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Abstract: Carbon Dioxide Removal Assembly (CDRA) is one of the most important systems in
the Environmental Control and Life Support System (ECLSS) for a manned spacecraft. With the
development of adsorbent and CDRA technology, solid amine is increasingly paid attention due
to its obvious advantages. However, a manned spacecraft is launched far from the Earth, and its
resources and energy are restricted seriously. These limitations increase the design difficulty of solid
amine CDRA. The purpose of this paper is to seek optimal design parameters for the solid amine
CDRA. Based on a preliminary structure of solid amine CDRA, its heat and mass transfer models are
built to reflect some features of the special solid amine adsorbent, Polyethylenepolyamine adsorbent.
A multi-objective optimization for the design of solid amine CDRA is discussed further in this paper.
In this study, the cabin CO2 concentration, system power consumption and entropy production
are chosen as the optimization objectives. The optimization variables consist of adsorption cycle
time, solid amine loading mass, adsorption bed length, power consumption and system entropy
production. The Improved Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to solve
this multi-objective optimization and to obtain optimal solution set. A design example of solid amine
CDRA in a manned space station is used to show the optimal procedure. The optimal combinations
of design parameters can be located on the Pareto Optimal Front (POF). Finally, Design 971 is selected
as the best combination of design parameters. The optimal results indicate that the multi-objective
optimization plays a significant role in the design of solid amine CDRA. The final optimal design
parameters for the solid amine CDRA can guarantee the cabin CO2 concentration within the specified
range, and also satisfy the requirements of lightweight and minimum energy consumption.

Keywords: solid amine CDRA; manned spacecraft; system design; multi-objective optimization

1. Introduction

Atmosphere composition control is important for astronaut life safety and health in a manned
spacecraft [1]. CO2 removal technology can maintain cabin CO2 concentration level, always meeting
the specified requirements. With the development of manned space activities, researchers investigated
and evolved various CO2 removal techniques to adapt different missions, such as Lithium Hydroxide
(LiOH) [2], molecular sieve [3,4], solid adsorbents [5,6] and membrane separation [7], etc. The LiOH
canister has long been used in early missions (e.g., Mercury, Gemini and Apollo space capsules) due
to its reliable, simple and effective performance to satisfy a short mission requirement [8]. However,
the LiOH canister only removes CO2 without regeneration, so its whole weight of non-regeneration
system may be heavier than the one of regeneration system along with the extension of mission
time. For a long-term space mission, such as the International Space Station (ISS) [4], the 4-Bed
Molecular Sieve (4-BMS) Carbon Dioxide Removal Assembly (CDRA) shows a very good working
performance. Although the 4-BMS CDRA is considered more mature than the others, it consumed
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497 W average energy and 871 W highest energy, which was a heavy energy burden for the ISS [9].
In addition, the membrane separation technology seems to be an alternative CDRA method, but the
lack of selectivity between CO2 and oxygen has long perplexed researchers. The future CDRA needs
to be more efficient to fulfill the requirement of lower CO2 partial pressure. Different alternative
technologies need to be developed to overcome these problems.

At present, CO2 removal technology mainly adopts the zeolite and silica gel adsorbent adsorption
method in manned spacecraft. In comparison, a solid amine CDRA has superior features, such as low
energy consumption, small volume and lightweight. Hence, it is widely applied in submarines [10],
space shuttles [11], and manned spacecraft [11–14].

In early research, the solid amine CDRA became a competitive method in the United States and
Russia [15]. Germany developed its corresponding solid amine products [11]. The European Space
Agency (ESA) and Japan also studied the solid amine CDRA for their Environmental Control and Life
Support System (ECLSS) in the International Space Station (ISS) [13,16]. Many researchers developed
experimental prototypes of solid amine adsorption and vapor desorption, such as IRA-45 in the United
States, DORSA-028 in Germany, DIAION WA-21 in Japan [11,17].

In this paper, a solid amine CDRA using the Polyethylenepolyamine adsorbent is designed
preliminarily. In order to obtain the optimal design parameters for the studied solid amine CDRA,
a multi-objective optimization for solid amine CDRA will be developed to realize its minimization of
mass, volume and power consumption.

