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Abstract: When optimizing an accelerated degradation testing (ADT) plan, the initial values of
unknown model parameters must be pre-specified. However, it is usually difficult to obtain
the exact values, since many uncertainties are embedded in these parameters. Bayesian ADT
optimal design was presented to address this problem by using prior distributions to capture these
uncertainties. Nevertheless, when the difference between a prior distribution and actual situation is
large, the existing Bayesian optimal design might cause some over-testing or under-testing issues.
For example, the implemented ADT following the optimal ADT plan consumes too much testing
resources or few accelerated degradation data are obtained during the ADT. To overcome these
obstacles, a Bayesian sequential step-down-stress ADT design is proposed in this article. During the
sequential ADT, the test under the highest stress level is firstly conducted based on the initial prior
information to quickly generate degradation data. Then, the data collected under higher stress levels
are employed to construct the prior distributions for the test design under lower stress levels by using
the Bayesian inference. In the process of optimization, the inverse Gaussian (IG) process is assumed
to describe the degradation paths, and the Bayesian D-optimality is selected as the optimal objective.
A case study on an electrical connector’s ADT plan is provided to illustrate the application of the
proposed Bayesian sequential ADT design method. Compared with the results from a typical static
Bayesian ADT plan, the proposed design could guarantee more stable and precise estimations of
different reliability measures.

Keywords: Bayesian optimal design; accelerated degradation testing (ADT); sequential decision;
D-optimality; inverse Gaussian process

1. Introduction

Acceleration degradation testing (ADT) is commonly used to obtain degradation data of products
over a short time period, to help extrapolate lifetime and reliability under usage conditions [1].
In an ADT, products are exposed to higher-than-use conditions to get the degradation data in a short
time [2,3]. Therefore, ADT is very popular in industrial application [4–6]. In planning an ADT,
initial values of some unknown model parameters must be specified to optimize a test plan by trading
off between constraints and utilities. To capture the uncertainties embedded in these parameters,
Bayesian ADT design is utilized, and this method treats model parameters as random variables by
assigning prior distributions based on the available historical data and expert’s knowledge. Hence,
compared to the traditional ADT optimal design, in which the crisp values are taken for the model
parameters, Bayesian optimal design is a global optimal method.

In the last decade, Bayesian ADT design has been widely employed, wherein the optimal ADT
plan is designed by maximizing the utility with the constraints of test resource. Liu and Tang [7]
proposed a Bayesian design method for ADT, with physically-based statistical models. A single-path

Entropy 2017, 19, 325; doi:10.3390/e19070325 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19070325
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 325 2 of 18

power-law statistical degradation model with nonlinear stress life relationships is developed. Based on
this model, the optimal objective is to minimize the expected pre-posterior variance of the quantile
life at the use condition. Shi and Meeker [8] presented a Bayesian method for accelerated destructive
degradation tests (ADDT), under a class of nonlinear degradation models with one accelerating
variable. The optimal objective was to maximize the precision of a specified failure-time distribution
quantile under usage conditions. Li et al. [1] developed a Bayesian methodology for designing step
stress accelerated degradation testing (SSADT) with the objective of relative entropy. It is assumed
that the degradation model follows a drift Brownian motion, and the acceleration model follows the
Arrhenius equation. The Markov chain Monte Carlo (MCMC) and surface fitting method are chosen to
solve for optimality.

For the aforementioned Bayesian ADT design method, the optimal plan depends on the prior
information entirely, which is referred to as the static Bayesian design method. However, when the
difference between prior information and the actual situation is large, the optimal plan designed by
the static Bayesian design method might lead to the over-testing or under-testing problems, which
means the test resources have been consumed more or the collected ADT data are insufficient. To avoid
these issues, the partial collected ADT data could contribute to updating the prior information so as
to modify the test plan by dynamic decision making. Hence, Bayesian optimal design for sequential
ADT, referred to as the dynamic Bayesian design method, is proposed in this paper.

For a sequential test design, when the data of the first batch of samples have been obtained,
engineers can use this fresh information to optimize or adjust the subsequent test plan. The method
has been employed in accelerated life testing (ALT). Liu and Tang [9] presented a sequential constant
stress ALT (CSALT) scheme based on the Weibull distribution, and two frameworks of the Bayesian
inference method are discussed, i.e., the all-at-one prior distribution construction and the full sequential
prior distribution construction. Tang and Liu [10] also proposed the sequential CSALT design method.
The objective is to minimize the expectation of the posterior variance of the estimated life percentile at
the use condition. Under the sequential scheme, a test at highest stress is first planned and conducted.
Using the information obtained at the highest stress level, a Bayesian framework was proposed
to optimally determine both the sample allocation and stress combination at lower stress levels of
subsequent accelerated tests. Based on the framework in [10], an auxiliary acceleration factor (AAF)
was introduced to further amplify the failure probability at low stress levels in [11]. For its good
performance of the dynamic decision, the typical application of the sequential test design lies in
reliability acceptance sampling testing. Wald [12] proposed a sequential sampling testing method,
where a judgment that the batch of the product is accepted, rejected or the test should be continued is
proposed when a fault occurs. In this way, the obtained failure information can be fully used to save
the test resources. Nezhad et al. [13] introduced a new sequential acceptance sampling plan based
on dynamic programming. A suitable cost model was employed for depicting the cost of sampling,
accepting or rejecting the lot.

