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Abstract:



Based on the maximum entropy (MaxEnt) principle for a generalized entropy functional and the conjugate representations introduced by Zhang, we have reformulated the method of information geometry. For a set of conjugate representations, the associated escort expectation is naturally introduced and characterized by the generalized score function which has zero-escort expectation. Furthermore, we show that the escort expectation induces a conformal divergence.
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1. Introduction


Information geometry (IG) [1,2] is a differential geometrical method based on a Riemannian metric on a statistical manifold, which is constructed from a given parameterized probability distribution function (pdf) [image: there is no content]. It provides a useful tool to study, for example, the dually flat structures of a statistical manifold. Recently, much effort has been made to study some deformed exponential families of pdfs, in which the standard exponential function [image: there is no content] and its inverse function [image: there is no content] are replaced with a deformed exponential and its inverse function, which is called a deformed logarithmic function. Among different deformed exponential functions, relatively well known ones include Tsallis’ q-deformed exponential [3] and Kaniadakis’ [image: there is no content]-deformed exponential functions [4]. Naudts [5] introduced the so-called [image: there is no content]-logarithmic function in terms of a positive increasing function [image: there is no content], and studied the generalized thermostatistics. It is shown that a q-deformed relative entropy is proportional to Amari’s [image: there is no content]-divergence and is related with the [image: there is no content]-geometry on the statistical manifold with a constant curvature [6]. In order to construct a suitable statistical manifold in IG, usually the [image: there is no content]-representation (rep.), or [image: there is no content]-immersion, of a pdf is used. It is well known that the [image: there is no content]-rep. works fine with an exponential family but does not necessarily work fine for a non-exponential pdf, e.g., a [image: there is no content]-deformed exponential family [4]. A generalization of the [image: there is no content]-rep. is conjugate representations, or [image: there is no content]-reps., by Zhang [7]. He also introduced the [image: there is no content]-divergences from the point of view of “representation duality”. By finding out a suitable conjugate rep. for [image: there is no content]-deformed exponential pdf, the IG of the [image: there is no content]-generalized thermostatistics [8] was studied. We further studied the IG structures among the thermodynamic potentials in the [image: there is no content]-thermostatistics [9], in which the escort pdfs and escort expectations play an important role. Zhang [10] further showed that his conjugate reps. also include Naudts’ [image: there is no content]-logarithm [5] as a special case. In this way, Zhang’s conjugate reps. are very useful as a generalization of [image: there is no content]-reps in IG. Amari [11] showed that [image: there is no content]-divergences generate a dually flat structure in the manifold of positive measures and in that of positive-definite matrices. In this contribution, we reformulate the IG structures based on Zhang’s conjugate reps. and the maximum entropy (MaxEnt) principle for a generalized entropy functional. Our approach is different from the previous works [10,11] in that we relate the [image: there is no content]-rep. of a pdf [image: there is no content] with the Lagrange multipliers in the MaxEnt problem. This enables us to introduce a generalized score function and characterize the escort expectations.



The rest of the paper is organized as follows. The next section provides us with the preliminaries for the basics of IG for the exponential families of pdf. In Section 3, after a brief review of conjugate reps. introduced by Zhang [7], we reformulate the IG structures based on the conjugate reps. and discuss the maximum entropy (MaxEnt) principle for a generalized entropy. For a set of conjugate reps., the associated generalized score function is introduced. The escort rep. and escort expectation are then naturally induced. Section 4 relates the conformal divergence to the difference of the entropies in terms of the escort expectations. The final section is devoted to our concluding remarks. Throughout the paper, we use the abbreviations [image: there is no content] for [image: there is no content], and [image: there is no content] for [image: there is no content].




2. Preliminaries


Information geometry [1,2] provides us a useful tool for studying a family


S=pθ(x)|pθ(x)>0,∫dxpθ(x)=1,



(1)




of a probability distribution function (pdf) [image: there is no content] characterized by a set of real parameters [image: there is no content]. [image: there is no content] is called a (M-dimensional) statistical model and the pdf [image: there is no content] of [image: there is no content] can be regarded as a point in a differential manifold [image: there is no content] with local coordinates [image: there is no content]. [image: there is no content] is called a statistical manifold and a Riemannian metric on [image: there is no content] is provided by the Fisher information matrix [image: there is no content] [2,


gijF(θ)=Epθ∂iℓθ(x)∂jℓθ(x),i,j=1,2,…,M,



(2)




where [image: there is no content]. In this contribution, we assume that [image: there is no content] is positive definite, and [image: there is no content] stands for the linear expectation with respect to the pdf [image: there is no content].



