=20 
Final 

(a) (b)

Figure 6. (a) Shows how the algorithm correctly localizes 5 unknown sensors (“+”) from 3 motes (“∆”)
with the iteration beginning at initial (guessed) locations; (b) Shows an example of the convergence of
the iterative MLE estimator covariance to CRLB in the localization process.

Figure 6a shows 5 cases of localization results of the algorithm. The initial values are randomly
generated in the simulations. We use the label CRLB to signify the ellipse which corresponds to the
inverse of the Fisher information matrix of the network G(u), centered at the true location u. Figure 6b
shows the covariances of the iterative MLE estimator at different iterations, where the kth error ellipse is
calculated using the inverse of G(u(k)) in Equation (49) and is centered at u(k). Figure 7a,b demonstrate
the localization results of different initial state values with the same measurements and results based
on a set of measurements with the same initial state values, respectively. The estimator performance
under this scenario is summarized in Table 1.
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Figure 7. (a) An example of localization with the same three anchor motes as in Figure 6 for iteration
beginning at 10 different initial locations; (b) Localization results for a set of measurements with the
same initial state values.
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Table 1. Estimator performance summary for the mote localization scenario shown in Figure 7b.

Measure Results

Number of Monte Carlo runs N = 100

Standard deviation of sensor noise σ = 2 m

Location of the free mote u = [40, 65]T

CRLB for estimating the state u G−1(u) =
[

24.4279 −15.2115
−15.2115 11.4530

]
Sample mean of the estimator E{û} = 1

N ∑N
n=1 ûn = [39.9776, 64.9758]T

Sample covariance of the estimator Cov(û) = 1
N−1 ∑N

n=1
(
ûn − E{û}

)(
ûn − E{û}

)T
=

[
2.9817 −1.7683
−1.7683 1.2706

]
Average RMS location error 1

N ∑N
n=1 ||ûn − u|| = 1.5928 m

Number of iterations M M = 44, when λ = 0.1, ε = 0.01 m
(ε—iteration stopping threshold) M = 25, when λ = 0.2, ε = 0.01 m
(λ—learning rate) M = 35, when λ = 0.2, ε = 0.001 m

5. Conclusions

In this paper, an iterative maximum likelihood estimator based on the natural gradient
method is described to address a class of nonlinear estimation problems for distributions of curved
exponential families. We show that the underlying nonlinear stochastic filtering problem is solved
by a natural gradient optimization technique which operates over statistical manifolds under dual
affine connections. In this way, information geometry offers an interesting insight into the natural
gradient algorithm and connects the stochastic estimation problem to a deterministic optimization
problem. In this respect, the underlying philosophy is far more significant than the algorithm itself.
Furthermore, based on an information geometric analysis it is promising that better algorithms for
solving non-linear estimation problems can be derived. For instance, a “whitened gradient” which
whitens the tangent space of a manifold has been presented in [30]. The whitened gradient replaces
the Riemannian metric G(u) in the natural gradient updates by its square root G−

1
2 (u) and results in

a faster and more robust convergence.
The work in this paper indicates that the methods of differential/information geometry provide

useful tools for systematically solving certain non-linear problems commonly encountered in signal
processing. Future work involves extrapolation of these techniques to handle the filtering problem for
nonlinear stochastic dynamics.
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