In this paper, a Bayesian optimal design for sequential ADT is proposed to enhance the efficiency
and effectiveness of ADT. During the sequential ADT, the test at the highest stress is firstly conducted
based on the prior information to quickly generate degradation information. Then, the data collected
at the highest stress are used to construct the prior distributions for the test design at lower stress
levels using the Bayesian inference method. The proposed methodology can be referred to as the
Bayesian sequential step-down-stress ADT. In the proposed sequential scheme, the degradation path
is assumed to follow the inverse Gaussian (IG) process, which has been demonstrated as a flexible
family for degradation modeling by Ye and Chen [14], Peng et al. [15] and Peng et al. [16]. Moreover,
the IG process has also been demonstrated to be more suitable than the Wiener process and the gamma
process for degradation modeling in some applications [17,18]. Therefore, it is of interest to further
study the sequential scheme based on the IG process model. In addition, Bayesian D-optimality [19]
is selected as the objective that minimizes the determinant of the covariance matrix of the model
parameter estimates [20]. The remaining paper is organized as follows. In Section 2, the test scheme



Entropy 2017, 19, 325 3 of 18

and Bayesian planning criterion are proposed. In Section 3, the planning of a sequential step-down
ADT is presented. In Section 4, the case study is conducted to illustrate the validity and effectiveness
of the proposed method. Section 5 concludes this paper.

2. The Test Scheme and Bayesian Optimization

2.1. The Test Scheme

A sequential ADT design is a type of dynamic decision process in which the test plan is
dynamically adjusted after the ADT operation on each stress level. As the test at a higher stress
level can generate more degradation data in a short time to support the plan design at a lower stress
level, the accelerated stress level will be conducted with time in a step-down way; then, an ADT will
be first run under the highest stress level.

In order to present the scheme of sequential ADT design, the following settings will be firstly
given. In a sequential ADT with K (K ≥ 2) accelerated stress levels Sk (i.e., S1 < S2 <, · · · ,< SK
and k = 1, 2, · · · , K), there are n test items and M total degradation measurements. Let the specified
accelerated stress levels be a vector S = (S1, S2, · · · , SK) and the specified number of degradation
measurements on each accelerated stress level be a vector m = (m1, m2, · · · , mK), where mk denotes the
number of degradation measurements on the k-th stress level, and then, M = ∑K

k=1 mk. A sequential
ADT plan η, hence, can be written as η {n, M, S, m}.

Since there are K accelerated stress levels, correspondingly, the sequential ADT design is divided
into K stages; see Figure 1 for the schematic diagram of sequential testing design. S0 denotes the usage
stress level at which the product’s certain reliability measure needs to be estimated. The scheme of
sequential testing is as follows:

• Stage 1: Both n and M are predefined according to the budget and practical situation before an
ADT. The initial optimal test plan η∗K{S, m} is obtained through the existing Bayesian optimal
design method [19] based on the initial prior information. Then, we can make an initial decision
DK to conduct the ADT at the highest stress level based on η∗K.

• Stage 2: After the test under the higher stress level is completed, the corresponding degradation
data can be collected. Then, the posterior information could be calculated by the Bayesian
inference, which then will be treated as the prior information for the test design at the lower stress
level. Hence, the optimal plan for the lower stress level can simultaneously be designed by the
Bayesian method, and the decision could be correspondingly adjusted.

• Stage 3: Repeat Stage 2 for K− 1 times to make K− 1 decisions, and the whole sequential ADT is
completed after finishing the test on the lowest level. Then, the final posterior distributions could
be used to estimate the product’s reliability measures under S0.

Preliminary Plan

Adjusted 

DK Plan Plan

 

*

K
*

1K 

*

2K 
Plan

*

1

Adjusted 

DK-1

Figure 1. Schematic diagram of the sequential testing design.

We remind that the proposed Bayesian sequential scheme is totally different from the empirical
Bayesian, since each degradation datum applied in this paper is used only once.

2.2. ADT Model and Assumption

The degradation path of a product is assumed to satisfy the IG process. Let {X(t), t ≥ 0} be the
degradation path, and its associated failure is defined to be the event that X(t) crosses a pre-specified
threshold level XD; the corresponding first-passage-time is denoted as TD.

If a degradation process has the following three properties, we say it is an IG process.
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(1) X(0) = 0 with probability one;
(2) X(t) has independent increments, i.e., X(t2)− X(t1) and X(t4)− X(t3) are independent, for 0 ≤

t1 < t2 ≤ t3 < t4;
(3) each increment follows an IG distribution, i.e., ∆X(t) ∼ IG(µ∆Λ(t), λ(∆Λ(t))2), where µ > 0,

λ > 0, ∆Λ(t) = Λ(t + ∆t)−Λ(t), Λ(t) is a given monotone increasing function of time t with
Λ(0) = 0.

