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Abstract:



This paper investigates polar codes for the additive white Gaussian noise (AWGN) channel. The scaling exponent [image: there is no content] of polar codes for a memoryless channel [image: there is no content] with capacity [image: there is no content] characterizes the closest gap between the capacity and non-asymptotic achievable rates as follows: For a fixed [image: there is no content], the gap between the capacity [image: there is no content] and the maximum non-asymptotic rate [image: there is no content] achieved by a length-n polar code with average error probability [image: there is no content] scales as [image: there is no content], i.e., [image: there is no content]. It is well known that the scaling exponent [image: there is no content] for any binary-input memoryless channel (BMC) with [image: there is no content] is bounded above by [image: there is no content]. Our main result shows that [image: there is no content] remains a valid upper bound on the scaling exponent for the AWGN channel. Our proof technique involves the following two ideas: (i) The capacity of the AWGN channel can be achieved within a gap of [image: there is no content] by using an input alphabet consisting of n constellations and restricting the input distribution to be uniform; (ii) The capacity of a multiple access channel (MAC) with an input alphabet consisting of n constellations can be achieved within a gap of [image: there is no content] by using a superposition of [image: there is no content] binary-input polar codes. In addition, we investigate the performance of polar codes in the moderate deviations regime where both the gap to capacity and the error probability vanish as n grows. An explicit construction of polar codes is proposed to obey a certain tradeoff between the gap to capacity and the decay rate of the error probability for the AWGN channel.
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1. Introduction


1.1. The Additive White Gaussian Noise Channel


This paper investigates low-complexity codes over the classical additive white Gaussian noise (AWGN) channel ([1], Chapter 9), where a source wants to transmit information to a destination and each received symbol is the sum of the transmitted symbol and an independent Gaussian random variable. More specifically, if [image: there is no content] denotes the symbol transmitted by the source in the kth time slot, then the corresponding symbol received by the destination is


[image: there is no content]



(1)




where [image: there is no content] is the standard normal random variable. When the transmission lasts for n time slots, i.e., each transmitted codeword consists of n symbols, it is assumed that [image: there is no content] are independent and each transmitted codeword [image: there is no content] must satisfy the peak power constraint


[image: there is no content]



(2)




where [image: there is no content] is a constant which denotes the permissible power. For transmitting a uniformly distributed message [image: there is no content] across this channel, Shannon [2] shows that the limit of the maximum coding rate R as n approaches infinity (i.e., capacity) is


[image: there is no content]



(3)








1.2. Polar Codes


In 1948, in his groundbreaking paper Shannon [2] proposed a systematic framework for studying the fundamental limits for transmitting information over noisy channels and provided a single-letter formula for the capacity of a memoryless channel. For decades, information and coding theorists sought to achieve these fundamental limits via low-complexity and capacity-achieving codes. In 2009, in his breakthrough paper Arıkan [3] proposed a class of codes—known as polar codes—whose encoding and decoding complexities are [image: there is no content] and provably achieve the capacity of any binary-input memoryless symmetric channel (BMSC).



The scaling exponent [image: there is no content] of polar codes for a memoryless channel [image: there is no content] with capacity


[image: there is no content]



(4)




characterizes the closest gap between the channel capacity and non-asymptotic achievable rates as follows: For a fixed [image: there is no content], the gap between the capacity [image: there is no content] and the maximum non-asymptotic rate [image: there is no content] achieved by a length-n polar code with average error probability [image: there is no content] scales as [image: there is no content], i.e., [image: there is no content]. It has been shown in [4,5,6] that the scaling exponent [image: there is no content] for any BMSC with [image: there is no content] lies between [image: there is no content] and [image: there is no content]. Indeed, the upper bound [image: there is no content] remains valid for any general binary-input memoryless channel (BMC) ([7], Lemma 4). The scaling exponent of polar codes for a non-stationary channel has been recently studied in [8].



It is well known that polar codes are capacity-achieving for BMCs [9,10,11,12], and appropriately chosen ones are also capacity-achieving for the AWGN channel [13]. In particular, for any [image: there is no content] and any [image: there is no content], polar codes operated at rate R can be constructed for the AWGN channel such that the decay rate of the error probability is [image: there is no content] [13] and the encoding and decoding complexities are [image: there is no content]. However, the scaling exponent of polar codes for the AWGN channel has not been investigated yet.



In this paper, we construct polar codes for the AWGN channel and show that [image: there is no content] remains a valid upper bound on the scaling exponent. Our construction of polar codes involves the following two ideas:(i) By using an input alphabet consisting of n constellations and restricting the input distribution to be uniform as suggested in [13], we can achieve the capacity of the AWGN channel within a gap of [image: there is no content]; (ii) By using a superposition of [image: there is no content] binary-input polar codes (in this paper, n is always a power of 2) as suggested in [14], we can achieve the capacity of the corresponding multiple access channel (MAC) within a gap of [image: there is no content] where the input alphabet of the MAC has n constellations (i.e., the size of the Cartesian product of the input alphabets corresponding to the [image: there is no content] input terminals is n). The encoding and decoding complexities of our constructed polar codes are [image: there is no content]. On the other hand, the lower bound [image: there is no content] holds trivially for the constructed polar codes because the polar codes are constructed by superposing [image: there is no content] binary-input polar codes whose scaling exponents are bounded below by [image: there is no content] [5].



In addition, Mondelli et al. ([4], Section IV) provided an explicit construction of polar codes for any BMSC which obeys a certain tradeoff between the gap to capacity and the decay rate of the error probability. More specifically, if the gap to capacity is set to vanish at a rate of [image: there is no content] for some [image: there is no content], then a length-n polar code can be constructed such that the error probability is [image: there is no content] where [image: there is no content] denotes the binary entropy function. This tradeoff was developed under the moderate deviations regime [15] where both the gap to capacity and the error probability vanish as n grows. For the AWGN channel, we develop a similar tradeoff under the moderate deviations regime by using our constructed polar codes described above.




1.3. Paper Outline


This paper is organized as follows. The notation used in this paper is described in the next subsection. Section 2 presents the background of this work, which includes existing polarization results for the BMC which are used in this work. Section 3.1, Section 3.2 and Section 3.3 state the formulation of the binary-input MAC and present new polarization results for the binary-input MAC. Section 4.1–Section 4.2 state the formulation of the AWGN channel and present new polarization results for the AWGN channel. Section 5 establishes the definition of the scaling exponent for the AWGN channel and establishes the main result—4.714 is an upper bound on the scaling exponent of polar codes for the AWGN channel. Section 6 presents an explicit construction of polar codes for the AWGN channel which obey a certain tradeoff between the gap to capacity and the decay rate of the error probability under the moderate deviations regime. Concluding remarks are provided in Section 7.




