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Abstract: In the past three decades, many theoretical measures of complexity have been proposed
to help understand complex systems. In this work, for the first time, we place these measures
on a level playing field, to explore the qualitative similarities and differences between them,
and their shortcomings. Specifically, using the Boltzmann machine architecture (a fully connected
recurrent neural network) with uniformly distributed weights as our model of study, we numerically
measure how complexity changes as a function of network dynamics and network parameters.
We apply an extension of one such information-theoretic measure of complexity to understand
incremental Hebbian learning in Hopfield networks, a fully recurrent architecture model of
autoassociative memory. In the course of Hebbian learning, the total information flow reflects
a natural upward trend in complexity as the network attempts to learn more and more patterns.
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1. Introduction

Many systems, across a wide array of disciplines, have been labeled “complex”. The striking
analogies between these systems [1,2] beg the question: What collective properties do complex systems
share and what quantitative techniques can we use to analyze these systems as a whole? With new
measurement techniques and ever-increasing amounts of data becoming available about larger and
larger systems, we are in a better position than ever before to understand the underlying dynamics
and properties of these systems.

While few researchers agree on a specific definition of a complex system, common terms used to
describe complex systems include “emergence” and “self-organization”, which characterize high-level
properties in a system composed of many simpler sub-units. Often these sub-units follow local
rules that can be described with much better accuracy than those governing the global system.
Most definitions of complex systems include, in one way or another, the hallmark feature that the
whole is more than the sum of its parts.

In the unified study of complex systems, a vast number of measures have been introduced to
concretely quantify an intuitive notion of complexity (see, e.g., [3,4]). As Shalizi points out [4],
among the plethora of complexity measures proposed, roughly, there are two main threads:
those that build on the notion of Kolmogorov complexity and those that use the tools of Shannon’s
information theory. There are many systems for which the nature of their complexity seems

Entropy 2017, 19, 310; doi:10.3390/e19070310 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 310 2 of 16

to stem either from logical/computational/descriptive forms of complexity (hence, Kolmogorov
complexity) and/or from information-theoretic forms of complexity. In this paper, we focus on
information-theoretic measures.

While the unified study of complex systems is the ultimate goal, due to the broad nature of
the field, there are still many sub-fields within complexity science [1,2,5]. One such sub-field is the
study of networks, and in particular, stochastic networks (broadly defined). Complexity in a stochastic
network is often considered to be directly proportional to the level of stochastic interaction of the units
that compose the network—this is where tools from information theory come in handy.

1.1. Information-Theoretic Measures of Complexity

Within the framework of considering stochastic interaction as a proxy for complexity, a few
candidate measures of complexity have been developed and refined over the past decade. There is no
consensus best measure, as each individual measure frequently captures some aspects of stochastic
interaction better than others.

In this paper, we empirically examine four measures (described in detail later): (1) multi-information,
(2) synergistic information, (3) total information flow, (4) geometric integrated information. Additional
notable information-theoretic measures that we do not examine include those of Tononi et al., first
proposed in [6] and most recently refined in [7], as a measure of consciousness, as well as similar
measures of integrated information described by Barrett and Seth [8], and Oizumi et al. [9].

The term “humpology”, first coined by Crutchfield [5], attempts to qualitatively describe a long
and generally understood feature that a natural measure of complexity ought to have. In particular,
as stochasticity varies from 0% to 100%, the structural complexity should be unimodal, with a maximum
somewhere in between the extremes [10]. For a physical analogy, consider the spectrum of molecular
randomness spanning from a rigid crystal (complete order) to a random gas (complete disorder).
At both extremes, we intuitively expect no complexity: a crystal has no fluctuations, while a totally
random gas has complete unpredictability across time. Somewhere in between, structural complexity
will be maximized (assuming it is always finite).

We now describe the four complexity measures of interest in this study. We assume a
compositional structure of the system and consider a finite set V of nodes. With each node v ∈ V, we
associate a finite set Xv of states. In the prime example of this article, the Boltzmann machine, we have
V = {1, . . . , N}, and Xv = {±1} for all v. For any subset A ⊆ V, we define the state set of all nodes in
A as the Cartesian product XA := ∏v∈A Xv and use the abbreviation X := XV . In what follows, we
want to consider stochastic processes in X and assign various complexity measures to these processes.
With a probability vector p(x), x ∈ X, and a stochastic matrix P(x, x′), x, x′ ∈ X, we associate a pair
(X, X′) of random variables satisfying

p(x, x′) := Pr(X = x, X′ = x′) = p(x)P(x, x′), x, x′ ∈ X. (1)