For any x > 0, the probability density function (PDF) of IG(u, v), µ > 0, λ > 0, with mean u and
variance u3/v, is defined by,

fIG(x; u, v) =
√

v
2πx3 · exp

[
−v(x− u)2

2u2x

]
. (1)

Then, the degradation increments x can be described by ∆X(t) ∼ IG(µ∆Λ(t), λ(∆Λ(t))2).
The mean and variance of ∆X(t) are µ∆Λ(t) and µ3∆Λ(t)/λ, respectively. Substituting u = µ∆Λ(t)
and v = λ(∆Λ(t))2 into Equation (1) yields the PDF of x as,

fIG(x; µ, λ) =

√
λ(∆Λ(t))2

2πx3 · exp

[
−λ(x− µ∆Λ (t))2

2x

]
(2)

In order to make both the degradation speed and the degradation volatility increase with the
stress, the parameter µ is assumed as the degradation rate of a product [21]. Then, it is a function of the
accelerated stress S, i.e., it is an acceleration model denoted by µ(S) and could be written as follows,

µ (S) = exp [a + bϕ (S)] (3)

where the parameters a and b need to be estimated from ADT. For convenience, the stress level can
be standardized by using a normalization scheme. In this paper, the linear normalization method is
applied. Let S0 and SH be the usage stress level and operational stress limit, respectively. Then, ϕ(S) is
a standardized function of S and expressed as [22],

ϕ (S) =
ξ (Sk)− ξ (S0)

ξ (SH)− ξ (S0)
(4)

where ξ(S) represents a known function of S. For example, if temperature is selected as accelerated
stress, ξ(S) = 1/S; if the electric stress is accelerated stress, ξ(S) = ln(S).

The parameter λ has no physical meaning and is assumed to be a constant in an ADT,
i.e., λ1 = λ2 =, · · · ,= λK. Since µ and λ are both time-independent, the process can be called
the homogeneous IG process or simple IG process. Generally, there are three different shapes of
performance degradation trend: linear, convex and concave. Hence, it is appropriate to assume
Λ(t) = tβ(β > 0) [23]. As the path of IG process is strictly increasing, the cumulative distribution
function (CDF) of TD for a given threshold XD can be expressed as,

FXD (t) = P(Y(t) ≥ XD) = Φ

[√
λ

XD
(tβ − XD

µ
)

]
− exp

(
2λtβ

µ

)
·Φ
[
−

√
λ

XD

(
tβ +

XD
µ

)]
. (5)

Let τ be the non-overlapped interval of degradation measurements and kept constant during ADT,
then the test duration tk on the k-th stress level is tk = τmk. When X(tikj) is the measurement result of
the j-th measurement of the i-th unit on the k-th stress level at time tikj(i = 1, 2, · · · , n, k = 1, 2, · · · , K,
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j = 1, 2, · · · , mk), the degradation increment is xikj = X(tik(j+1))− X(tikj) and follows Equation (2).
Then, based on Equation (2), the likelihood function is,

p(x|θ) =
K
∏

k=1

n
∏
i=1

mk
∏
j=1

(
λ
(
(mik(j+1)τ)

β−(mikjτ)
β
)2

2πx3
ikj

)1/2

exp

[
−

λ
[

xikj−exp[a+bϕ(Sk)]
(
(mik(j+1)τ)

β−(mikjτ)
β
)]2

2(exp[a+bϕ(Sk)])
2xikj

] (6)

For the sake of simplicity, we assume that the four parameters (i.e., a, b, λ and β) in Equation (5)
are independent of each other and consist of the parameter vector θ = (a, b, λ, β).

2.3. Prior and Posterior Distributions

When the degradation increment x follows an IG distribution, λ and β should be positive.
Therefore, some positive distributions (i.e., Gamma, logistic and Weibull distributions) can be used to
depict the uncertainties embedded in λ and β, respectively; while normal, logistic and extreme value
distributions can be used to depict uncertainties embedded in a and b.

In our proposed scheme of the sequential ADT, the prior distributions of θ under the highest stress
level are obtained based on the prior information before ADT. For example, when historical degradation
data are available as prior information, the mean and the variance of the model parameters can be
obtained by using the maximum likelihood estimation method and square root of the determinant
of the inverse matrix of the Fisher information matrix. As long as the distribution form of the prior
distribution is determined [19], the hyper-parameters can be determined, and the prior distributions
are settled. However, the prior distributions under other lower stress levels are obtained by the
posterior distributions of the relatively higher stress level.

According to the Bayesian theory, the posterior distributions p(θ|x) of θ can be expressed as [24],

p(θ|x) = p(x|θ)π(θ)∫
Θ p(x|θ)π(θ)dθ

. (7)

where π(θ) are the prior distributions of θ. Generally, since it is difficult to derive posterior distributions
in a closed form, the MCMC algorithm will be used to generate samples from intractable posterior
distributions, which provide the basis for subsequent model inference [25].

2.4. Bayesian Optimal Criterion

According to Li et al. [19], the D-optimality is the most robust optimal objective among the three
common objectives (i.e., relative entropy, quadratic loss function and D-optimality) in Bayesian design.
Hence, the D-optimality is selected as the optimal objective in this study, which is to maximize the
determinant of the Fisher information matrix [26]. It could be written as follows [27],

Φ(η) = EθEx[log(det(I(η, θ)))] =
∫

log(det(I(η, θ)))π(θ)dθ (8)

where the symbol “det” denotes the determinant of the matrix; I(η, θ) denotes the Bayesian information
matrix expressed as follows,

I(η, θ) =


E
(
− ∂2 ln p(θ|x)

∂a2

)
E
(
− ∂2 ln p(θ|x)

∂a∂b

)
E
(
− ∂2 ln p(θ|x)