1.4. Notation


The set of natural numbers, real numbers and non-negative real numbers are denoted by [image: there is no content], [image: there is no content] and [image: there is no content] respectively. For any sets [image: there is no content] and [image: there is no content] and any mapping [image: there is no content], we let [image: there is no content] denote the set {a∈A|f(a)∈D} for any [image: there is no content]. We let [image: there is no content] be the indicator function of the set [image: there is no content]. An arbitrary (discrete or continuous) random variable is denoted by an upper-case letter (e.g., X), and the realization and the alphabet of the random variable are denoted by the corresponding lower-case letter (e.g., x) and calligraphic letter (e.g., [image: there is no content]) respectively. We use [image: there is no content] to denote the random tuple [image: there is no content] where each [image: there is no content] has the same alphabet [image: there is no content]. We will take all logarithms to base 2 throughout this paper.



The following notations are used for any of the arbitrary X and Y random variables and any real-valued function g with domain [image: there is no content]. We let [image: there is no content] and [image: there is no content] denote the conditional probability distribution of Y given X and the probability distribution of [image: there is no content] respectively. We let [image: there is no content] and [image: there is no content] be the evaluations of [image: there is no content] and [image: there is no content] respectively at [image: there is no content]. To make the dependence on the distribution explicit, we let [image: there is no content] denote ∫XpX(x)1{g(x)∈A}dx for any set [image: there is no content]. The expectation of [image: there is no content] is denoted as [image: there is no content]. For any [image: there is no content] distributed according to some [image: there is no content], the entropy of X and the conditional mutual information between X and Y given Z are denoted by [image: there is no content] and [image: there is no content] respectively. For simplicity, we sometimes omit the subscript of a notation if it causes no confusion. The relative entropy between [image: there is no content] and [image: there is no content] is denoted by


[image: there is no content]



(5)







The 2-Wasserstein distance between [image: there is no content] and [image: there is no content] is denoted by


W2(pX,pY)≜infsX,Y:sX=pX,sY=pY∫X∫YsX,Y(x,y)(x−y)2dydx.



(6)







We let N(·;μ,σ2):R→[0,∞) denote the probability density function of a Gaussian random variable whose mean and variance are [image: there is no content] and [image: there is no content] respectively, i.e.,


[image: there is no content]



(7)









2. Background: Point-to-Point Channels and Existing Polarization Results


In this section, we will review important polarization results related to the scaling exponent of polar codes for binary-input memoryless channels (BMCs).



2.1. Point-to-Point Memoryless Channels


Consider a point-to-point channel which consists of one source and one destination, denoted by [image: there is no content] and [image: there is no content] respectively. Suppose node [image: there is no content] transmits information to node [image: there is no content] in n time slots. Before any transmission begins, node [image: there is no content] chooses message W destined for node [image: there is no content], where W is uniformly distributed over the alphabet


[image: there is no content]



(8)




which consists of M elements. For each [image: there is no content], node [image: there is no content] transmits [image: there is no content] based on W and node [image: there is no content] receives [image: there is no content] in time slot k where [image: there is no content] and [image: there is no content] denote respectively the input and output alphabets of the channel. After n time slots, node [image: there is no content] declares [image: there is no content] to be the transmitted W based on [image: there is no content]. Formally, we define a length-n code as follows.



Definition 1.

An [image: there is no content] code consists of the following:

	
A message set [image: there is no content] as defined in (8). Message W is uniform on [image: there is no content].



	
An encoding function [image: there is no content] for each [image: there is no content], where [image: there is no content] is used by node [image: there is no content] for encoding [image: there is no content] such that [image: there is no content].



	
A decoding function [image: there is no content] used by node [image: there is no content] for producing the message estimate [image: there is no content].










Definition 2.

The point-to-point memoryless channel is characterized by an input alphabet [image: there is no content], an output alphabet [image: there is no content] and a conditional distribution [image: there is no content] such that the following holds for any [image: there is no content] code: For each [image: there is no content], [image: there is no content] where [image: there is no content] for all [image: there is no content] and [image: there is no content].





For any [image: there is no content] code defined on the point-to-point memoryless channel, let [image: there is no content] be the joint distribution induced by the code. By Definitions 1 and 2, we can factorize [image: there is no content] as,


[image: there is no content]



(9)








2.2. Polarization for Binary-Input Memoryless Channels


Definition 3.

A point-to-point memoryless channel characterized by [image: there is no content] is called a binary-input memoryless channel (BMC) if [image: there is no content].





We follow the formulation of polar coding in [11]. Consider any BMC characterized by [image: there is no content]. Let [image: there is no content] be the probability distribution of a Bernoulli random variable X, and let [image: there is no content] be the distribution of n independent copies of [image: there is no content], i.e., [image: there is no content] for all [image: there is no content]. For each [image: there is no content] where [image: there is no content], the polarization mapping of a length-n polar code is given by


Gn≜1011⊗m=Gn−1



(10)




where ⊗ denotes the Kronecker power. Define [image: there is no content] such that


[U1U2…Un]=[X1X2…Xn]Gn



(11)




where the addition and product operations are performed over GF(2), define


[image: there is no content]



(12)




for each [image: there is no content] and each [image: there is no content] where [image: there is no content] characterizes the BMC (cf. (2)), and define


[image: there is no content]



(13)







In addition, for each [image: there is no content], define the Bhattacharyya parameter associated with time k as


Z[pX;qY|X](Uk|Uk−1,Yn)(14)≜2∑uk−1∈Uk−1∫YnpUk−1,Yn(uk−1,yn)pUk|Uk−1,Yn(0|uk−1,yn)pUk|Uk−1,Yn(1|uk−1,yn)dyn(15)=2∑uk−1∈Uk−1∫YnpUk,Uk−1,Yn(0,uk−1,yn)pUk,Uk−1,Yn(1,uk−1,yn)dyn








where the distributions in (14) and (15) are marginal distributions of [image: there is no content] defined in (13). To simplify notation, let


[image: there is no content]



(16)




in the rest of this paper. The following lemma is based on Section III of [4] and it is a restatement of Lemma 2 of [7], which has been used in [7] to show that [image: there is no content] is an upper bound on the scaling exponent for any BMC (including non-symmetric ones).



Lemma 1.