A manifold [image: there is no content] is said to be e-flat (exponential-flat) if a set of coordinate systems [image: there is no content] satisfies


Epθ∂i∂jℓθ(x)∂kℓθ(x)=0,∀i,j,k,



(3)




identically. Any set of coordinates [image: there is no content] satisfying (3) is called e-affine coordinates. A well-known example of e-flat manifolds is the exponential family


Sexp=pθ(x)|pθ(x)=exp∑m=1MθmFm(x)−Ψ(θ),∫dxpθ(x)=1,



(4)




where each [image: there is no content] is a given function of a random value x and [image: there is no content] is the normalization factor of a pdf [image: there is no content]. From the normalization of the pdf [image: there is no content], we see that


[image: there is no content]



(5)




and, for the exponential family, we have


[image: there is no content]



(6)




which does not depend on x. Hence, the condition (3) is satisfied and one confirms that the exponential family is e-flat. In addition, for the exponential family, we have


[image: there is no content]



(7)







Taking the expectation of both sides and using Equation (5), we see that the m-affine coordinates ([image: there is no content]-coordinates) of the exponential family are given by


[image: there is no content]



(8)







Accounting for Equations (7) and (8), from definition (2), we obtain


gijF(θ)=Epθfi−Epθfifj−Epθfj,i,j=1,2,…,M,



(9)




which is the covariance matrix for the statistical model [image: there is no content].



A manifold [image: there is no content] is said to be m-flat (mixture-flat) if a set of coordinate systems [image: there is no content] satisfies


Epθ1pη(x)∂i∂jpη(x)∂klnpη(x)=0,∀i,j,k,



(10)




identically. In this case, the set of coordinates [image: there is no content] is called m-affine coordinates.



In a dually flat structure, the [image: there is no content]- and [image: there is no content]-coordinates are related by the Legendre transformation


[image: there is no content]



(11)






[image: there is no content]



(12)






[image: there is no content]



(13)




where [image: there is no content] and [image: there is no content] are Legendre–Fenchel dual to each other and are called [image: there is no content]- and [image: there is no content]-potential functions, respectively. The canonical divergence function [2] for a set of two pdf [image: there is no content] and [image: there is no content] can be defined by


[image: there is no content]



(14)




which is a Bregman divergence with the convex function [image: there is no content].



For a dually flat manifold [image: there is no content], Pythagorean relation is generalized in terms of divergence. Let [image: there is no content] be three probability distributions in [image: there is no content]. When the e-geodesic connecting p and r is orthogonal at r to the m-geodesic connecting r and s, the following generalized Pythagorean relation [2] holds.


[image: there is no content]



(15)







As is well known, maximizing the Boltzmann–Gibbs–Shannon (BGS) entropy


SBGS≡−∫dxp(x)lnp(x)=Epθ−lnp,



(16)




under the M-constraints


EpθFm(x)=Um,m=1,2,⋯,M,



(17)




for a given set of [image: there is no content] and the normalization ∫dxp(x)=1, leads to the optimized pdf belonging to the exponential family [image: there is no content]. The Lagrange multipliers are the control parameters [image: there is no content] for the above M-constraints. From the normalization of an exponential pdf, we readily obtain the [image: there is no content]-potential function [image: there is no content] as


Ψ(θ)=ln∫dxexp∑m=1MθmFm(x).



(18)







We note that, in addition to Equation (2), the Fisher metric [image: there is no content] can be written equivalently in other different expressions


gijF=∫dx∂ipθ(x)∂jℓθ(x)



(19)






=−∫dxpθ(x)∂i∂jℓθ(x)



(20)






=∫dx1pθ(x)∂ipθ(x)∂jpθ(x).