∂a∂λ

)
E
(
− ∂2 ln p(θ|x)

∂a∂β

)
E
(
− ∂2 ln p(θ|x)

∂b2

)
E
(
− ∂2 ln p(θ|x)

∂b∂λ

)
E
(
− ∂2 ln p(θ|x)

∂b∂β

)
E
(
− ∂2 ln p(θ|x)

∂λ2

)
E
(
− ∂2 ln p(θ|x)

∂λ∂β

)
symmetrical E

(
− ∂2 ln p(θ|x)

∂β2

)

 (9)



Entropy 2017, 19, 325 6 of 18

where symmetrical denotes that the matrix is symmetric, and the matrix I(η, θ) must be non-singular.
The expressions for all of the elements in I(η, θ) are given in Appendix A Then, the Bayesian
D-optimality is to maximize Equation (8), which can be expressed as max Φ(η). Due to the complexity
of the formulas in Equation (9), a large-sample approximation is utilized to simplify the formulas to
numerically calculate the objective of plan η. Details are given as follows:

• Step 1: A plan space P is firstly defined, which contains R choices of test plans η.
As for ηr, r = 1, 2, · · · , R, simulate parameter θrp from the corresponding π(θ) for Q1 times
(p = 1, 2, · · · , Q1). Based on the simulated θrp, generate degradation data xrpq from the sampling
distribution (2) for Q2 times (q = 1, 2, · · · , Q2).

• Step 2: According to the Appendix, calculate the elements of Equation (9) based on the drawn θrp

and xrpq.

• Step 3: Numerically calculate the value of Equation (8) based on Φ(ηr) = 1
Q1·Q2

Q2
∑

q=1

Q1
∑

p=1
log(det(Irpq(ηr, θrp))).

3. Planning of a Sequential ADT

Without loss of generality, the number of stress levels K = 3 is selected to illustrate the optimal
design procedure of the sequential ADT.

3.1. Planning ADT under the Highest Stress Level S3

As proposed in Section 2.1, the plan for the highest stress level S3 is an initial plan of the sequential
ADT, which is designed based on the initial prior information.

Before the ADT, n and M are supposed to be given according to the budget and practical
situation and remain fixed through the test. Then, for the test plan η, the decision variables include
S = (S1, S2, · · · , SK) and m = (m1, m2, · · · , mK). Since the degradation rate under the higher stress
level is greater than that under the lower stress level and the time interval is constant, in order to
guarantee that enough useful degradation information can be obtained at all accelerated stress levels,
the degradation measurements at the lower stress levels are assigned more than that at the higher
stress levels, which means m1 > m2 >, · · · ,> mK(k = 1,2, . . . , K) [19]. The optimal model could be
expressed as follows:

max Φ (η)

s.t. S0 < Smin ≤ S1 < S2 < S3 ≤ Smax ≤ SH
m1 > m2 > m3 > 0, ∑3

k=1 mk = M
(10)

where Smin and Smax are the allowable lowest and the highest stress levels in ADT, and generally,
the allowable highest stress level in ADT is lower than operational stress limit due to the test facility
(i.e., Smax ≤ SH).

A plan space P3 is firstly defined, which contains R3 choices of test plans η. With the known
π3(θ), the corresponding Φ(ηr) of ηr in P3 could be calculated according to the procedure in Section 2.4.
The optimization methodology proposed by Li et al. [19] is applied in our study to solve Model (10),
then the initial optimal plan η∗3 = {(S1, S2, S3), (m1, m2, m3)} could be obtained. Next, engineers can run
the ADT with n samples under the stress level S3 and collect m3 degradation data.

3.2. Planning ADT under the Middle Stress Level S
′
2

After the ADT operation under S3, the degradation data x3 under S3 can be collected. Based on x3

and π3(θ), samples from posterior distributions p3(θ|x3) under S3 can be generated by using MCMC
according to Section 2.3. Then, the prior distributions π2(θ) under S

′
2 can be built up by the distributions

fitting to the samples from p3(θ|x3).
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The optimal model is given under S
′
2 with the constraints of the remaining resources M

′
,

max Φ (η)

s.t. S0 < S1
′ < S2

′ < S3

m1
′ > m2

′ > 0, ∑2
k=1 mk

′ = M′

M′ = M−m3

(11)

Similar to the method mentioned in Section 3.1, a plan space P2 is defined, which contains R2

choices based on the constraints of Model (11), and the optimization methodology in [19] is used
to obtain the optimal test plan η∗2 =

{
(S
′
1, S

′
2), (m

′
1, m

′
2)
}

. Then, engineers can conduct the test with n

samples under the stress level S
′
2 and collect m

′
2 degradation data.

3.3. Planning ADT under the Lowest Stress Level S
′′
1

After the ADT operation under S
′
2, the degradation data x2 under S

′
2 can be collected. Similarly,

based on x2 and π2(θ), samples from posterior distributions p2(θ|x2) under S
′
2 can be generated by

using MCMC according to Section 2.3; then, the prior distributions π1(θ) under S
′′
1 can be built up by

the distributions fitting to the samples from p2(θ|x2). The optimal model is generated under the stress
level S

′′
1 with the constraints of the remaining resources M

′′
,

max Φ (η)

s.t. S0 < S1
′′ < S2

′

m1
′′ = M′′

M′′ = M−m3−m2
′

(12)

The remaining resources M
′′

are fixed according to the Model (12), and the only decision variable
is the lowest stress level S

′′
1. The plan space P1, which contains R1 choices of test plans η, is defined by

discretizing the range of S
′′
1 (i.e., [S0, S

′
2)). Similar to the method mentioned in Section 3.1, the optimal

test plan η∗1 =
{

S
′′
1, m

′′
1

}
can be obtained.