([7], Lemma 2) There exists a universal constant [image: there is no content] such that the following holds. Fix any BMC characterized by [image: there is no content] and any [image: there is no content]. Then for any [image: there is no content] and [image: there is no content], we have


1nk∈{1,2,…,n}Z[pX;qY|X](Uk|Uk−1,Yn)≤1n4≥IpXqY|X(X;Y)−tn1/β.



(17)









This lemma continues to hold if the quantity [image: there is no content] is replaced by [image: there is no content] for any [image: there is no content]. The main result of this paper continues to hold if the quantity [image: there is no content] in this lemma is replaced by [image: there is no content] for any [image: there is no content].





3. Problem Formulation of Binary-Input MACs and New Polarization Results


Polar codes have been proposed and investigated for achieving any rate tuple inside the capacity region of a binary-input multiple access channel (MAC) [14,16]. The goal of this section is to use the polar codes proposed in [14] to achieve the symmetric sum-capacity of a binary-input MAC.



3.1. Binary-Input Multiple Access Channels


Consider a MAC ([1], Section 15.3) which consists of N sources and one destination. Let [image: there is no content] be the index set of the N sources and let [image: there is no content] denote the destination. Suppose the sources transmit information to node [image: there is no content] in n time slots. Before any transmission begins, node i chooses message [image: there is no content] destined for node [image: there is no content] for each [image: there is no content], where [image: there is no content] is uniformly distributed over


[image: there is no content]



(18)




which consists of [image: there is no content] elements. For each [image: there is no content], node i transmits [image: there is no content] based on [image: there is no content] for each [image: there is no content] and node [image: there is no content] receives [image: there is no content] in time slot k where [image: there is no content] denotes the input alphabet for node i and [image: there is no content] denotes the output alphabet. After n time slots, node [image: there is no content] declares [image: there is no content] to be the transmitted [image: there is no content] based on [image: there is no content] for each [image: there is no content].



To simplify notation, we use the following convention for any [image: there is no content]. For any random tuple [image: there is no content], we let [image: there is no content] be the corresponding subtuple, whose realization and alphabet are denoted by [image: there is no content] and [image: there is no content] respectively. Similarly, for each [image: there is no content] and each random tuple [image: there is no content], we let [image: there is no content] denote the corresponding random subtuple, and let [image: there is no content] and [image: there is no content] denote respectively the realization and the alphabet of [image: there is no content]. Formally, we define a length-n code for the binary-input MAC as follows.



Definition 4.

An [image: there is no content]-code, where [image: there is no content], consists of the following:

	
A message set [image: there is no content] for each [image: there is no content] as defined in (18), where message [image: there is no content] is uniform on [image: there is no content].



	
An encoding function [image: there is no content] for each [image: there is no content] and each [image: there is no content], where [image: there is no content] is used by node i for encoding [image: there is no content] such that [image: there is no content].



	
A decoding function [image: there is no content] used by node [image: there is no content] for producing the message estimate [image: there is no content].










Definition 5.

The multiple access channel (MAC) is characterized by N input alphabets specified by [image: there is no content], an output alphabet specified by [image: there is no content] and a conditional distribution [image: there is no content] such that the following holds for any [image: there is no content] code: For each [image: there is no content],


[image: there is no content]



(19)




where [image: there is no content] for all [image: there is no content] and [image: there is no content].






3.2. Polarization for Binary-Input MACs


Definition 6.

A MAC characterized by [image: there is no content] is called a binary-input MAC if [image: there is no content].





Consider any binary-input MAC characterized by [image: there is no content]. For each [image: there is no content], let [image: there is no content] be the probability distribution of a Bernoulli random variable [image: there is no content], and let [image: there is no content] be the distribution of n independent copies of [image: there is no content], i.e., [image: there is no content] for all [image: there is no content]. Recall the polarization mapping [image: there is no content] defined in (10). For each [image: there is no content], define [image: there is no content] such that


[Ui,1Ui,2…Ui,n]=[Xi,1Xi,2…Xi,n]Gn



(20)




where the addition and product operations are performed over GF(2), and define


[image: there is no content]



(21)







In addition, for each [image: there is no content] and each [image: there is no content], define [image: there is no content] and define the Bhattacharyya parameter associated with node i and time k as


Z[pXI;qY|XI](Ui,k|Uik−1,X[i−1]n,Yn)≜2∑uik−1∈Uik−1∑x[i−1]n∈{0,1}(i−1)n∫YnpUi,k,Uik−1,X[i−1]n,Yn(0,uik−1,x[i−1]n,yn)pUi,k,Uik−1,X[i−1]n,Yn(1,uik−1,x[i−1]n,yn)dyn



(22)




where the distributions in (22) are marginal distributions of [image: there is no content] defined in (21). The following lemma is a direct consequence of Lemma 1.



Lemma 2.

There exists a universal constant [image: there is no content] such that the following holds. Fix any binary-input MAC characterized by [image: there is no content] and any [image: there is no content]. Then for any [image: there is no content] and [image: there is no content], we have


[image: there is no content]



(23)




for each [image: there is no content]. This lemma continues to hold if the quantity [image: there is no content] is replaced by [image: there is no content] for any [image: there is no content]. The main result of this paper continues to hold if the quantity [image: there is no content] in this lemma is replaced by [image: there is no content] for any [image: there is no content].





Proof. 

Fix any [image: there is no content]. Construct [image: there is no content] by marginalizing [image: there is no content] and view [image: there is no content] as the conditional distribution that characterizes a BMC. The lemma then follows directly from Lemma 1. ☐






3.3. Polar Codes That Achieve the Symmetric Sum-Capacity of a Binary-Input MAC


Throughout this paper, let [image: there is no content] denote the uniform distribution on [image: there is no content] for each [image: there is no content] and define [image: there is no content], i.e.,


[image: there is no content]



(24)




for any [image: there is no content].



Definition 7.

For a binary-input MAC characterized by [image: there is no content], the symmetric sum-capacity is defined to be [image: there is no content].





The following definition summarizes the polar codes for the binary-input MAC proposed in Section IV of [14].



Definition 8.

([14], Section IV) Fix an [image: there is no content] where [image: there is no content]. For each [image: there is no content], let [image: there is no content] be a subset of [image: there is no content], define [image: there is no content], and let [image: there is no content] be a binary tuple. An [image: there is no content] polar code, where [image: there is no content] and [image: there is no content], consists of the following:

	
An index set for information bits transmitted by node i denoted by [image: there is no content] for each [image: there is no content]. The set [image: there is no content] is referred to as the index set for frozen bits transmitted by node i.