(21)







In particular, combining Equation (6) with (20), we readily confirm the important relation


[image: there is no content]



(22)




that is, the Fisher metric coincides with the Hessian matrix of the [image: there is no content]-potential function [image: there is no content]. It is known that an exponential family naturally has the dualistic Hessian structures and their canonical divergences coincide with the Kullback–Leibler divergences. Furthermore, using Equation (8), the Fisher matrix can also be rewritten as


[image: there is no content]



(23)




which holds for the exponential family [image: there is no content].



In general, the dual affine connections are induced from the metric. By applying [image: there is no content] to Equation (19) for [image: there is no content], we see that the following relation holds


[image: there is no content]



(24)




where the Christoffel symbol of the first kind for the e-affine connection and that for the m-affine connection are defined by


Γij,k(e)≡∫dx∂kpθ(x)∂i∂jℓθ(x)=Epθ∂kℓθ∂i∂jℓθ,



(25)






Γij,k(m)≡∫dx∂i∂jpθ(x)∂kℓθ(x)=Epθ1pθ(x)∂i∂jpθ(x)∂kℓθ,



(26)




respectively. In addition, we can introduce a cubic form


[image: there is no content]



(27)




which characterizes the difference between the affine connection [image: there is no content] (or [image: there is no content]) and Levi–Civita connection [image: there is no content] through the relations


Γij,k(e)=Γij,k(0)−12Cijk,



(28)






Γij,k(m)=Γij,k(0)+12Cijk.



(29)








3. Conjugate Representations


Here, we briefly review Zhang’s conjugate representations [7]. For a parameterized probability density function (pdf) [image: there is no content] with a set of real parameters [image: there is no content], information geometry is founded by Prof. Amari [1], based on his [image: there is no content]-representations (reps.) defined by


ℓαpθ(x)=21−αpθ1−α2(x),ℓ−αpθ(x)=21+αpθ1+α2(x),



(30)




for a real parameter [image: there is no content], and on the [image: there is no content]-divergence


Dα(p|r)=41−α2∫dx1−α2p(x)+1+α2r(x)−p1−α2(x)r1+α2(x).



(31)







As a generalization of the [image: there is no content]-reps., Zhang [7] introduced the conjugate representations as follows.



Definition 1.

A ρ-representation of a real positive number ξ is a mapping [image: there is no content], where [image: there is no content] is a strictly monotone function. For a smooth and strictly convex function [image: there is no content], a τ-representation: [image: there is no content] is said to be conjugate to the ρ-representation with respect to [image: there is no content] if the following relations are satisfied,


τ(ξ)=df(ρ)dρ|ρ=ρ(ξ)′ρ(ξ)=df★(τ)dτ|τ=τ(ξ)′



(32)




where the convex functions [image: there is no content] and [image: there is no content] are Legendre dual to each other:


f(ρ)=ρτ(ρ)−f★τ(ρ),f★(τ)=ρ(τ)τ−fρ(τ).



(33)









By utilizing the conjugate reps., the associated Bregman divergence can be defined as


[image: there is no content]



(34)






[image: there is no content]



(35)







The [image: there is no content]-rep. is, of course, an example of the conjugate reps., and they are related as follows.


ρα(p)=ℓα(p),τα(p)=ℓ−α(p),



(36)






[image: there is no content]



(37)







The [image: there is no content]-divergence (31) is expressed as [image: there is no content].



Remark 1.

We assume that ρ- and τ-functions satisfy the suitable regularity conditions throughout this paper. It is important to describe the domains and the tangents of the relevant ρ- and τ-functions. However, this is a very difficult matter in general. For example, consider a statistical manifold which is a set of q-Gaussian distributions, and using the α-rep. (36). We see that it is an α-affine manifold with [image: there is no content] [1,7]. In this case, if the domain Ω (the total sample space) is [image: there is no content], then α must satisfy [image: there is no content]. If [image: there is no content], then α must satisfy [image: there is no content]. The lower bound comes from the regularity conditions of the statistical manifold (Amari and Nagaoka [1], Chapter 2), and the upper bounds come from the integrability conditions of probability densities. In this way, the regularity conditions for a set of ρ- and τ-functions are not determined from these functions themselves only, but depend on the total sample space and the given statistical model. Some arguments have been given in our previous paper [12].





