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Abstract: Recently, inspired by correntropy, kernel risk-sensitive loss (KRSL) has emerged as a novel
nonlinear similarity measure defined in kernel space, which achieves a better computing performance.
After applying the KRSL to adaptive filtering, the corresponding minimum kernel risk-sensitive
loss (MKRSL) algorithm has been developed accordingly. However, MKRSL as a traditional kernel
adaptive filter (KAF) method, generates a growing radial basis functional (RBF) network. In response
to that limitation, through the use of online vector quantization (VQ) technique, this article proposes
a novel KAF algorithm, named quantized MKRSL (QMKRSL) to curb the growth of the RBF network
structure. Compared with other quantized methods, e.g., quantized kernel least mean square
(QKLMS) and quantized kernel maximum correntropy (QKMC), the efficient performance surface
makes QMKRSL converge faster and filter more accurately, while maintaining the robustness to
outliers. Moreover, considering that QMKRSL using traditional gradient descent method may fail
to make full use of the hidden information between the input and output spaces, we also propose
an intensified QMKRSL using a bilateral gradient technique named QMKRSL_BG, in an effort
to further improve filtering accuracy. Short-term chaotic time-series prediction experiments are
conducted to demonstrate the satisfactory performance of our algorithms.

Keywords: kernel methods; correntropy; kernel risk-sensitive loss; online vector quantization

1. Introduction

Online kernel learning (OKL) has become increasingly popular in machine learning due to
the fact that it requires much less memory and a lower computational cost to approximate the
desired nonlinearity incrementally [1–5]. As a member of OKL, kernel adaptive filters (KAFs) have
attracted much attention because of their advantages, including universal approximation capabilities,
reasonable computational complexity, and the fact that they lead to convex optimization problems [6].
Mapping data from an input space into the reproducing kernel Hilbert space (RKHS) through
a reproducing kernel [7,8], the nonlinear KAF is obtained in the input space through the linear
structure of the RKHS. Recently, the KAF has been widely used in signal processing, such as channel
estimation, noise cancellation, and system identification [9–13]. Then, there are some typical nonlinear
adaptive filtering algorithms, such as the kernel least mean square (KLMS) algorithm [14], the kernel
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affine projection algorithm [15], the kernel recursive least square (KRLS) algorithm [16], and many
others [17–22].

These algorithms mentioned above may fail to achieve desirable performance in non-Gaussian
noise environments, owing to the fact that they are usually developed on the basis of the mean
square error (MSE) criterion, which is a mere second-order statistic and very sensitive to outliers [23].
In the past few years, information theoretic learning (ITL) has been proven to be very efficient and
robust in non-Gaussian signal processing [24–26]. Different from the conventional second-order
statistical measures such as the MSE, ITL uses the information theory descriptors of divergence
and entropy as nonparametric cost functions for the adaptive systems [24]. Through Parzen kernel
estimation, ITL can capture higher-order statistics of data and achieves better performance than the
MSE, especially in non-Gaussian and nonlinear situations [27]. In consideration of this, ITL also offers
an effective and efficient way for robust optimization, which has been a popular methodology in the last
decade while addressing some optimization problems in the presence of uncertain input data [28–30].

In particular, correntropy is a local similarity measure of ITL, defined as a generalized correlation
function in kernel space with an effort to estimate the similarity between two random variables [31,32],
while achieving some successful applications, e.g., state estimation, image processing, and noise
control [33–35]. In addition, the corresponding maximum correntropy criterion (MCC) has been used
as a cost function to derive various robust nonlinear adaptive filtering algorithms, such as the kernel
maximum correntropy (KMC) algorithm [36] and the kernel recursive maximum correntropy (KRMC)
algorithm [27], and they show better performance than those classical second-order schemes, e.g.,
KLMS and KRLS. However, correntropic loss (C-Loss) is a non-convex function, and may converge
slowly, especially when the initial value is far away from the optimal value. Recently, a modified
similarity measure called kernel risk-sensitive loss (KRSL) was derived in [37], which can be more
“convex” and can achieve faster convergence speed and higher filtering accuracy, while maintaining
the robustness to outliers. After applying KRSL to adaptive filtering, a new robust KAF algorithm was
accordingly proposed [37]. It is called the minimum kernel risk-sensitive loss (MKRSL) algorithm,
which could be superior to some existing methods and is attracting growing attention.