Finally, the whole optimal sequential ADT plan is expressed as η∗ =
{
(S
′′
1, S

′
2, S3), (m

′′
1, m

′
2, m3)

}
.

4. Case Study

4.1. Numerical Case

In order to illustrate the proposed method, we assume that a sequential ADT is conduct on the
electric connectors given in Yang [28], and their stress relaxation data are used to build up the initial
prior distributions in this case study. In Example 8.7 of [28], the electric connector is said to fail when
the stress relaxation is over 30%, i.e., XD = 30. The ADT data of electric connectors were collected
under the conditions of S1 = 65 ◦C, S2 = 85 ◦C and S3 = 100 ◦C, respectively. These ADT data and the
corresponding measurement time are shown in Tables A1 and A2 of Appendix B.

Before the sequential ADT of electric connectors, we assume that K is equal to three; three electric
connectors are put into the sequential ADT; and the total of the measurements M is equal to 120.

Ye [21] has proven that the collected stress relaxation data follow the IG process, in which stress
function ξ(S) could be rewritten as 1/S. By using the maximum likelihood estimation method and
square root of the determinant of the inverse matrix of the Fisher information matrix, the mean and
the variance of the model parameters can be obtained, as shown in Table 1.

Now, it is obvious that as long as the distribution form is selected, the hyper-parameters are
determined. Suppose that parameters a and b follow normal distributions and parameters λ and β

follow Gamma distributions, then the initial prior distributions π3(θ) can be determined and are shown
in Table 2.
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Table 1. Estimated values of the model parameters.

Estimated Parameters â b̂ λ̂ β̂

Mean −1.8966 1.7379 0.6337 0.4493
Variance 0.1903 0.1738 0.1968 0.0178

Table 2. Prior distributions π3(θ) under S3.

Parameter a b λ β

π3(θ) Normal (−1.90, 0.19) Normal (1.74, 0.17) Gamma (2.04, 0.31) Gamma (11.34, 0.04)

If the usage stress level S0 is 40 ◦C, then Smin and Smax are set to be 50 ◦C and 100 ◦C, respectively.
For the Bayesian sequential ADT design, the test is supposed to be conducted after each stress level
is designed.

In this case, since we do not actually run the test, there is no available practical degradation
data for each stress level. Consequently, the numerical simulation based on the “true values” of the
parameters will be used to generate the degradation data. The estimations of mean in Table 1 are
supposed as the actual situation of the electric connector and to be the “true values” of θ, expressed as
θT . Details about the Bayesian sequential ADT design are illustrated as follows.

4.1.1. The Stage of the Highest Stress Level

According to Li et al. [19], the following simplification is made to obtain plan space P3. First,
let S1 = [50 55 60 65 70 75 80] ◦C and S3 = Smax = 100 ◦C, then, by using the interval
between ξ(Sl) and ξ(Sl+1) constant, S2 = [73 76 78 81 84 87 89] ◦C. Similarly, let m1 =

[40 50 60 70], m3 = [40 30 20 10] and m2 = 1/2(m1 + m3), then m2 = [40 40 40 40].
With the above simplification, the decision variables are reduced as (S1, m1) for η, since S and m will
be determined as long as S1 and m1 are chosen, and there are 28 choices of η in P3. Hence, according
to the method introduced in Section 3.1, the fitting surface of the optimal results can be obtained, as
shown in Figure 2, and the corresponding initial optimal plan η∗3 is shown in Table 3.

a b

Figure 2. Optimal results at the stage of the highest stress level. (a) Fitting surface, (b) Top view.

Table 3. Optimal plan η∗3 at the stage of highest stress level.

S1, S2, S3 (◦C) m1, m2, m3 Φ(η)(×1010)

50, 73, 100 50, 40, 30 3.8465
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4.1.2. The Stage of the Middle Stress Level

A. Prior distributions π2(θ) under S
′
2:

According to η∗3, the degradation data x3 are obtained by the simulation with parameters θT
under S3. Based on x3 and the prior distributions π3(θ), samples from posterior distributions p3(θ|x3)

under S3 can be generated by using MCMC according to Section 3.2. To fit the samples from p3(θ|x3),
different distribution types aforementioned in Section 2.3 are considered, and the likelihood ratio test
is used to select the appropriate distributions. According to the values of the log likelihood function
shown in Table 4, the normal and Gamma distributions are used to construct the prior distributions
π2(θ) under S

′
2 as shown in Figure 3 and Table 5.

Table 4. Results of log likelihood test for samples from p3(θ|x3).

Parameters
Distribution Forms Normal Extreme Value Logistic

a −1027.05 −1268.49 −1046.75
b −1029.14 −1521.26 −1032.19

Parameters
Distribution Forms Gamma Logistic Weibull

λ −350.384 −546.081 −467.518
β 4955.42 4908.82 4721.6
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Figure 3. Prior and posterior distributions underS3 and prior distributions π2(θ) under S
′
2.