3.1. MaxEnt


For a set [image: there is no content] of conjugate reps., let us introduce a generalized entropy functional S defined by


[image: there is no content]



(38)




and consider the following MaxEnt problem.


δδp(x)S+∑m=1Mθm∫dxτ(p(x))Fm(x)−γ∫dxτ(p(x))=0,



(39)




where [image: there is no content] is a given function of x, and [image: there is no content] and [image: there is no content] are the Lagrange multipliers. Using the relation [image: there is no content] defined in Equation (32), this MaxEnt problem leads to


ρ(p(x))τ′(p(x))=∑m=1MθmFm(x)τ′(p(x))−γ(θ)τ′(p(x)),



(40)




where [image: there is no content] stands for [image: there is no content]. We assume [image: there is no content] because if [image: there is no content] then the [image: there is no content]-rep. is a constant mapping, which fails to work as a rep., or immersion, of a pdf [image: there is no content]. We thus obtain


[image: there is no content]



(41)







Remark 2.

Note that unless [image: there is no content], the constraints of this generalized MaxEnt problem are neither the standard expectations [image: there is no content] nor the normalization [image: there is no content] of the pdf [image: there is no content]. However, the solution of this MaxEnt problem is expressed in terms of the inverse function of [image: there is no content] as


[image: there is no content]



(42)









Definition 2.

For any given ρ-rep., the generalized score function [image: there is no content] is defined by


[image: there is no content]



(43)









Remark 3.

In the above MaxEnt setting, substituting Equation (42) into the generalized score function, we obtain that


[image: there is no content]



(44)









Theorem 1.

For any set of conjugate reps., and the associated generalized score function [image: there is no content],


∫dxτ(p(x))sρ(x)=∂i∫dxfρ(p(x))



(45)




holds.





Proof. 

From the definition (32) of the conjugate reps., we see [image: there is no content]. It follows that


τ(p(x))∂iρ(p(x))=df(ρ)dρ∂iρ(p(x))=∂ifρ(p(x)),



(46)




and integrating both sides by x, we obtain the result. ☐





Definition 3 (Escort rep.).

For a given ρ-rep. which satisfies [image: there is no content], we can introduce a new [image: there is no content]-rep., which is called the escort rep. of a pdf [image: there is no content] and is defined by


τ˜p:=cdρ(p)dp=cdρ−1(ξ)dξ|ξ=ρ(p),



(47)




where c is an appropriate constant and [image: there is no content] is the inverse function of [image: there is no content].





Remark 4.

For the α-reps., we have


ρα−1(ξ)=1−α2ξ21−α.



(48)




We thus see that


τ˜(p)=21+αdρα−1(ξ)dξ|ξ=ρα(p)=21+αp1+α2=τα(p),



(49)




which states that [image: there is no content] is a self-escort rep. with the constant [image: there is no content].





One of the merits of introducing the escort rep. [image: there is no content] is the next theorem.



Theorem 2.

A [image: there is no content]-rep. satisfies


∫dxτ˜p(x)sρ(x)=∫dxτ˜p(x)∂iρp(x)=0,



(50)









Proof. 

Substituting the relation


∂iρ(p)=dρ(p)dp∂ip,



(51)




into Equation (50) leads to


∂i∫dxp(x)=∂i1=0,



(52)




because the pdf [image: there is no content] is normalized. ☐





For this [image: there is no content]-rep., we can introduce the associated convex functions [image: there is no content] and [image: there is no content] that satisfy


df˜(ρ)dρ=τ˜,df˜★(τ˜)dτ˜=ρ,



(53)




respectively.



Note that combining Theorem 1 with Theorem 2 leads to


∫dxτ˜p(x)sρ(x)=∂i∫dxf˜ρ(p(x))=0.



(54)







We then obtain the following corollary



Corollary 1.

For the conjugate reps. ρ and [image: there is no content], the associated [image: there is no content] function satisfies that


∫dxf˜ρ(p(x))=c∫dxp(x)=c,



(55)




which is the constant c defined in Equation (47) for any normalized pdf [image: there is no content].





Remark 5.

For the α-rep., we see that


fαρα(p)=21+αp.