2. Working Principle for Solid Amine CDRA

According to our study results of previous thermo-gravimetric experiments and adsorption
bed experiments, a suitable adsorption temperature for Polyethylenepolyamine is 10–30 ◦C, and the
desorption temperature is above 45 ◦C at vacuum condition. Based on the above results, the solid
amine CDRA is designed as shown in Figure 1.
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Figure 1. Principle diagram of the solid amine Carbon Dioxide Removal Assembly (CDRA). 

The cabin air with CO2 and water vapor is driven by a fan into the solid amine CDRA. Two 
beds are at the outlet of the fan. Bed A adsorbs CO2 and water vapor, and generates the adsorption 
heat, which is transferred to Bed B. At the same time, Bed B desorbs CO2 and water vapor to 
vacuum space under the effect of adsorption heat.  

The designation of the solid amine CDRA system aims to keep the cabin CO2 concentration 
within the specified concentration requirement. Besides, the system should have both economical 
thermodynamic performance and good mechanical features, such as lightweight, small size, low 
energy consumption and easy-maintainability, low noise and vibration prevention. The 
thermodynamic factor is mainly concerned in our study. It is difficult to reasonably design this 
solid amine CDRA with so many constraints, hence a multi-objective design optimization for the 
solid amine CDRA in a manned spacecraft will be developed this paper. 

Figure 1. Principle diagram of the solid amine Carbon Dioxide Removal Assembly (CDRA).

The cabin air with CO2 and water vapor is driven by a fan into the solid amine CDRA. Two beds
are at the outlet of the fan. Bed A adsorbs CO2 and water vapor, and generates the adsorption heat,
which is transferred to Bed B. At the same time, Bed B desorbs CO2 and water vapor to vacuum space
under the effect of adsorption heat.

The designation of the solid amine CDRA system aims to keep the cabin CO2 concentration
within the specified concentration requirement. Besides, the system should have both economical
thermodynamic performance and good mechanical features, such as lightweight, small size, low energy
consumption and easy-maintainability, low noise and vibration prevention. The thermodynamic factor
is mainly concerned in our study. It is difficult to reasonably design this solid amine CDRA with so
many constraints, hence a multi-objective design optimization for the solid amine CDRA in a manned
spacecraft will be developed this paper.
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3. Mechanism Models

3.1. Heat and Mass Transfer Models for Adsorption Process

A rectangular structure for a bed is adopted in our study. The two adsorption beds are designed
to be close together so that adsorption heat from one bed can be fully transferred to the other bed for
the desorption. This design can rapidly cool the adsorption bed, and also fully use the heat energy.
Many researchers set up dynamical models for different solid amine structures [18–28]. In this paper,
we focus to set up heat and mass transfer models for a rectangular bed structure. A differential control
volume of adsorption bed is shown in Figure 2. The heat and mass transfer process will happen along
the directions of length l, width w and height h.
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1. Mass transport model

Assume that the gas phase is uniform in the w and h directions, and then the mass change in the
control volume can be simplified as:

∂Cg

∂τ
= De f f ,l

∂2Cg

∂l2 −
∂(uCg)

∂l
− (1− ε)

ε
ρs

∂qads
∂τ

(1)

where Cg is the CO2 concentration in the adsorption bed, kg/m3; τ is the time, s; Deff,l is the axial
diffusion coefficient along the length direction, m2/s; l is the length direction, m; ρs is the density of the
particle of solid amine, kg/m3; u is the air velocity inside the adsorption bed, m/s; qads is the amount
of adsorbed CO2, kg/kg; ε is the bed void, m3/m3.

The instantaneous adsorption capacity can be calculated as:

∂qads
∂τ

= k(qequ − qads) = k(KCCO2 − qads) (2)

where CCO2 is the gas-phase concentration of CO2 in bulk flow, kg/m3; k is the overall mass transfer
coefficient, 1/s; qequ is the amount of equilibrium adsorption loading, kg/kg; K is the Henry’s
constant, m3/kg.