(a) Parameter a, (b) Parameter b, (c) Parameter λ, (d) Parameter β.

Table 5. Prior distributions π2(θ) under S
′
2.

Parameter a b λ β

π2 (θ) Normal (−1.98, 0.12) Normal (1.68, 0.12) Gamma (5.48, 0.13) Gamma (92.94, 0.0049)

B. The middle optimal test plan η∗2:

Given the remaining test resources M
′
= 90, the following simplification is made to obtain

plan space P2. First, as S3 = Smax = 100 ◦C, the setting for stress levels remains the same with
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P3. Then, S
′
1 = [50 55 60 65 70 75 80] ◦C and S

′
2 = [73 76 78 81 84 87 89] ◦C.

As m
′
1 + m

′
2 = M

′
= 90, let m

′
1 = [45 50 55 60], and m

′
2 = [45 40 35 30]. With the above

simplification, there are 28 choices of η in P2. Hence, according to the method introduced in Section 3.2,
the fitting surface of the optimal results can be obtained, as shown in Figure 4, and the corresponding
optimal plan η∗2 is shown in Table 6.

a b

Figure 4. Optimal results at the stage of the middle stress level. (a) Fitting surface, (b) Top view.

Table 6. Optimal plan η∗2 at the stage of the middle stress level.

S
′
1, S

′
2 (◦C) m

′
1, m

′
2 Φ (η)(×1010)

50, 73 55, 35 3.9720

4.1.3. The Stage of the Lowest Stress Level

A. Prior distributions π1(θ) under S
′′
1 :

The degradation data x2 are generated by the simulation with parameters θT under S
′
2. Again,

with the likelihood ratio test, the normal and Gamma distributions are selected for π1(θ) under S
′′
1 as

shown in Figure 5 and Table 7. The corresponding values of log likelihood function are shown in Table 8.
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Figure 5. Prior and posterior distributions under S
′
2 and prior distributions π1(θ) under S

′′
1 .

(a) Parameter a, (b) Parameter b, (c) Parameter λ, (d) Parameter β.
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Table 7. Results of log likelihood test for samples from p2(θ|x2).

Parameters
Distribution Forms Normal Extreme Value Logistic

a 89.2733 45.8437 −1268.49
b −872.846 −890.798 −1521.26

Parameters
Distribution Forms Gamma Logistic Weibull

λ 697.036 591.541 530.585
β 6477.74 6444.57 6252.95

Table 8. Prior distributions π1(θ) under S
′′
1 .

Parameter a b λ β

π1 (θ) Normal (−1.92, 0.06) Normal (1.72, 0.10) Gamma (13.19, 0.0548) Gamma (259.81, 0.0017)

B. The last optimal test plan η∗1:

Given the remaining test resources m
′′
1 = 55, the only decision variable S

′′
1 can be discretized into

12 values with the range of (50, 73). Then, there are 12 choices of η in P1. The optimal results are shown
in Figure 6.

Finally, the optimal plan for Bayesian sequential ADT method is presented in Table 9.

Figure 6. Optimal results at the stage of the lowest stress level.

Table 9. Optimal plan for the sequential method.

Optimal Plan S
′′
1 , S

′
2, S3 (◦ C) m

′′
1 , m

′
2, m3 Φ (η)(×1010)

Sequential method 50, 73, 100 55, 35, 30 2.5044

4.2. Static Bayesian ADT Design Method vs. Dynamic Sequential ADT Design Method

In this section, comparisons are conducted between the static Bayesian design method in [19]
and the proposed dynamic sequential design method. It is known from Section 3.1 that the static
Bayesian plan is actually the test plan under the highest stress level η∗3 in the proposed method,
which is designed only based on the initial prior distribution π3(θ).
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As previously mentioned in Section 1, when the difference between the prior information and
actual situation is large, the optimal plan designed by the static Bayesian method may cause some issues
that the implemented ADT following the optimal ADT plan consumes too much testing resources
or few accelerated degradation data are obtained during the ADT. It is supposed that the proposed
Bayesian sequential ADT design may avoid these issues by dynamic decision-making. Therefore,
the “true values” of θ are assumed as ±2σ from the mean, respectively, based on π3(θ) as shown in
Table 10.

Table 10. The assumed model parameter.

“True Values” a b λ β

θT1(+2σ) −1.02 2.57 1.52 0.72
θT2(−2σ) −2.77 0.90 0.10 0.18

Considering the uncertainties embedded in the simulated degradation data, the test plans are
designed five times to make the results more convincing. The sequential plans with the true value θT1

and θT2 are shown in Tables 11 and 12.

Table 11. Sequential plans with θT1.

Sequential Plan No. S
′′
1 , S

′
2, S3 (◦C) m

′′
1 , m

′
2, m3 Φ (η)(×1010)

1 54, 73, 100 55, 35, 30 4.2332
2 50, 73, 100 60, 30, 30 3.1216
3 50, 73, 100 60, 30, 30 2.8496
4 52, 73, 100 55, 35, 30 2.5196
5 50, 73, 100 55, 35, 30 2.7243

Table 12. Sequential plans with θT2.