(56)









Definition 4 (Escort pdf and escort exprectation).

Define the escort pdf [image: there is no content] with regards to a pdf [image: there is no content] by utilizing the escort rep. [image: there is no content] as follows.


Pesc(x):=τ˜(p(x))∫dxτ˜(p(x)),



(57)




and define the escort expectation with regards to [image: there is no content] of a given function [image: there is no content] as


EPescFi:=∫dxPesc(x)Fi(x).



(58)









Theorem 3.

In the MaxEnt setting of Equation (39), the score function [image: there is no content] has zero-escort expectation, i.e., [image: there is no content], and it follows that


[image: there is no content]



(59)









Proof. 

From Equation (41) we have


[image: there is no content]



(60)




where we used [image: there is no content]. Since [image: there is no content], we obtain Equation (59). ☐





Remark 6.

In our formalism, the escort expectation is characterized by the generalized score function [image: there is no content] which is unbiased, i.e., [image: there is no content] has zero-escort expectation.



We see that the Lagrange multiplier [image: there is no content] is the θ-potential [image: there is no content] associated with the escort expectation. The dual affine coordinate [image: there is no content] is


[image: there is no content]



(61)




and the associated Riemannian metric and cubic form are


[image: there is no content]



(62)






[image: there is no content]



(63)




respectively. Since [image: there is no content] is a Hessian metric, the statistical manifold described by the θ- and [image: there is no content]-coordinates is dually flat.







4. Conformal Divergence


Let us consider the Bregman divergence () of the escort reps., i.e.,


[image: there is no content]



(64)







The next theorem is a main result of this contribution.



Theorem 4.

The relative escort expectation of ρ-reps. is the conformal (or scaled) divergence of [image: there is no content] with the scaling factor [image: there is no content], i.e.,


EPescρ(p(x))−EPescρ(r(x))=1∫dxτ˜(p(x))Df˜★,τ˜(p|r).



(65)









Proof. 

From Corollary 1, we see that


[image: there is no content]



(66)




where c is an appropriate constant for any normalized pdf [image: there is no content], and it follows that


[image: there is no content]



(67)







Substituting this relation into Equation (64) leads to


[image: there is no content]



(68)







Dividing both sides by [image: there is no content] and using the escort expectation, we obtain the result. ☐





Remark 7.

As an example of Theorem 4, let us consider the α-rep. case. Since [image: there is no content] as shown in Remark 4, it follows that [image: there is no content]. The corresponding escort pdf becomes


Pαesc(x)=p1+α2∫dxp1+α2,



(69)




and Equation (65) becomes


21−αEPescp1−α2−EPescr1−α2=(1+α)/2∫dxp1+α2(x)Df˜α★,τα(p|r).



(70)




When we set [image: there is no content] this relation becomes


EPesclnqp−EPesclnqr=q∫dxpq(x)Df˜α★,τα(p|r),



(71)




which was first shown by Matsuzoe and Ohara [13].






5. Concluding Remarks


We have discussed and reformulated the method of information geometry in terms of the conjugate reps. introduced by Zhang [7]. For an appropriate set of conjugate reps., the MaxEnt principle for a generalized entropy relates the associated Lagrange multipliers to the corresponding [image: there is no content] rep. (41) of the optimal pdf (42). For a generalized score function (2), the escort rep. and escort expectation are then naturally induced. The conformal divergence is related to the difference of the entropies in terms of the escort expectations, as shown in Theorem 4.



In previous work [9], we studied, for the [image: there is no content]-deformed exponential family, the dualistic Hessian geometries among the thermodynamic potentials in the [image: there is no content]-deformed thermostatistics, and found that there exist two different kinds of dual affine-coordinates: one [image: there is no content] is associated with the standard expectation; and the other [image: there is no content] is associated with the escort expectation. There, the double escort distributions, i.e., the escort of the escort distributions, play an important role. For the q-deformed exponential family, one of the authors (H.M.) further studied a sequence (or hierarchy) of escort distributions [14]. We think that these results are not specific to the q- or [image: there is no content]-deformed exponential pdf. We believe that these results [9,14] can be systematically studied by applying the reformulated method developed in this work. Further studies are needed and will be carried out in future work.
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