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Abstract: Based on the maximum entropy (MaxEnt) principle for a generalized entropy functional
and the conjugate representations introduced by Zhang, we have reformulated the method of
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expectation. Furthermore, we show that the escort expectation induces a conformal divergence.
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1. Introduction

Information geometry (IG) [1,2] is a differential geometrical method based on a Riemannian
metric on a statistical manifold, which is constructed from a given parameterized probability
distribution function (pdf) pθ(x). It provides a useful tool to study, for example, the dually flat
structures of a statistical manifold. Recently, much effort has been made to study some deformed
exponential families of pdfs, in which the standard exponential function exp(x) and its inverse
function ln(x) are replaced with a deformed exponential and its inverse function, which is called a
deformed logarithmic function. Among different deformed exponential functions, relatively well
known ones include Tsallis’ q-deformed exponential [3] and Kaniadakis’ κ-deformed exponential
functions [4]. Naudts [5] introduced the so-called ϕ-logarithmic function in terms of a positive
increasing function ϕ(x), and studied the generalized thermostatistics. It is shown that a q-deformed
relative entropy is proportional to Amari’s α-divergence and is related with the α-geometry on the
statistical manifold with a constant curvature [6]. In order to construct a suitable statistical manifold
in IG, usually the α-representation (rep.), or α-immersion, of a pdf is used. It is well known that the
α-rep. works fine with an exponential family but does not necessarily work fine for a non-exponential
pdf, e.g., a κ-deformed exponential family [4]. A generalization of the α-rep. is conjugate representations,
or (ρ, τ)-reps., by Zhang [7]. He also introduced the (ρ, τ)-divergences from the point of view of
“representation duality”. By finding out a suitable conjugate rep. for κ-deformed exponential pdf,
the IG of the κ-generalized thermostatistics [8] was studied. We further studied the IG structures
among the thermodynamic potentials in the κ-thermostatistics [9], in which the escort pdfs and escort
expectations play an important role. Zhang [10] further showed that his conjugate reps. also include
Naudts’ ϕ-logarithm [5] as a special case. In this way, Zhang’s conjugate reps. are very useful as a
generalization of α-reps in IG. Amari [11] showed that (ρ, τ)-divergences generate a dually flat structure
in the manifold of positive measures and in that of positive-definite matrices. In this contribution,
we reformulate the IG structures based on Zhang’s conjugate reps. and the maximum entropy
(MaxEnt) principle for a generalized entropy functional. Our approach is different from the previous
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works [10,11] in that we relate the ρ-rep. of a pdf p(x) with the Lagrange multipliers in the MaxEnt
problem. This enables us to introduce a generalized score function and characterize the escort expectations.

The rest of the paper is organized as follows. The next section provides us with the preliminaries
for the basics of IG for the exponential families of pdf. In Section 3, after a brief review of conjugate
reps. introduced by Zhang [7], we reformulate the IG structures based on the conjugate reps. and
discuss the maximum entropy (MaxEnt) principle for a generalized entropy. For a set of conjugate
reps., the associated generalized score function is introduced. The escort rep. and escort expectation
are then naturally induced. Section 4 relates the conformal divergence to the difference of the entropies
in terms of the escort expectations. The final section is devoted to our concluding remarks. Throughout
the paper, we use the abbreviations ∂i for ∂/∂θi, and ∂i for ∂/∂ηi.

2. Preliminaries

Information geometry [1,2] provides us a useful tool for studying a family

S =

{
pθ(x)

∣∣∣ pθ(x) > 0,
∫

dx pθ(x) = 1
}

, (1)

of a probability distribution function (pdf) pθ(x) characterized by a set of real parameters
θ = (θ1, θ2 . . . , θM). S is called a (M-dimensional) statistical model and the pdf pθ(x) of S can be regarded
as a point in a differential manifoldM with local coordinates {θi}. M is called a statistical manifold
and a Riemannian metric onM is provided by the Fisher information matrix gF

ij [2],

gF
ij(θ) = Epθ

[
∂i`θ(x) ∂j`θ(x)