Obviously, any such pair of random variables satisfies Pr(X = x) = p(x), and Pr(X′ = x′|X =

x) = P(x, x′) whenever p(x) > 0. As we want to assign complexity measures to transitions of the
system state in time, we also use the more suggestive notation X → X′ instead of (X, X′). If we iterate
the transition, we obtain a Markov chain Xn = (Xn,v)v∈V , n = 1, 2, . . . , in X, with

p(x1, x2, . . . , xn) := Pr(X1 = x1, X2 = x2, . . . , Xn = xn) = p(x1)
n

∏
k=2

P(xk−1, xk), n = 1, 2, . . . , (2)

where, by the usual convention, the product on the right-hand side of this equation equals one if the
index set is empty, that is, for n = 1. Obviously, we have Pr(X1 = x) = p(x), and Pr(Xn+1 = x′|Xn =

x) = P(x, x′) whenever p(x) > 0. Throughout the whole paper, we will assume that the probability
vector p is stationary with respect to the stochastic matrix P. More precisely, we assume that for all
x′ ∈ X the following equality holds:
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p(x′) = ∑
x∈X

p(x)P(x, x′).

With this assumption, we have Pr(Xn = x) = p(x), and the distribution of (Xn, Xn+1) does not
depend on n. This will allow us to restrict attention to only one transition X → X′. In what follows,
we define various information-theoretic measures associated with such a transition.

1.1.1. Multi-Information, MI

The multi-information is a measure proposed by McGill [11] that captures the extent to which the
whole is greater than the sum of its parts when averaging over time. For the above random variable X,
it is defined as

MI(X) , ∑
v∈V

H(Xv)− H(X), (3)

where the Shannon entropy H(X) = −∑x∈X p(x) log p(x). (Here, and throughout this article, we
take logarithms with respect to base 2.) It holds that MI(X) = 0 if and only if all of the parts, Xi, are
mutually independent.

1.1.2. Synergistic Information, SI

The synergistic information, proposed by Edlund et al. [12], measures the extent to which the
(one-step) predictive information of the whole is greater than that of the parts. (For details related to
the predictive information, see [13–15].) It builds on the multi-information by including the dynamics
through time in the measure:

SI(X → X′) , I(X; X′)− ∑
v∈V

I(Xv; X′v), (4)

where I(X; X′) denotes the mutual information between X and X′. One potential issue with the
synergistic information is that it may be negative. This is not ideal, as it is difficult to interpret a
negative value of complexity. Furthermore, a preferred baseline minimum value of 0 serves as a
reference point against which one can objectively compare systems.

The subsequent two measures (total information flow and geometric integrated information) have
geometric formulations that make use of tools from information geometry. In information geometry,
the Kullback–Leibler divergence (KL divergence) is used to measure the dissimilarity between two
discrete probability distributions. Applied to our context, we measure the dissimilarity between two
stochastic matrices P and Q with respect to p by

Dp
KL(P‖Q) = ∑

x∈X
p(x) ∑

x′∈X
P(x, x′) log

P(x, x′)
Q(x, x′)

. (5)

For simplicity, let us assume that P and Q are strictly positive and that p is the stationary
distribution of P. In that case, we do not explicitly refer to the stationary distribution p and simply
write DKL(P‖Q). The KL divergence between P and Q can be interpreted by considering their
corresponding Markov chains with distributions (2) (e.g., see [16] for additional details on this
formulation). Denoting the chain of P by Xn, n = 1, 2, . . . , and the chain of Q by Yn, n = 1, 2, . . . ,
with some initial distributions p1 and q1, respectively, we obtain
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1
n ∑

x1,x2,...,xn

Pr(X1 = x1, X2 = x2, . . . , Xn = xn) log
Pr(X1 = x1, X2 = x2, . . . , Xn = xn)

Pr(Y1 = x1, Y2 = x2, . . . , Yn = xn)

=
1
n

(
∑
x1

Pr(X1 = x1) log
Pr(X1 = x1)

Pr(Y1 = x1)
+

n−1

∑
k=1

∑
x

Pr(Xk = x)∑
x′

Pr(Xk+1 = x′|Xk = x) log
Pr(Xk+1 = x′|Xk = x)
Pr(Yk+1 = x′|Yk = x)

)

=
1
n ∑

x
p1(x) log

p1(x)
q1(x)

+
n− 1

n ∑
x

p(x)∑
x′

P(x, x′) log
P(x, x′)
Q(x, x′)

n→∞→ DKL(P‖Q).