2. Heat transfer model

(1) Heat transfer equation for the gas phase

If the heat diffusion along the w and h directions can be neglected, the heat transfer in the gas
phase can be written in Equation (3) according to the energy conservation:

ρgCP,g
∂Tg

∂τ
= k f ,l

∂2Tg

∂l2 − uρgCP,g
∂Tg

∂l
− 1− ε

ε
h f as(Tg − Ts)−

2(W + H)hw

WH
(Tg − Tw) (3)

where ρg is the density of gas phase, kg/m3; Cp,g is the specific heat capacity of gas phase, J/(kg·K);
Tg is the temperature of gas phase, K; kf,l is the effective thermal conductivity of gas phase in the
direction of l, W/(m·K); hf is the convective heat transfer coefficient between the gas phase and the
solid amine particles, W/(m2·K); as is the specific external surface area of the solid amine particles in
the bed per unit volume, m2/m3; Ts is the temperature of solid phase, K; W, L and H are the width,
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length and height of the adsorption bed, respectively, m; hw is the convective heat transfer coefficient
between the gas phase and the internal surface of bed, W/(m2·K); Tw is the internal wall temperature
of bed, K.

The initial and boundary conditions are as follows:

Tg = Tg,0, τ = 0, w = 0, 0 ≤ l ≤ L
∂Tg/∂l = 0, τ > 0, l = L

where Tg,0 is the initial temperature of gas phase, K.

(2) Heat transfer equation for the solid phase

If the heat diffusion along the l direction can be neglected, then the heat transfer equation can be
simplified in Equation (4):

ρsCP,s
∂Ts

∂τ
= ks,l

∂2Ts

∂l2 − hsas(Ts − Tg)−
2

∑
i=1

∂(∆Hi · ρi/Mi)

∂τ
(4)

The initial and boundary conditions of solid phase are as follows:

Ts = Ts,0 , τ = 0, w = 0, 0 ≤ l ≤ L
∂Ts/∂l = 0, τ > 0, l = L

where ρs is the density of solid, kg/m3; Cp,s is the heat capacity of solid, J/(kg·K); Ts and Ts,0 are
the solid temperature and its initial value, respectively, K; ∆H is the adsorption heat, J/mol; ρi is the
density of ith adsorbed component, kg/m3; Mi is the molecular weight of ith adsorbed component,
kg/mol; i represents CO2 and water vapor; hs is the heat transfer coefficient between solid and gas,
W/(m2·K); ks,l is the effective thermal conductivity of solid in the l direction, W/(m·K).

(3) Heat transfer equation for the wall of adsorption bed

As shown in Figure 1, the wall temperature of Bed A is greatly impacted by the gas and solid
phase temperatures in Bed A. The heat exchange of Bed A with Bed B is determined by the heat
diffusion and convective heat transfer along the w direction, so the heat transfer equation for the wall
can be as follows:

ρwCp,w
∂Tw

∂t
= ks,w

∂2Ts,2

∂w2 +
2(W + H)hw

WH
(Tg − Tw) (5)

The initial condition is below:
Tw = Tw,0τ ≤ 0

where ρw is the density of wall, kg/m3; Cp,w is the heat capacity of wall, J/(kg·K); Tw and Tw,0 are the
wall temperature and its initial value, respectively, K; hw is the heat transfer coefficient between the
gas and the wall, W/(m2·K); ks,w is the effective thermal conductivity of solid in w direction, W/(m·K).

(4) Heat transfer equation for the solid phase in the desorption bed

In a desorption bed, its solid amine is heated by the adsorption heat from another bed through
the bed wall. The heat transfer process mainly depends on the heat conduction of solid phase in a
vacuum environment. Assume that the heat conduction along the h direction is uniform, and then the
temperature change can be calculated as below:

ρsCp,s
∂Ts,2

∂τ
= ks,l

∂2Ts,2

∂l2 + ks,w
∂2Ts,2

∂w2 (6)
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The corresponding boundary conditions are as follows:
Ts,20 = Tw,0 τ = 0
∂Ts,2/∂l = 0 τ > 0, l = L
∂Ts,2/∂w = 0 τ > 0, w = W

where Ts,2 and Ts,20 are the solid temperature and its initial value in the desorption condition,
respectively, K.