	
A message set [image: there is no content] for each [image: there is no content], where [image: there is no content] is uniform on [image: there is no content].



	
An encoding bijection [image: there is no content] for encoding [image: there is no content] into [image: there is no content] information bits denoted by [image: there is no content] for each [image: there is no content] such that


[image: there is no content]



(25)




where [image: there is no content] and [image: there is no content] are defined as [image: there is no content] and [image: there is no content] respectively. Since message [image: there is no content] is uniform on [image: there is no content], [image: there is no content] is a sequence of independent and identically distributed (i.i.d.) uniform bits such that


[image: there is no content]



(26)




for all [image: there is no content], where the bits are transmitted through the polarized channels indexed by [image: there is no content]. For each [image: there is no content] and each [image: there is no content], let


[image: there is no content]



(27)




be the frozen bit to be transmitted by node i in time slot k. After [image: there is no content] has been determined, node i transmits [image: there is no content] where


[Xi,1Xi,2…Xi,n]≜[Ui,1Ui,2…Ui,n]Gn−1.



(28)







	
A sequence of successive cancellation decoding functions [image: there is no content] for each [image: there is no content] and each [image: there is no content] such that the recursively generated [image: there is no content], [image: there is no content] and [image: there is no content],…, [image: there is no content] are produced as follows. For each [image: there is no content] and each [image: there is no content], given that [image: there is no content], [image: there is no content] and [image: there is no content] have been constructed before the construction of [image: there is no content], node [image: there is no content] constructs the estimate of [image: there is no content] through computing


[image: there is no content]



(29)




where


u^i,k≜φi,kMAC(u^ik−1,x^[i−1]n,yn)=0ifk∈JiandpUi,k|Uik−1,X[i−1]n,Yn(0|u^ik−1,x^[i−1]n,yn)≥pUi,k|Uik−1,X[i−1]n,Yn(1|u^ik−1,x^[i−1]n,yn),1ifk∈JiandpUi,k|Uik−1,X[i−1]n,Yn(0|u^ik−1,x^[i−1]n,yn)<pUi,k|Uik−1,X[i−1]n,Yn(1|u^ik−1,x^[i−1]n,yn),bi,kifk∈Jic.



(30)




After obtaining [image: there is no content], node [image: there is no content] constructs the estimate of [image: there is no content] through computing


[X^i,1X^i,2…X^i,n]≜[U^i,1U^i,2…U^i,n]Gn−1



(31)




and declares that


[image: there is no content]



(32)




is the transmitted [image: there is no content] where [image: there is no content] denotes the inverse function of [image: there is no content].










Remark 1.

By inspecting Definition 4 and Definition 8, we see that every [image: there is no content] polar code is also an [image: there is no content] code.





Definition 9.

The uniform-input [image: there is no content] polar code is defined as an [image: there is no content] polar code where [image: there is no content] consists of i.i.d. uniform bits that are independent of the message [image: there is no content].





Definition 10.

For the uniform-input [image: there is no content] polar code defined for the MAC, the probability of decoding error is defined as


[image: there is no content]








where the error is averaged over the random messages and the frozen bits. The code is also called a uniform-input [image: there is no content] polar code if the probability of decoding error is no larger than ε.





The following proposition bounds the error probability in terms of Bhattacharyya parameters, and it is a generalization of the well-known result for the special case [image: there is no content] (e.g., see [3], Proposition 2). The proof of Proposition 1 can be deduced from Section IV of [14], and is contained in Appendix A for completeness.



Proposition 1.

For the uniform-input [image: there is no content] polar code defined for the MAC [image: there is no content], we have


[image: there is no content]



(33)









The following proposition follows from combining Lemma 2, Definition 7 and Proposition 1.



Proposition 2.

There exists a universal constant [image: there is no content] such that the following holds. Fix any N-source binary-input MAC characterized by [image: there is no content]. Fix any [image: there is no content], let [image: there is no content] and define


JiSE≜k∈{1,2,…,n}Z[pXI*;qY|XI](Ui,k|Uik−1,X[i−1]n,Yn)≤1n4



(34)




for each [image: there is no content], where [image: there is no content] is the uniform distribution as defined in (24) and the superscript “SE" stands for “scaling exponent". Then, the corresponding uniform-input [image: there is no content] polar code satisfies


[image: there is no content]



(35)




and


P{W^I≠WI}≤Nn3.



(36)









Proof. 

Let [image: there is no content] be the universal constant specified in Lemma 2 and fix an n. For each [image: there is no content], it follows from Lemma 2 and Proposition 1 that


[image: there is no content]



(37)




and


[image: there is no content]



(38)




for the uniform-input [image: there is no content] polar code. Since [image: there is no content], it follows that


[image: there is no content]



(39)




holds for each [image: there is no content], which implies that


[image: there is no content]



(40)




Consequently, (35) follows from (37), (40) and Definition 7, and (36) follows from (38). ☐





Remark 2.

Proposition 2 shows that the sum-capacity of a binary-input MAC with N sources can be achieved within a gap of [image: there is no content] by using a superposition of N binary-input polar codes.







4. Problem Formulation of the AWGN Channel and New Polarization Results


4.1. The AWGN Channel


It is well known that appropriately designed polar codes are capacity-achieving for the AWGN channel [13]. The main contribution of this paper is proving an upper bound on the scaling exponent of polar codes for the AWGN channel by using uniform-input polar codes for binary-input MACs described in Definition 8. The following two definitions formally define the AWGN channel and length-n codes for the channel.



Definition 11.

An [image: there is no content] code is an [image: there is no content] code described in Definition 1 subject to the additional assumptions that [image: there is no content] and the peak power constraint


[image: there is no content]



(41)




is satisfied.





Definition 12.

The AWGN channel is a point-to-point memoryless channel described in Definition 2 subject to the additional assumption that [image: there is no content] and [image: there is no content] for all [image: there is no content] and [image: there is no content].





Definition 13.

For an [image: there is no content] code defined on the AWGN channel, we can calculate according to (9) the average probability of error defined as [image: there is no content]. We call an [image: there is no content] code with average probability of error no larger than ε an [image: there is no content] code.






4.2. Uniform-Input Polar Codes for the AWGN Channel


Recall that we would like to use uniform-input polar codes for binary-input MACs described in Definition 8 to achieve the capacity of the AWGN channel, i.e., [image: there is no content] in (3). The following definition describes the basic structure of such uniform-input polar codes.



Definition 14.