We can use the KL divergence (5) to answer our original question—To what extent is the whole
greater than the sum of its parts?—by comparing a system of interest to its most similar (least dissimilar)
system whose whole is exactly equal to the sum of its parts. When comparing a transition P to Q using
the KL divergence, one measures the amount of information lost when Q is used to approximate P.
Hence, by constraining Q to be equal to the sum of its parts, we can then arrive at a natural measure of
complexity by taking the minimum extent to which our distribution P is greater (in the sense that it
contains more information) than some distribution Q, since Q represents a system of zero complexity.
Formally, one defines a manifold S , of so-called “split” systems, consisting of all those distributions
that are equal to the sum of their parts, and then measures the minimum distance to that manifold:

Complexity(P) , min
Q∈S

DKL(P‖Q). (6)

It is important to note here that there are many different viable choices of split manifold S .
This approach was first introduced by Ay for a general class of manifolds S [17]. Amari [18]
and Oizumi et al. [19] proposed variants of this quantity as measures of information integration.
In what follows, we consider measures of the form (6) for two different choices of S .

1.1.3. Total Information Flow, IF

The total information flow, also known as the stochastic interaction, expands on the
multi-information (like SI) to include temporal dynamics. Proposed by Ay in [17,20], the measure
can be expressed by constraining Q to the manifold of distributions, S (1), where there exists functions
fv(xv, x′v), v ∈ V, such that Q is of the form:

Q(x, x′) = Q((xv)v∈V , (x′v)v∈V) =
e∑v∈V fv(xv ,x′v)

Z(x)
, (7)

where Z(x) denotes the partition function that properly normalizes the distribution. Note that any
stochastic matrix of this kind satisfies the property that Q(x, x′) = ∏v∈V Pr(X′v = x′v | Xv = xv).
This results in

IF(X → X′) , min
Q∈S (1)

DKL(P‖Q) (8)

= ∑
v∈V

H(X′v | Xv)− H(X′ | X). (9)

The total information flow is non-negative, as are all measures that can be expressed as a
KL divergence. One issue of note, as pointed out in [18,19], is that IF(X → X′) can exceed I(X; X′).
One can formulate the mutual information I(X; X′) as

I(X; X′) = min
Q∈S (2)

DKL(P‖Q), (10)
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where S (2) consists of stochastic matrices Q that satisfy

Q(x, x′) = Q((xv)v∈V , (x′v)v∈V) =
e fV(x′)

Z(x)
, (11)

for some function fV(x′). Under this constraint, Q(x, x′) = Pr(X′ = x′). In other words,
all spatio-temporal interactions X → X′ are lost. Thus, it has been postulated that no measure of
information integration, such as the total information flow, should exceed the mutual information [9].
The cause of this violation in the total information flow is due to the fact that IF(X → X′) quantifies
same-time interactions in X′ (due to the lack of an undirected edge in the output in Figure 1B).
Consider, for instance, a stochastic matrix P that satisfies (11), P(x, x′) = p(x′) for some probability
vector p. In that case, we have I(X; X′) = 0. However, (9) then reduces to the multi-information (3) of
X′ = (X′v)v∈V , which is a measure of stochastic dependence.

X1

X2

′X1

′X2

Full Model
P(x, ′x )

time

!
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Figure 1. Using graphical models, we can visualize different ways to define the “split” constraint on
manifold S in (6). Here, we consider a two-node network X = (X1, X2) and its spatio-temporal
stochastic interactions. (A) I(X; X′) uses constraint (11). (B) IF(X → X′) uses constraint (7).
(C) ΦG(X → X′) uses constraint (13). Dashed lines represent correlations that either may or may not
be present in the input distribution p. We do not represent these correlations with solid lines in order
to highlight (with solid lines) the structure imposed on the stochastic matrices. Adapted and modified
from [19].
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1.1.4. Geometric Integrated Information, ΦG

In order to obtain a measure of information integration that does not exceed the mutual
information I(X; X′), Amari [18] (Section 6.9) defines ΦG(X → X′) as

ΦG(X → X′) , min
Q∈S (3)

DKL(P‖Q), (12)

where S (3) contains not only the split matrices (7), but also those matrices that satisfy (11).
More precisely, the set S (3) consists of all stochastic matrices for which there exists functions fv(xv, x′v),
v ∈ V, and fV(x′) such that

Q(x, x′) = Q((xv)v∈V , (x′v)v∈V) =
e∑v∈V fv(xv ,x′v)+ fV(x′)

Z(x)
. (13)

Here, Q belongs to the set of matrices where only time-lagged interactions are removed. Note that
the manifold S (3) contains S (1), the model of split matrices used for IF, as well as S (2), the manifold
used for the mutual information. This measure thus satisfies both postulates that SI and IF only
partially satisfy:

0 ≤ ΦG(X → X′) ≤ I(X; X′). (14)

However, unlike IF(X → X′), there is no closed-form expression to use when computing
ΦG(X → X′). In this paper, we use the iterative scaling algorithm described in [21] (Section 5.1) to
compute ΦG(X → X′) for the first time in concrete systems of interest.