Sequential Plan No. S
′′
1 , S

′
2, S3 (◦C) m

′′
1 , m

′
2, m3 Φ (η)(×1010)

1 60, 76, 100 45, 45, 30 4.6062
2 62, 73, 100 45, 45, 30 5.4769
3 58, 73, 100 50, 40, 30 1.4460
4 52, 73, 100 50, 40, 30 1.8926
5 54, 73, 100 50, 40, 30 2.6563

It is known that an ADT is commonly used to assess the lifetime and reliability; then, to some
extent, the more accurate the evaluation is, the better the test plan is. Therefore, the evaluations of
the parameters and the p-quantile lifetime are chosen as the measurements for assessing how good
the ADT plans are. The mean of the posterior distribution is applied to evaluate the model parameter.
The p-quantile lifetime of XD can be approximately expressed as [21],

tp = Λ−1

[
µ

4λ

(
zp +

√
(zp)2 + 4XDλ/µ2

)2
]

(13)

where zp is the standard normal p-quantile and Λ−1 (.) is the inverse function of Λ (.). Then,
the Bayesian posterior p-quantile lifetime of XD is,

t(p, θ|x) = Λ−1

(
µ

4λ

(
zp +

√(
zp
)2+4XDλ/µ2

)2
)
· p(θ|x)) (14)

The corresponding evaluation results based on the sequential plans listed in Tables 11 and 12 and
the static plan η∗3 are shown in Figures 7–10.
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Figure 7. Parameters evaluation results with θT1. (a) Parameter a, (b) Parameter b, (c) Parameter λ,
(d) Parameter β.
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Figure 8. p-quantile lifetime evaluation results with θT1.
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Figure 9. Parameters evaluation results with θT2. (a) Parameter a, (b) Parameter b, (c) Parameter λ,
(d) Parameter β.
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Figure 10. p-quantile lifetime evaluation results with θT2.

To measure the evaluation accuracy of the two design methods better, the “relative deviation” is
defined as,

ε=
√

∑ (ŵ−wT)
2 (15)

where ŵ denotes the estimates and wT denotes the “true values” for both parameters and p-quantile
lifetime. The results of the relative deviation are presented in Table 13.

Table 13. Relative deviation results.

“True Values” Method εa εb ελ εβ εtp(×1017)

θT1
Static method 0.3940 0.5466 0.5250 0.0582 215.7427

Sequential method 0.1502 0.3450 0.4954 0.0507 132.9126

θT2
Static method 0.7265 1.2556 0.0407 0.0392 11.572

Sequential method 0.3218 0.8806 0.0388 0.0229 8.0021

The following could be true from the “relative deviation” results in Table 13:

(1) All of the relative deviations obtained by the proposed sequential method are less than that of the
static method. That is to say our proposed sequential scheme can ensure better estimates both for
the parameters and quantile lifetime.

(2) There are less fluctuations in the estimates based on the proposed sequential ADT plan than that
based on the static ADT plan.

5. Conclusions

A Bayesian sequential step-down-stress ADT design method is proposed, in which the test under
the highest stress level is conducted first to quickly generate degradation information. With the prior
information and the ADT data collected under the preorder stress levels, the Bayesian interference
and design methods are used for planning the subsequent ADT planning. In the proposed sequential
scheme, the degradation path is assumed to follow the IG process, and Bayesian D-optimality is
selected as the objective.

When there is a relatively big difference between priors and actual situations of samples, from the
numerical example, we can draw the following conclusions:
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(1) The ADT plan can be dynamically adjusted with the collected ADT data.
(2) The Bayesian sequential ADT design method outperform the Bayesian static design method

on both the accuracy of the evaluation and the robustness of the misspecification of the initial
planning parameter value.

The proposed scheme is conducted without the constraints of the total test cost, which could be
taken into account in the future work for practical application. In addition, D-optimality is selected
as the only objective, which expresses the evaluation precision of model parameters. It is noted that
there exist many Bayesian objectives, which express different utilities for ADT design; therefore, it
could be considered to design sequential ADT plans under the multi-objective optimization model
with different utilities as the objectives.
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ADT Accelerated degradation testing
IG Inverse Gaussian
ADDT Accelerated destructive degradation tests
MCMC Markov chain Monte Carlo
ALT Accelerated life testing
CSALT Constant stress accelerated life testing
PDF Probability density function
CDF Cumulative distribution function
K Number of accelerated stress levels
Sk k-th accelerated stress levels
mk Number of degradation measurements on the k-th stress level
M Total number of the degradation measurements
n Sample size
η {n, M, S, m} Test plan
η∗k {S, m} The optimal test plan at k-th accelerated stress levels
X(t) Degradation path
Λ(t) A given monotone increasing function in an IG process model
fIG (x; µ, λ) Probability density function for the degradation model
µ(S) An acceleration model
ϕ(S) A standardized function of S
XD Pre-specified threshold level of degradation
TD First-passage-time
xikj Degradation increment
θ Parameters of an IG process model
π(θ) Prior distributions
p(θ|x) Posterior distributions
Φ(η) D-optimality
I(η, θ) Bayesian information matrix
P Plan space
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Appendix A

In order to simplify the expression of the equations in Equation (9), we assume that Λikj =

tβ

ik(j+1) − tβ
ikj = (mik(j+1)τ)

β − (mikjτ)
β, and then,

∂Λikj

∂β
= ln

(
mik(j+1)τ

) (
mik(j+1))τ

)β
− ln

(
mikjτ

) (
mikjτ

)β
(A1)