Fix an [image: there is no content] where [image: there is no content]. An [image: there is no content] polar code with average power P and input alphabet [image: there is no content] consists of the following:

	
An input alphabet [image: there is no content] with [image: there is no content] such that


[image: there is no content]



(42)




where [image: there is no content] can be viewed as a line with 2 origins. Introducing the symbol [image: there is no content] allows us to create a set of cardinality n which consists of [image: there is no content] non-zero real numbers and 2 origins 0 and [image: there is no content]. We index each element of [image: there is no content] by a unique length-m binary tuple


[image: there is no content]



(43)




and let [image: there is no content] be the bijection that maps the indices to the elements of [image: there is no content] such that [image: there is no content] denotes the element in [image: there is no content] indexed by [image: there is no content].



	
A binary-input MAC [image: there is no content] induced by [image: there is no content] as defined through Definitions 5 and 6 with the identifications [image: there is no content] and [image: there is no content].



	
A message set [image: there is no content] for each [image: there is no content], where [image: there is no content] is the message alphabet of the uniform-input [image: there is no content] polar code for the binary-input MAC [image: there is no content] as defined through Definitions 8 and 9 such that


[image: there is no content]



(44)




In addition, [image: there is no content] is uniform on [image: there is no content]. We view the uniform-input [image: there is no content] polar code as an [image: there is no content] code (cf. Remark 1) and let {fi,kMAC|i∈I,k∈{1,2,…,n}} and [image: there is no content] denote the corresponding set of encoding functions and the decoding function respectively (cf. Definition 4).



	
An encoding function [image: there is no content] defined as


[image: there is no content]



(45)




for each [image: there is no content], where [image: there is no content] is used for encoding [image: there is no content] into [image: there is no content] such that


Xk=fk(WI)iffk(WI)≠0−,0iffk(WI)=0−.



(46)




Note that both the encoded symbols 0 and [image: there is no content] in [image: there is no content] result in the same transmitted symbol [image: there is no content] according to (46). By construction, [image: there is no content], [image: there is no content], …, [image: there is no content] are i.i.d. random variables that are uniformly distributed on [image: there is no content] and hence [image: there is no content], [image: there is no content], …, [image: there is no content] are i.i.d. real-valued random variables (but not necessarily uniform).



	
A decoding function [image: there is no content] defined as


[image: there is no content]



(47)




such that


[image: there is no content]



(48)














Remark 3.

For an [image: there is no content] polar code, the flexibility of allowing [image: there is no content] to contain 2 origins is crucial to proving the main result of this paper. This is because the input distribution which we will use to establish scaling results for the AWGN channel in Theorem 1 can be viewed as the uniform distribution over some set that contains 2 origins, although the input distribution in the real domain as specified in (52) to follow is not uniform.





Proposition 3.

There exists a universal constant [image: there is no content] such that the following holds. Suppose we are given an [image: there is no content] polar code defined for the AWGN channel [image: there is no content] with a 2-origin [image: there is no content] (i.e., [image: there is no content]. Define [image: there is no content] where [image: there is no content] contains 1 origin and [image: there is no content] non-zero real numbers. Then, the [image: there is no content] polar code is an [image: there is no content]-code (cf. Definition 1) which satisfies


[image: there is no content]



(49)






P{W^I≠WI}≤lognn3,



(50)




and


[image: there is no content]



(51)




for all [image: there is no content] where [image: there is no content] is the distribution on [image: there is no content] defined as


pX′(a)=1nifa≠0,2nifa=0.



(52)









Proof. 

The proposition follows from inspecting Proposition 2 and Definition 14 with the identifications [image: there is no content] and [image: there is no content]. ☐





The following lemma, a strengthened version of Theorem 6 of [13], provides a construction of a good [image: there is no content] which leads to a controllable gap between [image: there is no content] and [image: there is no content] for the corresponding [image: there is no content] polar code. Although the following lemma is intuitive, the proof is technical and hence relegated to Appendix B.



Lemma 3.

Let [image: there is no content] be the conditional distribution that characterizes the AWGN channel, and fix any [image: there is no content]. For each [image: there is no content] where [image: there is no content], define


Dn≜ℓnℓ∈1,2,…,n2,…n−1,



(53)




define


[image: there is no content]



(54)




for all [image: there is no content], define [image: there is no content] to be the cumulative distribution function (cdf) of [image: there is no content], and define


[image: there is no content]



(55)




Note that [image: there is no content] contains 1 origin and [image: there is no content] non-zero real numbers, and we let [image: there is no content] be the distribution on [image: there is no content] as defined in (52). In addition, define the distribution [image: there is no content]. Then, there exists a constant [image: there is no content] that depends on P and γ but not n such that the following statements hold for each [image: there is no content]:


[image: there is no content]



(56)






PpXn′1n∑k=1nXk2>P≤e3en12−1−γβ,



(57)




and


[image: there is no content]



(58)









A shortcoming of Proposition 3 is that the [image: there is no content] polar code may not satisfy the peak power constraint (41) and hence it may not qualify as an [image: there is no content] code (cf. Definition 11). Therefore, we describe in the following definition a slight modification of an [image: there is no content] polar code so that the modified polar code always satisfies the peak power constraint (41).



Definition 15.

The 0-power-outage version of an [image: there is no content] polar code is an [image: there is no content] code which follows identical encoding and decoding operations of the [image: there is no content] polar code except that the source will modify the input symbol in a time slot k if the following scenario occurs: Let [image: there is no content] be the desired codeword generated by the source according to the encoding operation of the [image: there is no content] polar code, where the randomness of [image: there is no content] originates from the information bits [image: there is no content] and the frozen bits [image: there is no content]. If transmitting the desired symbol [image: there is no content] at time k results in violating the power constraint [image: there is no content], the source will transmit the symbol 0 at time k instead. An [image: there is no content] code is called an [image: there is no content] polar code if it is the 0-power-outage version of some [image: there is no content] polar code.





By Definition 15, every [image: there is no content] polar code satisfies the peak power constraint (41) and hence achieves zero power outage, i.e., [image: there is no content]. Using Definition 15, we obtain the following corollary which states the obvious fact that the probability of power outage of an [image: there is no content] polar code can be viewed as part of the probability of error of the 0-power-outage version of the code.



Corollary 1.

Given an [image: there is no content]-polar code, define


[image: there is no content]



(59)




and


[image: there is no content]



(60)




Then, the 0-power-outage version of the [image: there is no content] polar code is an [image: there is no content] polar code that satisfies the peak power constraint (41).







5. Scaling Exponents and Main Result


5.1. Scaling Exponent of Uniform-Input Polar Codes for MACs


We define scaling exponent of uniform-input polar codes for the binary-input MAC as follows.