Note that, in defining ΦG(X → X′), the notion of a split model used by Amari [18] is related, but
not identical, to that used by Oizumi et al. [19]. The manifold considered in the latter work is defined
in terms of conditional independence statements and forms a curved exponential family.

In the remainder of this article, we also use the shorthand notation MI, SI, IF, and ΦG, without
explicit reference to X and X′, as already indicated in each measure’s respective subsection heading.
We also use I as shorthand for the mutual information.

1.2. Boltzmann Machine

In this paper, we look at the aforementioned candidate measures in a concrete system in order
to gain an intuitive sense of what is frequently discussed at a heavily theoretical and abstract level.
Our system of interest is the Boltzmann machine (a fully-recurrent neural network with sigmoidal
activation units).

We parameterize a network of N binary nodes by W ∈ RN×N , which denotes the connectivity
matrix of weights between each directed pair of nodes. Each node i takes a value Xi ∈ {±1},
and updates to X′i ∈ {±1} according to:

Pr(X′i = +1 | X) = sigmoid
(
− 2β

N

∑
j=1

wji · Xj

)
, (15)

where sigmoid(t) = 1
1+e−t , β denotes a global inverse-temperature parameter, and wji denotes the

directed weight from Xj to Xi.
This stochastic update rule implies that every node updates probabilistically according to a

weighted sum of the node’s parents (or inputs), which, in the case of our fully recurrent neural
network, is every node in the network. Every node i has some weight, wij, with which it influences
node j on the next update. As the weighted sum of the inputs to a node becomes more positive,
the likelihood of that node updating to the state +1 increases. The opposite holds true as the weighted
sum becomes more negative, as seen in Figure 2. The weights between nodes are a set of parameters
that we are free to tune in the network.
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wji ⋅Xj
j∈V
∑

Pr( ′Xi = +1| X)

Figure 2. The sigmoidal update rule as a function of the inverse-global temperature: As β increases,
the stochastic update rule becomes closer to the deterministic one given by a step function.

The second tunable parameter in our network is β, commonly known as the global
inverse-temperature of the network. β effectively controls the extent to which the system is influenced
by random noise: it quantifies the system’s deviation from deterministic updating. In networks,
the noise level directly correlates with what we call the “pseudo-temperature” T of the network,
where T = 1

β . To contextualize what T might represent in a real-life complex system, consider the
example of a biological neural network, where we can think of the pseudo-temperature as a parameter
that encompasses all of the variables (beyond just a neuron’s synaptic inputs) that influence whether a
neuron fires or not in a given moment (e.g., delays in integrating inputs, random fluctuations from the
release of neurotransmitters in vesicles, firing of variable strength). As β→ 0 (T → ∞), the interactions
are governed entirely by randomness. On the other hand, as β → ∞ (T → 0), the nodal inputs
takeover as the only factor in determining the subsequent states of the units—the network becomes
deterministic rather than stochastic.

This sigmoidal update rule is commonly used as the nonlinearity in the nodal activation function
in stochastic neural networks for reasons coming from statistical mechanics: It arises as a direct
consequence of the Boltzmann–Gibbs distribution when assuming pairwise interactions (similar to
Glauber dynamics on the Ising model), as explained in, for example, [22] (Chapter 2 and Appendix A).
As a consequence of this update rule, for finite β, there is always a unique stationary distribution on
the stochastic network state space.

2. Results

What follows are plots comparing and contrasting the four introduced complexity measures
in their specified settings. The qualitative trends shown in the plots empirically hold regardless of
network size; a 5-node network was used to generate the plots below.

In Figure 3a, we see that when weights are uniformly distributed between 0 and 1, IF and ΦG
are very similar qualitatively, with the additional property that ΦG ≤ IF, which directly follows from
S (1) ⊆ S (3). MI monotonically increases, which contradicts the intuition prescribed by humpology.
Finally, SI is peculiar in that it is not lower-bounded by 0. This makes for difficult interpretation: what
does a negative complexity mean as opposed to zero complexity? Furthermore, in Figure 3b, we see
that ΦG satisfies constraint (14), with the mutual information in fact upper bounding both IF and ΦG.
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Figure 3. (a) measures of complexity when using random weight initializations sampled uniformly
between 0 and 1 (averaged over 100 trials, with error bars); (b) the mutual information I upper
bounds IF and ΦG when using random weight initializations sampled uniformly between 0 and 1
(averaged over 100 trials, with error bars).

It is straightforward to see the symmetry between selecting weights uniformly between 0 and +1
and between −1 and 0, hence the above results represent both scenarios.

When we allow for both positive and negative weights, however, about as frequently as
we observe the above behavior, we observe qualitatively different behavior as represented in
Figure 4. Physically, these results correspond to allowing for mutual excitation and inhibition in
the same network.