3.2. Cabin CO2 Concentration

The cabin CO2 concentration can be calculated when the cabin volume is fixed:

VC
dCCO2

dτ
=

.
mCO2,gen −

.
mCO2,out +

.
mCO2,in (7)

where CCO2 is the cabin CO2 concentration, kg/m3; VC is the cabin volume, m3;
.

mCO2,gen is the CO2

generation rate by crew, kg/s;
.

mCO2,out and
.

mCO2,in are the CO2 generation rate at the inlet and outlet
of CDRA, respectively, kg/s.

The terms,
.

mCO2,gen,
.

mCO2,out and
.

mCO2,in, can be obtained from Equations (8)–(10), respectively.

.
mCO2,gen = nδ (8)

.
mCO2,in = Vm · CCO2

∣∣
l=L = (uWH) · CCO2

∣∣
l=L (9)

.
mCO2,out = Vm · CCO2

∣∣
l=0 (10)

where n is the numbers of crew; δ is the mass rate of CO2 generation, kg/s; CCO2

∣∣
l=L and CCO2

∣∣
l=0

are the CO2 concentrations at the outlet and inlet of absorption bed, kg/m3; Vm is the volume flow
rate, m3/s.

3.3. Power Consumption

For the solid amine CDRA, its power consumption happens in two components, the fan and
the saving pump. The power consumption of the saving pump is constant and determined by the
desorption pressure. The power of the fan is calculated by the pressure drop and the volume flow rate
as follows:

WFan =
Vm · ∆P

η
(11)

where WFan is the power of the fan, J/s; η is the fan efficient, %; ∆P is the pressure difference between
the inlet and outlet of the fan, Pa; Vm is the inlet volume flow rate of the fan, m3/s.

3.4. Entropy Generation

Two solid amine packed beds are the primary components for this type of CDRA. A detailed
component-by-component entropy generation analysis is highly important for the design of CDRA.
According to the working principle illustrated in Section 2, Bed A and Bed B alternatively adsorb CO2.
Thus, the entropy generation analysis will be conducted in a half-cycle. The entropy generation rate of
the adsorption bed can be calculated as follows [29,30]:

.
Sg,ads =

1
τad

∫ mmatCp,mat + msCp,s + qadsmsCp,g

T
dT +

.
mg(sg,out − sg,in) (12)

where
.
Sg,ads is the entropy generation rate of adsorption bed, J/(K·s); τad is the half-cycle time of solid

amine CDRA, s; mmat is the mass of packed bed materials, kg; Cp,mat is the specific heat capacity of
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packed bed materials, J/(kg·K); ms is the mass of solid amine particles, kg;
.

mg is the mass flow rate of
gas phase, kg/s; sg,out and sg,in are the outlet and inlet specific entropy values of gas phase, J/(kg·K).

The first term on the right side of Equation (12) represents the entropy change due to temperature
variation of packed bed materials, solid amine particle adsorbent and the adsorbed adsorbates.
The second term denotes the entropy change contribution of gas phase flashing through the
adsorption bed.

The desorption process is particularly conducted in a vacuum space state. Its entropy can be
considered to be a constant value. The entropy generation rate of desorption bed,

.
Sg,des, can be

written as [29]:
.
Sg,des =

1
τad

∫ mmatCp,mat + msCp,s + qdesmsCp,g

T
dT (13)

During the adsorption and desorption processes, the temperature change is mainly caused
by the reaction heat between CO2 and solid amine, and this will lead to the entropy productions.
The following assumptions are made in the analysis:

(1) The heat losses of two beds are disregarded, so the filter is considered as an isothermal system.
(2) The effect of CO2 mass in both gas phase and adsorbent can be ignored.
(3) The pressure is assumed to be constant.
(4) The gas phase is assumed to obey the ideal gas behavior.

On the basis of the above assumptions, the entropy generation rates of adsorption and desorption
beds can be described by the following equations:

.
Sg,ads = Cp,g

.
mg ln(T0/Tg,out) (14)

.
Sg,des =

1
τad

Cp,sms ln(Ts,des/T0) (15)

where Tg,out is the outlet temperature of gas phase, K; Ts,des is the desorption temperature of solid
amine, K; T0 is the environmental temperature, K.