]
, i, j = 1, 2, . . . , M, (2)

where `θ(x) ≡ ln pθ(x). In this contribution, we assume that gF is positive definite, and Epθ
[·] stands

for the linear expectation with respect to the pdf pθ(x).
A manifoldM is said to be e-flat (exponential-flat) if a set of coordinate systems {θi} satisfies

Epθ

[
∂i∂j`θ(x) ∂k`θ(x)

]
= 0, ∀ i, j, k, (3)

identically. Any set of coordinates {θi} satisfying (3) is called e-affine coordinates. A well-known
example of e-flat manifolds is the exponential family

Sexp =

{
pθ(x)

∣∣∣ pθ(x) = exp

[
M

∑
m=1

θmFm(x)−Ψ(θ)

]
,
∫

dx pθ(x) = 1

}
, (4)

where each Fm(x) is a given function of a random value x and Ψ(θ) is the normalization factor of a pdf
pθ(x). From the normalization of the pdf pθ(x), we see that

Epθ
[∂i`θ(x)] = ∂iEpθ

[1] = 0, (5)

and, for the exponential family, we have

∂i∂j`θ(x) = −∂i∂jΨ(θ), (6)

which does not depend on x. Hence, the condition (3) is satisfied and one confirms that the exponential
family is e-flat. In addition, for the exponential family, we have

∂i`θ(x) = fi(x)− ∂iΨ(θ). (7)
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Taking the expectation of both sides and using Equation (5), we see that the m-affine coordinates
(η-coordinates) of the exponential family are given by

ηi = Epθ
[ fi(x)] = ∂iΨ(θ). (8)

Accounting for Equations (7) and (8), from definition (2), we obtain

gF
ij(θ) = Epθ

[(
fi −Epθ

[ fi]
) (

fj −Epθ

[
fj
] )]

, i, j = 1, 2, . . . , M, (9)

which is the covariance matrix for the statistical model Sexp.
A manifoldM is said to be m-flat (mixture-flat) if a set of coordinate systems {ηi} satisfies

Epθ

[
1

pη(x)
∂i∂j pη(x) ∂k ln pη(x)

]
= 0, ∀ i, j, k, (10)

identically. In this case, the set of coordinates {ηi} is called m-affine coordinates.
In a dually flat structure, the θ- and η-coordinates are related by the Legendre transformation

Ψ(θ) + Ψ∗(η)− θ · η = 0, (11)

θi = ∂iΨ∗(η), (12)

ηi = ∂iΨ(θ), (13)

where Ψ(θ) and Ψ∗(η) are Legendre–Fenchel dual to each other and are called θ- and η-potential
functions, respectively. The canonical divergence function [2] for a set of two pdf pθp(x) and rθr(x) can
be defined by

D(p|r) ≡ Ψ(θp)−Ψ(θr)−∇Ψ(θr) · (θp − θr), (14)

which is a Bregman divergence with the convex function Ψ(θ).
For a dually flat manifold S , Pythagorean relation is generalized in terms of divergence. Let p, r, s

be three probability distributions in S . When the e-geodesic connecting p and r is orthogonal at r to
the m-geodesic connecting r and s, the following generalized Pythagorean relation [2] holds.

D(p|r) + D(r|s) = D(p|s). (15)

As is well known, maximizing the Boltzmann–Gibbs–Shannon (BGS) entropy

SBGS ≡ −
∫

dx p(x) ln p(x) = Epθ
[− ln p] , (16)

under the M-constraints

Epθ
[Fm(x)] = Um, m = 1, 2, · · · , M, (17)

for a given set of Um and the normalization
∫

dx p(x) = 1, leads to the optimized pdf belonging
to the exponential family Sexp. The Lagrange multipliers are the control parameters {θm} for the
above M-constraints. From the normalization of an exponential pdf, we readily obtain the θ-potential
function Ψ(θ) as

Ψ(θ) = ln

(∫
dx exp

[
M

∑
m=1

θmFm(x)