Definition 16.

Fix an [image: there is no content] and an N-source binary-input MAC [image: there is no content] with symmetric sum-capacity [image: there is no content] (cf. Definition 7). The scaling exponent of uniform-input polar codes for the MAC is defined as


μεPC−MAC≜lim infm→∞infJI−lognlogCsum−∑i=1N|Ji|nn=2m,thereexistsauniform−input(n,JI,ε)−polarcodeonqY|XI.



(61)









Definition 16 formalizes the notion that we are seeking the smallest [image: there is no content] such that [image: there is no content] holds where [image: there is no content] denotes the rate of an [image: there is no content] polar code. Using the existing results in Section IV-C of [5] and Theorem 2 of [4], we know that


3.579≤μεPC−BMSC≤β=4.714∀ε∈(0,1)



(62)




for the special case [image: there is no content] where the binary-input MAC is a BMSC. We note from Theorem 48 of [17] (and also [18,19]) that the optimal scaling exponent (optimized over all codes) for any non-degenerate discrete memoryless channel (DMC) as well as BMC is equal to 2 for all [image: there is no content].



Using Proposition 1 and Definition 16, we obtain the following corollary, which shows that 4.714, the upper bound on [image: there is no content] in (62) for BMSCs, remains a valid upper bound on the scaling exponent for binary-input MACs.



Corollary 2.

Fix any [image: there is no content] and any binary-input MAC [image: there is no content]. Then,


[image: there is no content]














5.2. Scaling Exponent of Uniform-Input Polar Codes for the AWGN Channel


Definition 17.

Fix a [image: there is no content] and an [image: there is no content]. The scaling exponent of uniform-input polar codes for the AWGN channel is defined as


μP,εPC−AWGN≜lim infm→∞infJI,A−lognlogC(P)−∑i=1N|Ji|nn=2m,thereexistsauniform−input(n,JI,P,A,ε)peak−polarcode.



(63)









Definition 17 formalizes the notion that we are seeking the smallest [image: there is no content] such that [image: there is no content] holds where [image: there is no content] denotes the rate of an [image: there is no content] polar code. We note from Theorem 54 of [17] and Theorem 5 of [19] that that the optimal scaling exponent of the optimal code for the AWGN channel is equal to 2 for any [image: there is no content]. The following theorem is the main result of this paper, which shows that [image: there is no content] is a valid upper bound on the scaling exponent of polar codes for the AWGN channel.



Theorem 1.

Fix any [image: there is no content] and any [image: there is no content]. There exists a constant [image: there is no content] that does not depend on n such that the following holds. For any [image: there is no content] where [image: there is no content], there exists an [image: there is no content] such that the corresponding [image: there is no content] polar code defined for the AWGN channel [image: there is no content] satisfies


[image: there is no content]



(64)




and


P{W^I≠WI}≤lognn3+e3en12−1β.



(65)




In particular, we have,


[image: there is no content]



(66)









Proof. 

Fix a [image: there is no content], an [image: there is no content] and an [image: there is no content] where [image: there is no content]. Combining Proposition 3 and Lemma 3, we conclude that there exists a constant [image: there is no content] that does not depend on n and an [image: there is no content] such that the corresponding [image: there is no content] polar code defined for the AWGN channel [image: there is no content] satisfies (64),


P{W^I≠WI}≤lognn3,



(67)




and


P1n∑k=1nXk2>P≤e3en12−1β.



(68)




Using (67), (68) and Corollary 1, we conclude that the [image: there is no content] polar code is an [image: there is no content] polar code that satisfies (64) and (65). Since


[image: there is no content]



(69)




for all sufficiently large n, it follows from (64), (65) and Definition 17 that (66) holds. ☐







6. Moderate Deviations Regime


6.1. Polar Codes That Achieve the Symmetric Capacity of a BMC


The following result is based on Section IV of [4], which developed a tradeoff between the gap to capacity and the decay rate of the error probability for a BMC under the moderate deviations regime [15] where both the gap to capacity and the error probability vanish as n grows.



Lemma 4.

([4], Section IV) There exists a universal constant [image: there is no content] such that the following holds. Fix any [image: there is no content] and any BMC characterized by [image: there is no content]. Recall that [image: there is no content] denotes the uniform distribution on [image: there is no content]. Then for any [image: there is no content] where [image: there is no content], we have


1nk∈{1,2,…,n}Z[pX*;qY|X](Uk|Uk−1,Yn)≤2−nγh2−1γβ+γ−1γβ≥IpX*qY|X(X;Y)−tMDn(1−γ)/β



(70)




where [image: there is no content] denotes the binary entropy function.






6.2. Polar Codes that Achieve the Symmetric Sum-Capacity of a Binary-Input MAC


The following lemma, whose proof is omitted because it is analogous to the proof of Lemma 2, is a direct consequence of Lemma 4.



Lemma 5.

There exists a universal constant [image: there is no content] such that the following holds. Fix any [image: there is no content] and any binary-input MAC characterized by [image: there is no content]. Recall that [image: there is no content]. Then for any [image: there is no content] where [image: there is no content], we have


1nk∈{1,2,…,n}Z[pXI*;qY|XI](Ui,k|Uik−1,X[i−1]n,Yn)≤2−nγh2−1γβ+γ−1γβ≥IpXI*qY|XI(Xi;X[i−1],Y)−tMDn(1−γ)/β



(71)




for each [image: there is no content].





Combining Lemma 5, Definition 7 and Proposition 1, we obtain the following proposition, whose proof is analogous to the proof of Proposition 2 and hence omitted.



Proposition 4.

There exists a universal constant [image: there is no content] such that the following holds. Fix any [image: there is no content] and any N-source binary-input MAC characterized by [image: there is no content]. In addition, fix any [image: there is no content], let [image: there is no content] and define


JiMD≜k∈{1,2,…,n}Z[pXI;qY|XI](Ui,k|Uik−1,X[i−1]n,Yn)≤2−nγh2−1γβ+γ−1γβ



(72)




for each [image: there is no content] where the superscript “MD” stands for “moderate deviations”. Then, the corresponding uniform-input [image: there is no content] polar code described in Definition 9 satisfies


[image: there is no content]



(73)




and


P{W^I≠WI}≤Nn2−nγh2−1γβ+γ−1γβ.



(74)










6.3. Uniform-Input Polar Codes for the AWGN Channel


Proposition 5.