3.5. Numerical Calculation Method

The heat and mass transfer models are calculated using the numerical method in Matlab program.
In the calculation of mass transfer model, the time step is 0.01 h and the space step along the l direction
is 0.01 m. As for the heat transfer equations, the time step is 0.003 h and the space step along the l
and w directions is 0.01 m. The corresponding parameters in the optimization analysis are shown in
Table 1.

Table 1. Related parameters in mass and heat transfer models.

Parameter Unit Value Parameter Unit Value

as m2·m−3 520 ks,1 W·m−1·K−1 0.42
Cini kg·m−3 5.45 × 10−4 ks,w W·m−1·K−1 0.40
Cp,g J·kg−1·K−1 1.00 × 103 n person 3
Cp,s J·kg−1·K−1 1000 ∆Psys Pa 800
Cp,w J·kg−1·K−1 900 VC m3 118

De f f ,l m2·s−1 1 × 109 ε —- 0.35
H m 0.2 T0 K 300
hf W·m−2·K−1 4.9 Tg0 K 300
hw W·m−2·K−1 0.91 Ts0 K 300
∆H J·mol−1 5.75 × 104 W m 0.4
K m3·kg−1 5.65 ρg kg·m−3 1.2
k h−1 3.9 × 10−2 ρs kg·m−3 550

k f ,l W·m−1·K−1 0.055 ρw kg·m−3 6500
ks,l W·m−1·K−1 0.32 µ Pa·s 17.9 × 10−6

ks,w W·m−1·K−1 1.39 δ kg·h−1 4.15 × 10−2
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4. Multi-Objective Optimization for the Solid Amine CDRA

4.1. Optimization Objectives and Variables

The design objectives of solid amine CDRA optimization include the following parameters:

(1) Cabin CO2 concentration should be controlled within the allowed range and kept at minimum,
min (CCO2 );

(2) Minimize the fan power consumption, min (WFan);
(3) Minimize the entropy generation in the adsorption bed, min (Sg,ads);

(4) Maximize the difference of entropy generations in the adsorption and desorption beds, max (dSg),
where dSg = Sg,des − Sg,ads.

Therefore, this multi-objective optimization includes four objectives as follows:

→
f (
→
x ) = [ f1(

→
x ), f2(

→
x ), f3(

→
x ), f4(

→
x )] (16)

→
x expresses the vector of four optimization variables:

→
x = [x1, x2, x3, x4] = [u, L, τad, ms] (17)

4.2. Constraints for Optimization

• Constraints of optimal objectives

(1) CCO2 should satisfy the maximum allowed concentration: CCO2 < 0.7% vol/vol [31];
(2) The heat adsorption process is irreversible, so Sg,ads > 0 and dSg > 0.

• Constraints of optimization variables

(1) The parameters, L and u, should satisfy the law of momentum conservation:

L× u <
∆PεWH

8µ
(18)

(2) ms should be less than the maximum loading mass in the absorption bed:

ms

ρs
< WHL (19)

(3) τad should be less than the time when the adsorption reaches its saturation state:

VmCCO2 τad ≤ msKCCO2 (20)

(4) The desorption condition is kept at a vacuum state over 1.5 h:

τad ≥ 1.5 (21)

According to the solid amine adsorption capacity and the specific shape of adsorbent bed,
the ranges of four optimization variables are set as follows:

0.1 ≤ u ≤ 0.2, m/s
0.4 ≤ L ≤ 0.8, m
2.0 ≤ τad ≤ 4.0, h
8.0 ≤ ms ≤ 14.0, kg
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4.3. Calculation Methods of Optimization

In this paper, the optimization method is established by using Modefrontier software and Matlab
software together. The heat and mass transfer models are programmed in M-file of Matlab and
NSGA-II is selected in Modefrontier software to obtain optimal results.

The optimization procedure is shown in Figure 3. A number of initial populations are generated
in this algorithm. The population goes through non-dominated sorting, selection, simulated binary
crossover and polynomial mutation, and then the first generation is obtained. Appropriate individuals
are selected as parent population according to the crowding degree, and then produce a new offspring
population through basic operation of genetic algorithm. Parent population and offspring population
are combined from the second generation, and the crowding degree for individual in non-dominant
layer is calculated [32]. Cycles will continue in turn until the optimum result appears. In this method,
the excellent populations will not be discarded in the evolution, and the precision of the optimization
results can be improved by storing all the hierarchical individuals in the population [33,34].
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5. Multi-Objective Optimal Results

5.1. Parameters for NSGA-II

Pareto optimal solutions can be obtained by using the above optimal method. The corresponding
parameters for NSGA-II are listed in Table 2. The number of initial population is 20, which will go
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through the selection, crossover and mutation. Finally, the proper individuals for multi-objective
function can be obtained.