])
. (18)
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We note that, in addition to Equation (2), the Fisher metric gF can be written equivalently in other
different expressions

gF
ij =

∫
dx ∂i pθ(x) ∂j`θ(x) (19)

= −
∫

dx pθ(x) ∂i ∂j`θ(x) (20)

=
∫

dx
1

pθ(x)
∂i pθ(x)∂j pθ(x). (21)

In particular, combining Equation (6) with (20), we readily confirm the important relation

gF
ij = ∂i∂jΨ(θ), (22)

that is, the Fisher metric coincides with the Hessian matrix of the θ-potential function Ψ(θ). It is known
that an exponential family naturally has the dualistic Hessian structures and their canonical divergences
coincide with the Kullback–Leibler divergences. Furthermore, using Equation (8), the Fisher matrix
can also be rewritten as

gF
ij = ∂iηj = ∂iEpθ

[
fj
]

, (23)

which holds for the exponential family Sexp.
In general, the dual affine connections are induced from the metric. By applying ∂i to Equation (19)

for gF, we see that the following relation holds

∂igF
jk = Γ(e)

ij,k + Γ(m)
ij,k , (24)

where the Christoffel symbol of the first kind for the e-affine connection and that for the m-affine
connection are defined by

Γ(e)
ij,k ≡

∫
dx ∂k pθ(x)∂i∂j`θ(x) = Epθ

[
∂k`θ ∂i∂j`θ

]
, (25)

Γ(m)
ij,k ≡

∫
dx ∂i∂j pθ(x)∂k`θ(x) = Epθ

[
1

pθ(x)
∂i∂j pθ(x) ∂k`θ

]
, (26)

respectively. In addition, we can introduce a cubic form

Cijk ≡ Γ(m)
ij,k − Γ(e)

ij,k, (27)

which characterizes the difference between the affine connection ∇(e) (or ∇(m)) and Levi–Civita
connection∇(0) through the relations

Γ(e)
ij,k = Γ(0)

ij,k −
1
2

Cijk, (28)

Γ(m)
ij,k = Γ(0)

ij,k +
1
2

Cijk. (29)

3. Conjugate Representations

Here, we briefly review Zhang’s conjugate representations [7]. For a parameterized probability
density function (pdf) pθ(x) with a set of real parameters {θm}, m = 1, 2, . . . , M, information geometry
is founded by Prof. Amari [1], based on his α-representations (reps.) defined by

`α
(

pθ(x)
)
=

2
1− α

p
1−α

2
θ (x), `−α

(
pθ(x)

)
=

2
1+ α

p
1+α

2
θ (x), (30)



Entropy 2017, 19, 309 5 of 10

for a real parameter α 6= 1, and on the α-divergence

Dα(p|r) = 4
1− α2

∫
dx
{(

1− α

2

)
p(x) +

(
1+ α

2

)
r(x)− p

1−α
2 (x) r

1+α
2 (x)

}
. (31)

As a generalization of the α-reps., Zhang [7] introduced the conjugate representations as follows.

Definition 1. A ρ-representation of a real positive number ξ is a mapping ξ 7→ ρ(ξ), where ρ(ξ) is a strictly
monotone function. For a smooth and strictly convex function f (ρ), a τ-representation: ξ 7→ τ(ξ) is said to be
conjugate to the ρ-representation with respect to f (ρ) if the following relations are satisfied,

τ(ξ) =
d f (ρ)

dρ

∣∣∣
ρ=ρ(ξ)

, ρ(ξ) =
d f ?(τ)

dτ

∣∣∣
τ=τ(ξ)

, (32)

where the convex functions f (ρ) and f ?(τ) are Legendre dual to each other:

f (ρ) = ρτ(ρ)− f ?
(
τ(ρ)

)
, f ?(τ) = ρ(τ)τ− f

(
ρ(τ)

)
. (33)

By utilizing the conjugate reps., the associated Bregman divergence can be defined as

D f ,ρ(p|r) =
∫

dx
[

f
(
ρ(p(x))

)
− f
(
ρ(r(x))

)
− τ(r(x))

(
ρ(p(x))− ρ(r(x))

)]
, (34)

D f ?,τ(p|r) =
∫

dx
[

f ?
(
τ(p(x))

)
− f ?