In Figure 4a, surprisingly, we see that in one instance of mixed weights, IF monotonically increases
(like MI in Figure 3a), a departure from humpology intuition. Meanwhile, ΦG behaves qualitatively
differently, such that ΦG → 0 as β→ ∞. In Figure 4b, we see an instance where all measures limit to
some non-zero value as β→ ∞. Finally, in Figure 4c, we see an instance where IF exceeds I while ΦG
satisfies constraint (14), despite the common unimodality of both measures.

An overly simplistic interpretation of the idea that humpology attempts to capture may lead
one to believe that Figure 4b is a negative result discrediting all four measures. We claim, however,
that this result suggests that the simple humpology intuition described in Section 1.1 needs additional
nuance when applied to quantifying the complexity of dynamical systems. In Figure 4b, we observe
a certain richness to the network dynamics, despite its deterministic nature. A network dynamics
that deterministically oscillates around a non-trivial attractor is not analogous to the “frozen” state
of a rigid crystal (no complexity). Rather, one may instead associate the crystal state with a network
whose dynamics is the identity map, which can indeed be represented by a split stochastic matrix.
Therefore, whenever the stochastic matrix P converges to the identity matrix (the “frozen” matrix) for
β→ ∞, the complexity will asymptote to zero (as in Figure 3b). In other words, for dynamical systems,
a “frozen” system is exactly that: a network dynamics that has settled into a single fixed-point dynamics.
Consequently, in our results, as β → ∞, we should expect that the change in complexity depends
on the dynamics that the network is settling into as it becomes deterministic, and the corresponding
richness (e.g., number of attractors and their lengths) of that asymptotic dynamics.
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Figure 4. Measures of complexity in single instances of using random weight initializations sampled
uniformly between −1 and 1. (a) scenario 1; (b) scenario 2; (c) constraint (14).

So far, it may seem to be the case that ΦG is without flaw; however, there are shortcomings that
warrant further study. In particular, in formulating ΦG, the undirected output edge in Figure 5B
(purple) was deemed necessary to avoid quantifying external influences to the system that IF would
consider as intrinsic information flow. Yet, in the model studied here—the Boltzmann machine—there
are no such external influences (i.e., Y = 0 in Figure 5), so this modification should have no effect
on distinguishing between ΦG and IF in our setting. More precisely, a full model that lacks an
undirected output edge at the start should not lead to a “split”-projection that incorporates such an
edge. However, this is not generally true for the projection that ΦG computes because the undirected
output edge present in the split model will in fact capture causal interactions within the system by
deviously interpreting them as same-time interactions in the output (Figure 5). This counterintuitive
phenomenon suggests that we should have preferred IF to be precisely equal to its ideal form Φideal
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in the case of the Boltzmann machine, and yet, almost paradoxically, this would imply that the
improved form would still violate constraint (14). This puzzling conundrum begs further study of
how to properly disentangle external influences when attempting to strictly quantify the intrinsic
causal interactions.

The preceding phenomenon, in fact, also calls into question the very postulate that the mutual
information ought to be an upper bound on information integration. As we see in Figure 5A,
the undirected output edge used in the “split”-projection for computing the mutual information
I is capable of producing the very same problematic phenomenon. Thus, the mutual information does
not fully quantify the total causal influences intrinsic to a system. In fact, the assumption itself that I
quantified the total intrinsic causal influences was based on the assumption that one can distinguish
between intrinsic and extrinsic influences in the first place, which may not be the case.

X1

X2

′X1

′X2

Full Model
P(x, ′x )

Y

YXInternal External

A
X1

X2

′X1

′X2

Mutual Information
Q(x, ′x )

B
X1

X2

′X1

′X2

Geometric Integrated Information
Q(x, ′x )

Figure 5. A full model (left) can have both intrinsic (blue) and extrinsic (red) causal interactions
contributing to its overall dynamics. Split models (A,B) formulated with an undirected output edge
(purple) attempt to exclusively quantify extrinsic causal interactions (so as to strictly preserve intrinsic
causal interactions after the “split”-projection). However, the output edge can end up explaining away
interactions from both external factors Y and (some) internal factors X (red + blue = purple). As a result,
such a family of split models does not properly capture the total intrinsic causal interactions present in
a system.

3. Application

In this section, we apply one of the preceding measures (IF) and examine its dynamics during
network learning. We wish to exemplify the insights that one can gain by exploring measures of
complexity in a more general sense. The results presented in Section 2 showed the promising nature
of information-geometric formulations of complexity, such as IF and ΦG. Here, however, we restrict
ourselves to studying IF as a first step due to the provable properties of its closed-form expression that
we are able to exploit to study it in greater depth in the context of autoassociative memory networks.
It would be useful to extend this analysis to ΦG, but this is beyond the scope of this work.