Table 2. Parameters of the NSGA-II.

Parameters Value

Number of Designs 20
Number of Generations 100
Cross-Over Probability 0.5

Mutation Probability for Real-Coded Vectors 1.0
Mutation Probability for Binary Vectors 1.0

Distribution Index for Real-Coded Crossover 20
Distribution Index for Real-Coded Mutation 20

Random Generator Seed 1

5.2. Pareto Optimal Solution Set

A curved surface and POFs will be formed when the solution set is mapped onto the coordinate
system. Figure 4 shows the three-dimensional relationship between Sg,ads, CCO2 and WFan. Figure 5
displays the relationship between Sg,ads, CCO2 and dSg. Both the two figures show the distribution of
optimal solutions. In Figure 4, the optimal values are located near to the minimum values of three
objectives. In Figure 5, the optimal values are located near to the minimum values of CCO2 and WFan,
and the maximum values of dSg.
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In order to describe the relationship of our optimization objectives obviously, the optimization
relationships are shown in Figures 6–8, respectively. The red lines in these figures show the potential
POFs of the solution set.
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From Figures 6–8, we can observe that:

(1) In Figure 6, the maximum value of CCO2 is 0.0137 kg/m3, about 0.69% volume concentration,
which means that all the values of CCO2 satisfy the requirement. The optimal values can be derived
from the POFs. The potential optimal combinations of design parameters include Designs 228,
461, 649, 759, 885, 930, 971, 1017, 1129, 1172, 1332, 1430, 1644, 1686, 1758, 1834, 1915, 1985 and 1993.

(2) Figure 7 shows the optimal relationship between min (Sg,ads) and max (dSg). The potential optimal
design points on the POFs include Designs 461, 649, 930, 971, 1008, 1017, 1332, 1430, 1481, 1635,
1644, 1686, 1829, 1834, 1915, 1974 and 1985.

(3) In Figure 8, the preferred points contained Designs 228, 461, 540, 649, 885, 930, 971, 1008, 1017,
1260, 1332, 1430, 1556, 1644, 1686, 1751, 1829, 1915, 1985 and 1993.
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The optimal combinations of design parameters can be selected from the intersection of the above
three optimal points sets, and they are listed in Table 3.

Table 3. Optimal results of the solid amine CDRA.

Design Point u m/s L m τad h ms kg CCO2 kg/m3 Sg,ads J/(s·K) WFan J/s dSg J/(s·K)

461 0.10 0.74 3.64 11.67 0.00293 0.16 36.0 1.80
649 0.10 0.66 3.89 10.44 0.00458 0.13 36.0 1.70
930 0.10 0.63 3.94 10.53 0.00565 0.13 36.0 1.69
971 0.10 0.59 3.94 10.53 0.00703 0.12 36.0 1.69

1017 0.10 0.61 2.82 11.67 0.00234 0.17 36.0 2.31
1332 0.10 0.72 3.85 10.54 0.00350 0.14 36.0 1.71
1430 0.10 0.59 2.71 11.75 0.00226 0.18 36.0 2.40
1644 0.10 0.49 3.84 10.85 0.00976 0.11 36.0 1.75
1686 0.10 0.58 2.41 11.76 0.00200 0.20 36.0 2.67
1915 0.10 0.51 2.18 11.98 0.00186 0.20 36.0 2.93
1985 0.10 0.73 2.00 11.98 0.00169 0.27 36.0 3.11

In Table 3, air velocity values tend to its lower limit, which indicates that a low velocity is
beneficial to optimal results. Besides, the relationship between u and WFan is almost a linear one. The
low velocity will lead to a reduction of volume flow rate, and then reduce the fan power consumption.
However, the low velocity is not conducive to the convective heat transfer between gas phase and
solid phase. The increase of bed length will prolong the penetration time. It is conducive to reduce
CCO2 and increase the heat transfer area. Meanwhile, the resistance will be increased, which will lead
to the increase of the fan power consumption.