(
τ(r(x))

)
− ρ(r(x))

(
τ(p(x))− τ(r(x))

)]
. (35)

The α-rep. is, of course, an example of the conjugate reps., and they are related as follows.

ρα(p) = `α(p), τα(p) = `−α(p), (36)

fα(ρα) =
2

1+ α

(
1− α

2
ρα

) 2
1−α

, f ?α (τα) =
2

1− α

(
1+ α

2
τα

) 2
1+α

. (37)

The α-divergence (31) is expressed as D fα,ρα
(p|r).

Remark 1. We assume that ρ- and τ-functions satisfy the suitable regularity conditions throughout this paper.
It is important to describe the domains and the tangents of the relevant ρ- and τ-functions. However, this is
a very difficult matter in general. For example, consider a statistical manifold which is a set of q-Gaussian
distributions, and using the α-rep. (36). We see that it is an α-affine manifold with α = 2q− 1 [1,7]. In this
case, if the domain Ω (the total sample space) is R, then α must satisfy 1 < α < 5. If Ω = R2, then α must
satisfy 1 < α < 3. The lower bound comes from the regularity conditions of the statistical manifold (Amari and
Nagaoka [1], Chapter 2), and the upper bounds come from the integrability conditions of probability densities.
In this way, the regularity conditions for a set of ρ- and τ-functions are not determined from these functions
themselves only, but depend on the total sample space and the given statistical model. Some arguments have
been given in our previous paper [12].

3.1. MaxEnt

For a set (ρ, τ, f (ρ), f ?(τ)) of conjugate reps., let us introduce a generalized entropy functional S
defined by

S := −
∫

dx f ?
(
τ(p(x))

)
, (38)
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and consider the following MaxEnt problem.

δ

δp(x)

[
S +

M

∑
m=1

θm
∫

dx τ(p(x)) Fm(x)− γ
∫

dx τ(p(x))

]
= 0, (39)

where Fm(x) is a given function of x, and θm, m = 1, 2, . . . , M and γ are the Lagrange multipliers. Using
the relation d f ?(τ)/dτ = ρ defined in Equation (32), this MaxEnt problem leads to

ρ(p(x)) τ′(p(x)) =
M

∑
m=1

θmFm(x) τ′(p(x))− γ(θ) τ′(p(x)), (40)

where τ′(p) stands for dτ(p)/dp. We assume τ′(p(x)) 6= 0 because if τ′(p) = 0 then the τ-rep. is a
constant mapping, which fails to work as a rep., or immersion, of a pdf p(x). We thus obtain

ρ(p(x)) =
M

∑
m=1

θmFm(x)− γ(θ). (41)

Remark 2. Note that unless τ(p) = p, the constraints of this generalized MaxEnt problem are neither the
standard expectations

∫
dxp(x)Fm(x) nor the normalization

∫
dxp(x) = 1 of the pdf p(x). However, the

solution of this MaxEnt problem is expressed in terms of the inverse function of ρ(p) as

p(x) = ρ−1
( M

∑
m=1

θmFm(x)− γ(θ)
)

. (42)

Definition 2. For any given ρ-rep., the generalized score function sρ(x) is defined by

sρ(x) := ∂iρ(p(x)). (43)

Remark 3. In the above MaxEnt setting, substituting Equation (42) into the generalized score function,
we obtain that

sρ(x) = Fi(x)− ∂iγ. (44)

Theorem 1. For any set of conjugate reps., and the associated generalized score function s(x),∫
dx τ(p(x)) sρ(x) = ∂i

∫
dx f

(
ρ(p(x))

)
(45)

holds.