There exists a universal constant [image: there is no content] such that the following holds. Fix any [image: there is no content]. Suppose we are given an [image: there is no content] polar code (cf. Definition 14) defined for the AWGN channel [image: there is no content] with a 2-origin [image: there is no content] (i.e., [image: there is no content]. Define [image: there is no content] where [image: there is no content] contains 1 origin and [image: there is no content] non-zero real numbers. Then, the [image: there is no content] polar code is an [image: there is no content]-code (cf. Definition 1) which satisfies


[image: there is no content]



(75)






P{W^I≠WI}≤(logn)n2−nγh2−1γβ+γ−1γβ,



(76)




and


[image: there is no content]



(77)




for all [image: there is no content] where [image: there is no content] is the distribution on [image: there is no content] as defined in (52).





Proof. 

The proposition follows from inspecting Proposition 4 and Definition 14 with the identifications [image: there is no content] and [image: there is no content]. ☐





The following theorem develops the tradeoff between the gap to capacity and the decay rate of the error probability for [image: there is no content] polar codes defined for the AWGN channel.



Theorem 2.

Fix a [image: there is no content]. There exists a constant [image: there is no content] that depends on P and γ but not n such that the following holds for any [image: there is no content] where [image: there is no content]. There exists an [image: there is no content] polar code defined for the AWGN channel [image: there is no content] that satisfies,


[image: there is no content]



(78)




and,


[image: there is no content]



(79)









Proof. 

By Proposition 5 and Lemma 3, there exists a constant [image: there is no content] that depends on P and γ but not n such that for any [image: there is no content] where [image: there is no content], there exists an [image: there is no content] and the corresponding [image: there is no content] polar code that satisfies (78),


P{W^I≠WI}≤(logn)n2−nγh2−1γβ+γ−1γβ,



(80)




and


P1n∑k=1nXk2>P≤e3en12−1−γβ.



(81)







Equation (79) remains to be shown. Using (80), (81) and Corollary 1, we conclude that the [image: there is no content] polar code is an [image: there is no content] polar code that satisfies,


[image: there is no content]



(82)






[image: there is no content]



(83)




where the inequality follows from the fact that [image: there is no content] for all [image: there is no content]. This concludes the proof. ☐





Remark 4.

A candidate of [image: there is no content] in Theorem 2 can been explicitly constructed according to Lemma 3 with the identification [image: there is no content].







7. Concluding Remarks


In this paper, we provided an upper bound on the scaling exponent of polar codes for the AWGN channel (Theorem 1). In addition, in Theorem 2 we have shown a moderate deviations result—namely, the existence of polar codes which obey a certain tradeoff between the gap to capacity and the decay rate of the error probability for the AWGN channel.



Since the encoding and decoding complexities of the binary-input polar code for a BMC are [image: there is no content] as long as we allow pseudorandom numbers to be shared between the encoder and the decoder for encoding and decoding the randomized frozen bits (e.g., see [3], Section IX), the encoding and decoding complexities of the polar codes for the AWGN channel defined in Definition 14 and Definition 15 are [image: there is no content]. By a standard probabilistic argument, there must exist a deterministic encoder for the frozen bits such that the decoding error of the polar code for the AWGN channel with the deterministic encoder is no worse than the polar code with randomized frozen bits. In the future, it may be fruitful to develop low-complexity algorithms for finding a good deterministic encoder for encoding the frozen bits. Another interesting direction for future research is to compare the empirical performance between our polar codes in Definitions 14 and 15 and the state-of-the-art polar codes. One may also explore various techniques (e.g., list decoding, cyclic redundancy check (CRC), etc.) to improve the empirical performance of the polar codes constructed herein.
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Appendix A. Proof of Proposition 1


Unless specified otherwise, all the probabilities in this proof are evaluated according to the distribution induced by the uniform-input [image: there is no content] polar code. Consider


(A1)P{W^I≠WI}=∑i=1NP{W^i≠Wi}∩{W^[i−1]=W[i−1]}(A2)=∑i=1NP{U^in≠Uin}∩{X^[i−1]n=X[i−1]n}(A3)=∑i=1N∑k=1nP{U^i,k≠Ui,k}∩{U^ik−1=Uik−1}∩{X^[i−1]n=X[i−1]n}








where (A2) is due to Definition 8 where [image: there is no content] and [image: there is no content]. For each [image: there is no content] and each [image: there is no content], we have


P{U^i,k≠Ui,k}∩{U^ik−1=Uik−1}∩{X^[i−1]n=X[i−1]n}≤∑ui,k∈{0,1}∑uik−1∈Uik−1∑x[i−1]n∈X[i−1]n∫YnpUik,X[i−1]n,Yn(uik,x[i−1]n,yn)(A4)×1pUi,k|Uik−1,X[i−1]n,Yn(ui,k|uik−1,x[i−1]n,yn)≤pUi,k|Uik−1,X[i−1]n,Yn(1−ui,k|uik−1,x[i−1]n,yn)dyn≤2∑uik−1∈Uik−1∑x[i−1]n∈X[i−1]n∫YnpUik−1,X[i−1]n,Yn(uik−1,x[i−1]n,yn)(A5)×pUi,k|Uik−1,X[i−1]n,Yn(0|uik−1,x[i−1]n,yn)pUi,k|Uik−1,X[i−1]n,Yn(1|uik−1,x[i−1]n,yn)dyn(A6)=Z[pXI;qY|XI](Ui,k|Uik−1,X[i−1]n,Yn)








where (A4) follows from (30). In addition, it follows from (27) and (30) that


[image: there is no content]



(A7)




for each [image: there is no content] and each [image: there is no content]. Combining (A3), (A6) and (A7), we obtain (33).




Appendix B. Proof of Lemma 3


Let [image: there is no content] be the conditional distribution that characterizes the AWGN channel and fix a [image: there is no content]. Recall the definitions of [image: there is no content] and [image: there is no content] in (52) and (54) respectively and recall that [image: there is no content] is the cdf of [image: there is no content]. Fix a sufficiently large [image: there is no content] that satisfies


[image: there is no content]



(A8)




and


[image: there is no content]



(A9)




In addition, recall the definition of [image: there is no content] in (55) and let [image: there is no content] be a quantization function such that,


[image: there is no content]



(A10)




where [image: there is no content] is the unique integer that satisfies


ΦX−1ℓn≤t<ΦX−1ℓ+1nift≥0,ΦX−1ℓ−1n<t≤ΦX−1ℓnift<0.