Particularly, τad has a significant impact on dSg and Sg,ads. dSg and Sg,ads will increase with the
reducing of τad. The POFs show an approximate linear relation between dSg and τad. The CO2

concentration and the fan power seem to be scarcely affected by τad, as shown in Figure 9.

1 
 

 
(a) τad and 

2COC  (b) τad and Sg,ads 

 
(c) τad and dSg (d) τad and dSg 

 
Figure 9. Relationship between τad and objectives.
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From Table 3 and Figure 9, we can draw a conclusion that the optimal objectives are determined
by multiple parameters, and it is hard to obtain optimal results if only the single parameter is analyzed,
which reveals the necessity and importance of the multi-objective optimization.

5.3. Optimal Solution for CDRA

Without additional subjective preference information, all Pareto solutions listed in Table 3 are
considered to be equal. When a design of a CDRA system is conducted for a manned spacecraft, a single
design point should be selected form the optimal results. In addition, for the sake of reducing the cost
of launch and operation, each design combination of optimal variables should be selected in view of
many considerations, such as lightweight, small volume, easy-maintainability, power consumption,
and so on. Figure 10 shows the comparison of adsorbent loading mass and the bed length based on the
obtained optimal results in Table 3. The circled two points in Figure 10 meet the requirement of lighter
weight and smaller volume. These two design points seem to be the optimization points. According
to the parameters listed in Table 3, Design 1644 shows the less Sg,ads and greater dSg than Design 971.
However, the CO2 concentration value of Design 1644 is 0.00976 kg/m3, that is, 0.497% vol/vol, which
is really higher than the one of Design 971. Thus, Design 971 is finally determined as the preferred
design group.
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For the CDRA system design based on the parameters of Design 971, the outlet CO2 concentration
of the adsorption bed is simulated as shown in Figure 11. The temperature change of gas, solid and
wall at l = L with time, as well as the desorption temperatures at l = L and w = W/2, are shown
in Figure 12.
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Figure 12. Temperature changes of gas, solid and wall at l = L and w = W/2.

From Figure 11, the half-cycle time of the absorption bed is 3.94 h, but the adsorption saturation
is reached at about 4 h. Thus, the cabin CO2 concentration can always be maintained within the
requirements. All temperatures in Figure 12 rise rapidly because of the adsorption heat. The highest
temperature of solid phase in the adsorption bed can reach 38.9 ◦C, and the peak value of gas
temperature is 36.6 ◦C. The solid amine in the desorption bed also increases to 30 ◦C. In order to
realize a complete desorption condition, the temperature in the desorption bed needs to reach more
than 45 ◦C. It is obvious that the adsorption heat is not enough for the desorption process, thus, some
improvement methods should be considered to meet the requirement of desorption heat.

6. Conclusions

A multi-objective optimization is studied in this paper for the design of solid amine CDRA in
manned spacecraft. CCO2 , WFan, Sg,ads and dSg, are chosen as objective functions. u, L, τad and ms are
confirmed as optimal design variables. The mass and heat transfer models are set up for the solid
amine CDRA. NSGA-II is used to solve the multi-objective optimal process subject to constraints.
The POF can be located and the optimal designs can be searched. With our study, the following
conclusions can be drawn:

1. Small loading mass of ms is beneficial to reduce the system weight and total pressure difference,
but it is a disadvantage to CCO2 ;

2. τad has approximate linear relationship with dSg, but it is inversely proportional to Sg,ads and dSg;

3. The increase of L contributes to increase the heat transfer surface and improves the adsorption
capacity, but it will lead to the entropy generation in the desorption bed;

4. The low velocity leads to reducing the power consumption, but it is not conducive to the
convective heat transfer between the gas and solid phase.

Design 971 is finally selected as the final optimal combinations of design parameters. The CO2

concentration and temperature changes of Design 971 are calculated. They can reflect the adsorption
process in the bed. One point needs to notice that some enhanced heat transfer methods should be
considered in the design of solid amine CDRA because the heat conduction is not enough to reach its
desorption temperature.
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