Proof. From the definition (32) of the conjugate reps., we see τ = d f (ρ)/dρ. It follows that

τ(p(x)) ∂iρ(p(x)) =
d f (ρ)

dρ
∂iρ(p(x)) = ∂i f

(
ρ(p(x))

)
, (46)

and integrating both sides by x, we obtain the result.

Definition 3 (Escort rep.). For a given ρ-rep. which satisfies dρ(p)/dp 6= 0, we can introduce a new τ̃-rep.,
which is called the escort rep. of a pdf p(x) and is defined by

τ̃
(

p
)

:=
c

dρ(p)
dp

= c
dρ−1(ξ)

dξ

∣∣∣
ξ=ρ(p)

, (47)

where c is an appropriate constant and ρ−1(ξ) is the inverse function of ρ(ξ) .
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Remark 4. For the α-reps., we have

ρ−1
α (ξ) =

(
1− α

2
ξ

) 2
1−α

. (48)

We thus see that

τ̃(p) =
2

1+ α

dρ−1
α (ξ)

dξ

∣∣∣
ξ=ρα(p)

=
2

1+ α
p

1+α
2 = τα(p), (49)

which states that τα(p) is a self-escort rep. with the constant c = 2/(1+ α).

One of the merits of introducing the escort rep. τ̃(p) is the next theorem.

Theorem 2. A τ̃-rep. satisfies∫
dx τ̃

(
p(x)

)
sρ(x) =

∫
dx τ̃

(
p(x)

)
∂iρ
(

p(x)
)
= 0, (50)

Proof. Substituting the relation

∂iρ(p) =
dρ(p)

dp
∂i p, (51)

into Equation (50) leads to

∂i

∫
dx p(x) = ∂i 1 = 0, (52)

because the pdf p(x) is normalized.

For this τ̃-rep., we can introduce the associated convex functions f̃ (ρ) and f̃ ?(τ̃) that satisfy

d f̃ (ρ)
dρ

= τ̃,
d f̃ ?(τ̃)

dτ̃
= ρ, (53)

respectively.
Note that combining Theorem 1 with Theorem 2 leads to∫

dx τ̃
(

p(x)
)
sρ(x) = ∂i

∫
dx f̃

(
ρ(p(x))

)
= 0. (54)

We then obtain the following corollary

Corollary 1. For the conjugate reps. ρ and τ̃, the associated f̃ (ρ) function satisfies that∫
dx f̃

(
ρ(p(x))

)
= c

∫
dx p(x) = c, (55)

which is the constant c defined in Equation (47) for any normalized pdf p(x).

Remark 5. For the α-rep., we see that

fα

(
ρα(p)

)
=

2
1+ α

p. (56)
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Definition 4 (Escort pdf and escort exprectation). Define the escort pdf Pesc(x) with regards to a pdf p(x)
by utilizing the escort rep. τ̃(p) as follows.

Pesc(x) :=
τ̃(p(x))∫
dx τ̃(p(x))

, (57)

and define the escort expectation with regards to p(x) of a given function Fi(x) as

EPesc [Fi] :=
∫

dx Pesc(x)Fi(x). (58)

Theorem 3. In the MaxEnt setting of Equation (39), the score function sρ(x) has zero-escort expectation, i.e.,
EPesc

[
sρ(x)

]
= 0, and it follows that

∂iγ(θ) = EPesc [Fi] . (59)

Proof. From Equation (41) we have

EPesc

[
sρ

]
= EPesc

[
∂iρ
(

p(x)
)]

= EPesc [Fi]− ∂iγ, (60)

where we used EPesc [1] = 1. Since EPesc

[
sρ

]
= 0, we obtain Equation (59).

Remark 6. In our formalism, the escort expectation is characterized by the generalized score function sρ(x)
which is unbiased, i.e., sρ(x) has zero-escort expectation.

We see that the Lagrange multiplier γ(θ) is the θ-potential Ψ̃(θ) associated with the escort expectation.
The dual affine coordinate ηesc is

ηesc
i = ∂iγ(θ) = EPesc [Fi] , (61)

and the associated Riemannian metric and cubic form are

gesc
ij (θ) = ∂i∂jγ(θ), (62)

Cesc
ijk (θ) = ∂i∂j∂kγ(θ), (63)

respectively. Since gesc is a Hessian metric, the statistical manifold described by the θ- and ηesc-coordinates is
dually flat.