(A11)




In words, g quantizes every [image: there is no content] to its nearest point in [image: there is no content] whose magnitude is smaller than [image: there is no content]. Let


[image: there is no content]



(A12)




be the quantized version of X. By construction,


[image: there is no content]



(A13)






[image: there is no content]



(A14)




and


[image: there is no content]



(A15)




for all [image: there is no content]. It follows from (A15) and the definition of [image: there is no content] in (52) that


[image: there is no content]



(A16)




and


[image: there is no content]



(A17)




where [image: there is no content]. Consequently, in order to show (56) and (57), it suffices to show


[image: there is no content]



(A18)




and


[image: there is no content]



(A19)




respectively. Using (A13) and the definition of [image: there is no content] in (54), we obtain (A18). In order to show (A19), we consider the following chain of inequalities:


PsXn1n∑k=1nX^k2>P(A20)≤PsXn1n∑k=1nXk2>P(A21)=PsXn∑k=1nXk2nP1−1n(1−γ)/β>n+n12−1−γβ1−1n(1−γ)/β(A22)≤PsXne∑k=1nXk2nP1−1n(1−γ)/β>en+n12−1−γβ(A23)≤1−1n/2−n/2e−n+n12−1−γβ(A24)=1+1n/2−1n/2e−n+n12−1−γβ(A25)≤enn−2·e−n+n12−1−γβ(A26)=e2nn−2·e−n12−1−γβ(A27)≤e3·e−n12−1−γβ








where

	
(A20) is due to (A13).



	
(A23) is due to Markov’s inequality.



	
(A25) is due to the fact that [image: there is no content] for all [image: there is no content].



	
(A27) is due to the assumption that [image: there is no content].








Equation (58) remains to be shown. To this end, we let [image: there is no content] denote the distribution of the standard normal random variable (cf. (1)) and consider


CP−1n(1−γ)/β−IpX′qY|X(X;Y)(A28)=CP−1n(1−γ)/β−IpX′qZ(X;X+Z)(A29)=IsXqZ(X;X+Z)−IpX′qZ(X;X+Z)








where (A29) is due to the definition of [image: there is no content] in (54). In order to simplify the right hand side of (A29), we invoke Corollary 4 of [20] and obtain


[image: there is no content]



(A30)




After some tedious calculations which will be elaborated after this proof, it can be shown that the Wasserstein distance in (A30) satisfies


W2(sY,pY′)≤κlognn2(1−γ)β,



(A31)




where


[image: there is no content]



(A32)







On the other hand, since


[image: there is no content]



(A33)




for each [image: there is no content] by Taylor’s theorem and [image: there is no content] by (A8), we have


[image: there is no content]



(A34)




Using (A29), (A30), (A31) and (A34), we obtain


CP−IpX′qY|X(X;Y)≤(loge)(31+P+4P)κlognn2(1−γ)/β+loge21n1−γβ(1+P)+2n2(1−γ)β(1+P)2.



(A35)




Consequently, (58) holds for some constant [image: there is no content] that does not depend on n.



Derivation of (A31)



Consider the distribution (coupling) [image: there is no content] defined as


[image: there is no content]



(A36)




and simplify the Wasserstein distance in (A30) as follows:


(A37)W2(sY,pY′)2≤∫R∫RrY,Y^(y,y^)(y−y^)2dy^dy(A38)=∫R∫RrX,X^(x,x^)(x−x^)2dx^dx(A39)=∫RsX(x)(x−g(x))2dx








where

	
(A37) follows from the definition of [image: there is no content] in (6) and the fact due to (A36) that [image: there is no content] and [image: there is no content].



	
(A38) follows from the fact due to (A36) that [image: there is no content].



	
(A39) is due to (A36).





Following (A39), we define [image: there is no content] to be the positive number that satisfies


[image: there is no content]



(A40)




and consider


∫RsX(x)(x−g(x))2dx(A41)=∫−∞−ξnsX(x)(x−g(x))2dx+∫−ξnξnsX(x)(x−g(x))2dx+∫ξn∞sX(x)(x−g(x))2dx(A42)≤∫−∞−ξnsX(x)x2dx+∫−ξnξnsX(x)(x−g(x))2dx+∫ξn∞sX(x)x2dx(A43)=2∫ξn∞sX(x)x2dx+∫−ξnξnsX(x)(x−g(x))2dx








where (A42) follows from the fact due to (A10) that [image: there is no content] for all [image: there is no content]. In order to bound the first term in (A43), we let


[image: there is no content]



(A44)




and consider


(A45)∫ξn∞sX(x)x2dx=Pn∫ξn∞sX(x)dx+ξnsX(ξn)(A46)<∫ξn∞sX(x)dx2Pn+ξn2(A47)<1n1−(1−γ)/β2P+ξn2








where

	
(A45) follows from integration by parts.



	
(A46) is due to the simple fact that


(A48)∫ξn∞sX(x)dx>ξn2Pn+ξn2∫ξn∞1+Pnx2sX(x)dx(A49)=PnPn+ξn2ξnsX(ξn).











	
(A47) is due to (A40) and (A44).








In order to bound the term in (A47), we note that


[image: there is no content]



(A50)




by (A9) and (A40) and would like to obtain an upper bound on [image: there is no content] through the following chain of inequalities:


(A51)1n1−(1−γ)/β=∫ξn∞sX(x)dx(A52)≤∫ξn∞xsX(x)dx(A53)=PnsX(ξn)(A54)=Pn2πe−ξn22Pn(A55)<P2πe−ξn22P








where

	
(A51) is due to (A40).



	
(A52) is due to (A50).





Since


ξn2≤2Ploge1−1−γβlogn+logP2π



(A56)




by (A55) and [image: there is no content], it follows from (A47) that


(A57)∫ξn∞sX(x)x2dx<1n1−1−γβ2P+2Ploge1−1−γβlogn+logP2π(A58)<lognn2(1−γ)β2P+2Ploge1+logP2π.











In order to bound the second term in (A43), we consider


∫−ξnξnsX(x)(x−g(x))2dx(A59)=∫−ξnξnsX(x)Φ−1Φ(x)−Φ−1Φ(g(x))2dx(A60)≤∫−ξnξnsX(x)1n×1sX(ξn)2dx(A61)≤∫−ξnξnsX(x)Pn2n2(1−γ)βdx(A62)<P2n2(1−γ)β








where

	
(A60) is due to (A14), the mean value theorem and the fact that the derivative of Φ is always positive and uniformly bounded below by [image: there is no content] on the interval [image: there is no content].



	
(A61) is due to (A53).



Combining (A39), (A43), (A58) and (A62) and recalling the definition of κ in (A32), we obtain (A31).
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