Autoassociative memory in a network is a form of “collective computation” where, given an
incomplete input pattern, the network can accurately recall a previously stored pattern by evolving
from the input to the stored pattern. For example, a pattern might be a binary image, in which
each pixel in the image corresponds to a node in the network with a value in {−1,+1}. In this
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case, an autoassociative memory model with a stored image could then take as input a noisy version
of the stored image and accurately recall the fully denoised original image. This differs from a
“serial computation” approach to the same problem where one would simply store the patterns in a
database and, when given an input, search all images in the database for the most similar stored image
to output.

One mechanism by which a network can achieve collective computation has deep connections
to concepts from statistical mechanics (e.g., the Ising model, Glauber dynamics, Gibbs sampling).
This theory is explained in detail in [22]. The clever idea behind autoassociative memory models
heavily leverages the existence of an energy function (sometimes called a Lyapunov function) to
govern the evolution of the network towards a locally minimal energy state. Thus, by engineering the
network’s weighted edges such that local minima in the energy function correspond to stored patterns,
one can show that if an input state is close enough (in Hamming distance) to a desired stored state,
then the network will evolve towards the correct lower-energy state, which will in fact be a stable fixed
point of the network.

The above, however, is only true up to a limit. A network can only store so many patterns before
it becomes saturated. As more and more patterns are stored, various problems arise such as desirable
fixed points becoming unstable optima, as well as the emergence of unwanted fixed points in the
network that do not correspond to any stored patterns (i.e., spin glass states).

In 1982, Hopfield put many of these ideas together to formalize what is today known as the
Hopfield model, a fully recurrent neural network capable of autoassociative memory. Hopfield’s
biggest contribution in his seminal paper was assigning an energy function to the network model:

E = −1
2 ∑

i,j
wijXiXj. (16)

For our study, we assume that we are storing random patterns in the network. In this scenario,
Hebb’s rule (Equation (17)) is a natural choice for assigning weights to each connection between nodes
in the network such that the random patterns are close to stable local minimizers of the energy function.

Let {ξ(1), ξ(2), . . . , ξ(T)} denote the set of N-bit binary patterns that we desire to store. Then, under
Hebb’s rule, the weight between nodes i and j should be assigned as follows:

wij =
1
T

T

∑
µ=1

ξ
(µ)
i ξ

(µ)
j , (17)

where ξ
(µ)
i denotes the ith-bit of pattern ξ(µ). Notice that all weights are symmetric, wij = wji.

Hebb’s rule is frequently used to model learning, as it is both local and incremental—two desirable
properties of a biologically plausible learning rule. Hebb’s rule is local because weights are set
based strictly on local information (i.e., the two nodes that the weight connects) and is incremental
because new patterns can be learned one at a time without having to reconsider information from
already learned patterns. Hence, under Hebb’s rule, training a Hopfield network is relatively simple
and straightforward.

The update rule that governs the network’s dynamics is the same sigmoidal function used in the
Boltzmann machine described in Section 1.2. We will have this update rule take effect synchronously
for all nodes (Note: Hopfield’s original model was described in the asynchronous, deterministic case
but can also be studied more generally.):

Pr(X′i = +1 | X) =
1

1 + e
−2β ∑

j∈V
Xj ·wji

. (18)

At finite β, our Hopfield model obeys a stochastic sigmoidal update rule. Thus, there exists
a unique and strictly positive stationary distribution of the network dynamics.
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Here, we study incremental Hebbian learning, in which multiple patterns are stored in a Hopfield
network in succession. We use total information flow (Section 1.1.3) to explore how incremental
Hebbian learning changes complexity, or more specifically, how the complexity relates to the number
of patterns stored.

Before continuing, we wish to make clear upfront an important disclaimer: the results that we
describe are qualitatively different when one uses asynchronous dynamics instead of synchronous,
as we use here. With asynchronous dynamics, no significant overall trend manifests, but other
phenomena emerge in need of further exploration.

When we synchronously update nodes, we see very interesting behavior during learning: incremental
Hebbian learning appears to increase complexity, on average (Figure 6a,b). The dependence on β is not
entirely clear, but as one can infer from Figure 6a,b, it appears that increasing β increases the magnitude
of the average complexity while learning, while also increasing the variance of the complexity. Thus,
as β increases, the average case becomes more and more unrepresentative of the individual cases of
incremental Hebbian learning.

Synchronous:N = 9;β = 0.5;trials = 100

C
om

pl
ex

ity

# of Patterns Stored

(a) β = 1
2

Synchronous:N = 9;β = 1.0;trials = 100
C

om
pl

ex
ity

# of Patterns Stored

(b) β = 1

Figure 6. Incremental Hebbian learning in a 9-node stochastic Hopfield network with synchronous
updating (averaged over 100 trials of storing random 9-bit patterns). (a) β = 1

2 ; (b) β = 1.