4. Conformal Divergence

Let us consider the Bregman divergence (35) of the escort reps., i.e.,

D f̃ ?,τ̃(p|r) =
∫

dx
[

f̃ ?
(
τ̃(p(x))

)
− f̃ ?

(
τ̃(r(x))

)
− ρ(r(x))

(
τ̃(p(x))− τ̃(r(x))

)]
. (64)

The next theorem is a main result of this contribution.

Theorem 4. The relative escort expectation of ρ-reps. is the conformal (or scaled) divergence of D f̃ ?,τ̃(p|r) with
the scaling factor 1/

∫
dxτ̃(p(x)), i.e.,

EPesc [ρ(p(x))]−EPesc [ρ(r(x))] =
1∫

dxτ̃(p(x))
D f̃ ?,τ̃(p|r). (65)
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Proof. From Corollary 1, we see that∫
dx f̃ ?

(
τ̃(p(x))

)
=
∫

dxτ̃(p(x)
)
ρ
(

p(x)
)
− c, (66)

where c is an appropriate constant for any normalized pdf p(x), and it follows that∫
dx
[

f̃ ?
(
τ̃(p(x))

)
− f̃ ?

(
τ̃(r(x))

)]
=
∫

dx
[
τ̃(p(x)

)
ρ
(

p(x)
)
− τ̃(r(x)

)
ρ
(
r(x)

)]
. (67)

Substituting this relation into Equation (64) leads to

D f̃ ?,τ̃(p|r) =
∫

dxτ̃
(

p(x)
) {

ρ
(

p(x)
)
− ρ
(
r(x)

)}
. (68)

Dividing both sides by
∫

dxτ̃(p(x)) and using the escort expectation, we obtain the result.

Remark 7. As an example of Theorem 4, let us consider the α-rep. case. Since τ̃α = τα as shown in Remark 4,
it follows that f̃ ?α (τ̃) = f ?α (τ). The corresponding escort pdf becomes

Pesc
α (x) =

p
1+α

2∫
dx p

1+α
2

, (69)

and Equation (65) becomes

2
1− α

(
EPesc

[
p

1−α
2

]
−EPesc

[
r

1−α
2

])
=

(1+ α)/2∫
dx p

1+α
2 (x)

D f̃ ?α ,τα
(p|r). (70)

When we set q = (1+ α)/2 this relation becomes

EPesc

[
lnq p

]
−EPesc

[
lnq r

]
=

q∫
dx pq(x)

D f̃ ?α ,τα
(p|r), (71)

which was first shown by Matsuzoe and Ohara [13].

5. Concluding Remarks

We have discussed and reformulated the method of information geometry in terms of the
conjugate reps. introduced by Zhang [7]. For an appropriate set of conjugate reps., the MaxEnt
principle for a generalized entropy relates the associated Lagrange multipliers to the corresponding
ρ rep. (41) of the optimal pdf (42). For a generalized score function (2), the escort rep. and escort
expectation are then naturally induced. The conformal divergence is related to the difference of the
entropies in terms of the escort expectations, as shown in Theorem 4.

In previous work [9], we studied, for the κ-deformed exponential family, the dualistic Hessian
geometries among the thermodynamic potentials in the κ-deformed thermostatistics, and found
that there exist two different kinds of dual affine-coordinates: one η is associated with the standard
expectation; and the other ηesc is associated with the escort expectation. There, the double escort
distributions, i.e., the escort of the escort distributions, play an important role. For the q-deformed
exponential family, one of the authors (H.M.) further studied a sequence (or hierarchy) of escort
distributions [14]. We think that these results are not specific to the q- or κ-deformed exponential pdf.
We believe that these results [9,14] can be systematically studied by applying the reformulated method
developed in this work. Further studies are needed and will be carried out in future work.
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