∂2Λikj

∂2β
=ln2

(
mik(j+1)τ

) (
mik(j+1))τ

)β
− ln2

(
mikjτ

) (
mikjτ

)β
(A2)

The elements of I(η, θ) in Equation (9) are derived as follows,

E
(
−∂2 ln p(θ|x)

∂a2

)
=

K

∑
k=1

n

∑
i=1

ml−1

∑
j=1

( 2λxikj

exp2 [a + bξ (Sk)]
−

λΛikj

exp [a + bξ (Sk)]

)
(A3)

E
(
−∂2 ln p(θ|x)

∂a∂b

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

( 2λxikj

exp2 [a + bξ (Sk)]
−

λΛikj

exp [a + bξ (Sk)]

)
× ξ (Sk) (A4)

E
(
−∂2 ln p(θ|x)

∂a∂λ

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

( Λikj

exp [a + bξ (Sk)]
−

xikj

exp2 [a + bξ (Sk)]

)
(A5)

E
(
−∂2 ln p(θ|x)

∂a∂β

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

 λ
∂Λikj

∂β

exp [a + bξ (Sk)]

 (A6)

E
(
−∂2 ln p(θ|x)

∂b2

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

( 2λxikj

exp2 [a + bξ (Sk)]
−

λΛikj

exp [a + bξ (Sk)]

)
× ξ2 (Sk) (A7)

E
(
−∂2 ln p(θ|x)

∂b∂λ

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

( Λikj

exp [a + bξ (Sk)]
−

xikj

exp2 [a + bξ (Sk)]

)
× ξ (Sk) (A8)

E
(
−∂2 ln p(θ|x)

∂b∂β

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

 λ
∂Λikj

∂β

exp [a + bξ (Sk)]

× ξ (Sk) (A9)

E
(
−∂2 ln p(θ|x)

∂λ2

)
=

K

∑
k=1

n

∑
i=1

mk−1

∑
j=1

(
1

2λ2

)
(A10)

E
(
−∂2 ln p(θ|x)

∂λ∂β

)
=

K

∑
k=1

n

∑
i=1

mk-1

∑
j=1

Λil j

(
∂Λikj

∂β

)
xikj

−
∂Λikj

∂β

exp [a + bξ (Sk)]
(A11)

E
(
− ∂2 ln p(θ|x)

∂β2

)
=

K
∑

k=1

n
∑

i=1

mk-1
∑

j=1

(
∂Λikj

∂β

)2

Λikj
2 −

(
1

Λikj
+ λ

exp[a+bξ(Sk)]

)
∂2Λikj

∂2β
+ λ

xikj

[(
∂Λikj

∂β

)2
+Λikj

(
∂2Λikj

∂2β

)]
(A12)

Appendix B

The stress relaxation data and the measurement times are tabulated in Tables A1 and A2, where
symbol “*” denotes that there is no datum collected at that moment.
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Table A1. Stress relaxation degradation data of electrical connectors under different accelerated stress levels.

T ID Stress Loss

60 ◦C

1 2.12 2.7 3.52 4.25 5.55 6.12 6.75 7.22 7.68 8.46 9.46
2 2.29 3.24 4.16 4.86 5.74 6.85 * 7.4 8.14 9.25 10.55
3 2.4 3.61 4.35 5.09 5.5 7.03 8.24 8.81 9.629 10.27 11.11
4 2.31 3.48 5.51 6.2 7.31 7.96 8.57 9.07 10.46 11.48 12.31
5 3.14 4.33 5.92 7.22 8.14 9.07 9.44 10.09 11.2 12.77 13.51
6 3.59 5.55 5.92 7.68 8.61 10.37 11.11 12.22 13.51 14.16 15

85 ◦C

7 2.77 4.62 5.83 6.66 8.05 10.61 11.2 11.98 13.33 15.64 -
8 3.88 4.37 6.29 7.77 9.16 9.9 10.37 12.77 14.72 16.8 -
9 3.18 4.53 6.94 8.14 8.79 10.09 11.11 14.72 16.47 18.66 -
10 3.61 4.37 6.29 7.87 9.35 11.48 12.4 13.7 15.37 18.51 -
11 3.42 4.25 7.31 8.61 10.18 12.03 13.7 15.27 17.22 19.25 -
12 5.27 5.92 8.05 9.81 12.4 13.24 15.83 17.59 20.09 23.51 -

100 ◦C

13 4.25 5.18 8.33 9.53 11.48 13.14 15.55 16.94 18.05 19.44 -
14 4.81 6.16 7.68 9.25 10.37 12.4 15 16.2 18.24 20.09 -
15 5.09 7.03 8.33 10.37 12.22 14.35 16.11 18.7 19.72 21.66 -
16 4.81 7.5 9.16 10.55 13.51 15.55 16.57 19.07 20.27 22.4 -
17 5.64 6.57 8.61 12.5 14.44 16.57 18.7 21.2 22.59 24.07 -
18 4.72 8.14 10.18 12.4 15.09 17.22 19.16 21.57 24.35 26.2 -

Table A2. Inspection time under different stress levels.

T Performance Inspection Time

65 ◦C 108 241 534 839 1074 1350 1637 1890 2178 2513 2810
85 ◦C 46 108 212 408 632 764 1011 1333 1517 2586 -
100 ◦C 46 108 212 344 446 626 729 972 1005 1218 -
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