We can also study the deterministic version of the Hopfield model. This corresponds to letting
β→ ∞ in the stochastic model. With a deterministic network, many stationary distributions on the
network dynamics may exist, unlike in the stochastic case. As discussed above, if we want to recall
a stored image, we would like for that image to be a fixed point in the network (corresponding
to a stationary distribution equal to the Dirac measure at that state). Storing multiple images
corresponds to the desire to have multiple Dirac measures acting as stationary distributions of
the network. Furthermore, in the deterministic setting, the nodal update rule becomes a step rather
than a sigmoid function.

Without a unique stationary distribution in the deterministic setting, we must decide how to
select an input distribution to use in calculating the complexity. If there are multiple stationary
distributions in a network, not all starting distributions on the network eventually lead to a single
stationary distribution (as was the case in the stochastic model), but instead the stationary distribution
that the network eventually reaches is sensitive to the initial state of the network. When there are
multiple stationary distributions, there are actually infinitely many stationary distributions, as any
convex combination of stationary distributions is also stationary. If there exist N orthogonal stationary
distributions of a network, then there is in fact an entire (N − 1)-simplex of stationary distributions,
any of which could be used as the input distribution for calculating the complexity.
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In order to address this issue, it is fruitful to realize that the complexity measure we are working
with is concave with respect to the input distribution (Theorem A1 in Appendix A). As a function of
the input distribution, there is thus an “apex” to the complexity. In other words, it is a unique local
maximum of the complexity function, which is also therefore a global maximum (but not necessarily
a unique maximizer since the complexity is not strictly concave). This means that the optimization
problem of finding the supremum over the entire complexity landscape with respect to the input
distribution is relatively simple and can be viably achieved via standard gradient-based methods.

We can naturally define a new quantity to measure complexity of a stochastic matrix P in this
setting, the complexity capacity:

Ccap(X → X′ | P) , max
p

C(X → X′ | p, P), (19)

where the maximum is taken over all stationary distributions p of P. Physically, the complexity capacity
measures the maximal extent—over possible input distributions—to which the whole is more than the
sum of its parts. By considering the entire convex hull of stationary input distributions and optimizing
for complexity, we can find this unique maximal value and use it to represent the complexity of a
network with multiple stationary distributions.

Again, in the synchronous-update setting, we see incremental Hebbian learning increases
complexity capacity (Figure 7a,b). It is also worth noting that the complexity capacity in this setting is
limiting towards the absolute upper bound on the complexity, which can never exceed the number of
binary nodes in the network. Physically, this corresponds to each node attempting to store one full
bit (the most information a binary node can store), and all of this information flowing through the
network between time-steps, as more and more patterns are learned. This limiting behavior of the
complexity capacity towards a maximum (as the network saturates with information) is more gradual
as the size of the network increases. This observed behavior matches the intuition that larger networks
should be able to store more information than smaller networks.
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# of Patterns Stored

Synchronous:N = 9;β →∞;trials = 100

(a) N = 9
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ity
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Figure 7. Incremental Hebbian learning in an N-node deterministic (β → ∞) Hopfield network with
synchronous updating (averaged over 100 trials of storing random N-bit patterns). (a) N = 9; (b) N = 12.

4. Conclusions

In summary, we have seen four different measures of complexity applied in concrete, parameterized
systems. We observed that the synergistic information was difficult to interpret on its own due to
the lack of an intuitive lower bound on the measure. Building off of the primitive multi-information,
the total information flow and the geometric integrated information were closely related, frequently
(but not always) showing the same qualitative behavior. The geometric integrated information satisfies
the additional postulate (14) stating that a measure of complexity should not exceed the temporal
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mutual information, a property that the total information flow frequently violated in the numerical
experiments where connection weights were allowed to be both negative and positive. The geometric
integrated information was recently proposed to build on and correct the original flaws in the total
information flow, which it appears to have done quite singularly based on the examination in the
present study. While the geometric integrated information is a step in the right direction, further study
is needed to properly disentangle external from internal causal influences that contribute to network
dynamics (see final paragraphs of Section 2). Nonetheless, it is encouraging to see a semblance of
convergence with regards to quantifying complexity from an information-theoretic perspective.
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Appendix A

Theorem A1 (Concavity of IF(X → X′)). The complexity measure

IF(X → X′) , ∑
v∈V

H(X′v | Xv)− H(X′ | X),

is concave with respect to the input distribution p(x) = Pr(X = x), x ∈ X, for stochastic matrix P fixed.

Note that in the definition of the complexity capacity (19), we take the supremum over all stationary
input distributions. Since such distributions form a convex subset of the set of all input distributions,
concavity of IF is preserved by the corresponding restriction.

Proof. The proof of the above statement follows from first rewriting the complexity measure in terms
of a negative KL divergence between two distributions both affine with respect to the input distribution,
and then using the fact that the KL divergence is convex with respect to a pair of distributions (see [23],
Chapter 2) to demonstrate that the complexity measure is indeed concave.

Let P denote the fixed stochastic matrix governing the evolution of X → X′.
Let p denote the input distribution on the states of X.
First, note that the domain of p forms a convex set: for an N-unit network, the set of all valid

distributions p forms an (N − 1)-simplex.
Next, we expand IF:

IF(X → X′) = ∑
v∈V

H(X′v | Xv)− H(X′ | X)

= − ∑
v∈V

(
∑

xv∈Xv

Pr(Xv = xv) ∑
x′v∈Xv

Pr(X′v = x′v | Xv = xv) · log Pr(X′v = x′v | Xv = xv)

)

+ ∑
x∈X

Pr(X = x) ∑
x′∈X

Pr(X′ = x′ | X = x) · log Pr(X′ = x′ | X = x).

Notice that the expanded expression for H(X′ | X) is affine in the input distribution p(x), since the
terms Pr(X′ = x′ | X = x) are just constants given by P(x, x′). Hence, −H(X′ | X) is concave, and all
that is left to show is that the expansion of H(X′v | Xv) is also concave for all v ∈ V:
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H(X′v | Xv) = − ∑
xv∈Xv

Pr(Xv = xv) ∑
x′v∈Xv

Pr(X′v = x′v | Xv = xv) · log Pr(X′v = x′v | Xv = xv)

= − ∑
xv∈Xv

∑
x′v∈Xv

Pr(X′v = x′v, Xv = xv) · log
Pr(X′v = x′v, Xv = xv)

Pr(Xv = xv)

= − ∑
xv∈Xv

∑
x′v∈Xv

Pr(X′v = x′v, Xv = xv) · log
Pr(X′v = x′v, Xv = xv)

Pr(Xv = xv)

+ log
1
|Xv|

− log
1
|Xv|

= − ∑
xv∈Xv

∑
x′v∈Xv

Pr(X′v = x′v, Xv = xv) · log
Pr(X′v = x′v, Xv = xv)

Pr(Xv = xv)

+ ∑
xv∈Xv

∑
x′v∈Xv

Pr(X′v = x′v, Xv = xv) log
1
|Xv|

− log
1
|Xv|

= − ∑
xv∈Xv

∑
x′v∈Xv

(
Pr(X′v = x′v, Xv = xv) · log

Pr(X′v = x′v, Xv = xv)
1
|Xv | · Pr(Xv = xv)

)
− log

1
|Xv|

.

Ignoring the constant − log 1
|Xv | , as this does not change the concavity of the expression, we can

rewrite the summation as

= − ∑
xv∈Xv

∑
x′v∈Xv

( (
∑

xr∈XV\v

Pr(X′v = x′v | Xv = xv, XV\v = xr) · Pr(Xv = xv, XV\v = xr)

)
·

log
∑xr∈XV\v Pr(X′v=x′v |Xv=xv ,XV\v=xr)·Pr(Xv=xv ,XV\v=xr)

1
|Xv | ·∑xr∈XV\v Pr(Xv=xv ,XV\v=xr)

)
,

where XV\v denotes the state of all nodes excluding Xv. This expansion has made use of the fact that
Pr(X′v = x′v, Xv = xv) = ∑xr∈XV\v Pr(X′v = x′v | Xv = xv, XV\v = xr) · Pr(Xv = xv, XV\v = xr) and
Pr(Xv = xv) = ∑xr∈XV\v Pr(Xv = xv, XV\v = xr).

The constant Pr(X′v = x′v | Xv = xv, XV\v = xr) = Pr(X′v = x′v | X = (xv, xr)) can be computed
directly as a marginal over the stochastic matrix P. Furthermore, the constant Pr(Xv = xv, XV\v =

xr) = Pr(X = (xv, xr)) comes directly from the input distribution p, making the entire expression for
Pr(X′v = x′v, Xv = xv) affine with respect to the input distribution.

Finally, we get

= −DKL


 ∑

xr∈XV\v

Pr(X′v = x′v | Xv = xv, XV\v = xr) · Pr(Xv = xv, XV\v = xr) ‖
1
|Xv|

· ∑
xr∈XV\v

Pr(Xv = xv, XV\v = xr)




= −DKL

(
Pr(X′v = x′v, Xv = xv) ‖ 1

|Xv|
· Pr(Xv = xv)

)
,

the KL divergence between two distributions, both of which have been written so as to explicitly
show them as affine in the input distribution p, and then simplified to show that both are valid joint
distributions over the states on the pair (X′v, Xv). Thus, the overall expression is concave with respect
to the input distribution.
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