One of the limitations in the KAF is the linearly growing radial basis functional (RBF) network
structure with each input sample, which leads to the increase of memory requirement and computational
complexity [17]. Hence, many sparsification methods have been developed to curb the growth structure,
such as the surprise criterion (SC) [38], novelty criterion (NC) [39], coherence criterion [40], and
approximate linear dependency (ALD) criterion [16]. Although these methods can significantly curb
the network size, the high computing cost still imposes a very challenging obstacle to their practical
applications. Moreover, these methods purely discard the redundant data, which may lead to a
reduction in filtering accuracy. Then, the online vector quantization (VQ) method was applied to KAFs,
constraining their network size through a simple distance calculation. The quantization method is
computationally simple, and the redundant data are used to update the coefficient of the closest center,
which leads to the improvement of filtering accuracy.

To limit the network size of the MKRSL algorithm, in this article we propose a novel KAF
algorithm, named quantized MKRSL (QMKRSL), using the online VQ method. However, the QMKRSL
using traditional gradient descent method may not make full use of hidden information between
the input and output spaces, where the difference between those samples in a same quantization region
could be ignored [41]. To further improve solution accuracy, we also propose an intensified QMKRSL
using a bilateral gradient technique named QMKRSL_BG, which can adjust the coefficient vector of
the closest center and the current desired output related to a same quantization region simultaneously
when a new input sample is discarded.

The rest of this article is organized as follows. Section 2 provides a brief review of KRSL
and MKRSL. Then, the details of the proposed algorithms QMKRSL and QMKRSL_BG are described
in Section 3. Finally, short-term chaotic time-series prediction experiments are conducted in Section 4,
and the conclusion is summarized in Section 5.
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2. Backgrounds

2.1. The Kernel Risk-Sensitive Loss (KRSL) Algorithm

Correntropy measures the similarity of two random variables in the neighborhood of the joint
space controlled by the kernel bandwidth [32]. This locality allows the correntropy to be robust
to outliers. Based on the MCC, many robust learning algorithms have been developed [42,43].
Among them, the kernel bandwidth is a key parameter in the MCC. Generally, a smaller kernel
bandwidth makes the algorithm more robust to outliers, but results in slow convergence speed and
poor accuracy. On the other hand, when kernel bandwidth becomes larger, the robustness will be
significantly reduced when outliers appear. To achieve better performance, a new similarity measure,
i.e., KRSL, was proposed in [37], which can be more “convex” and thus can achieve faster convergence
rate and higher filtering accuracy while maintaining the robustness to outliers.

Given two random variables X and Y with joint distribution function FXY(x, y), the KRSL is
defined as follows:

Lλ(X, Y) =
1
λ
E {exp [λ(1− kσ(X−Y))]}

=
1
λ

∫
exp [λ(1− kσ(X−Y))] dFXY(x, y),

(1)

where λ > 0 represents the risk-sensitive parameter, kσ(·) is a shift-invariant Mercer kernel, and σ

represents the kernel bandwidth that controls the range in which similarity is estimated. In addition,
E {·} denotes the expectation operator. Typically, the kernel used in KRSL is the Gaussian kernel,
given by:

kσ(x− y) =
1√
2πσ

exp

(
− (x− y)2

2σ2

)
=

1√
2πσ

exp
(
− e2

2σ2

)
, (2)

where e = x− y. In practice, since the joint distribution of X and Y is usually unknown, we only use
a finite number of data samples {x(i), y(i)}N

i=1 to approximate the expectation:

L̂λ(X, Y) =
1

Nλ

N

∑
i=1

exp {λ [1− kσ (x(i)− y(i))]}

=
1

Nλ

N

∑
i=1

exp {λ [1− kσ (e(i))]}.
(3)

Then, the approximation of KRSL can also be considered as a distance between the vectors
x = [x(1), x(2), · · · , x(N)]T and y = [y(1), y(2), · · · , y(N)]T.

In contrast to correntropy, the performance surface of the KRSL can be more “convex”. The areas
around the optimal solution are relatively flat to reduce the misadjustments, and the areas away from
the optimal solution become steep to speed up the convergence. Moreover, the areas further away
from the optimum gradually become entirely flat to avoid the big fluctuations caused by large outliers.
Hence, KRSL can provide a more efficient solution that can achieve both a faster convergence rate
and higher filtering accuracy while maintaining the robustness to outliers.

Remark 1. Actually, both C-Loss and KRSL are non-convex functions. However, compared with C-Loss,
the performance surface of KRSL can make the gradient-based search algorithms approach the optimal solution
more effectively and accurately. Hence, in this article we call KRSL more “convex” than C-Loss.

2.2. Minimum Kernel Risk-Sensitive Loss (MKRSL) Algorithm

Just like MSE and MCC, KRSL function can also be used as a cost function in adaptive filters.
In so doing, the goal is to minimize the KRSL function between the desired signal d(i) and the filter
output y(i). This optimization principle is called the MKRSL criterion, given by:
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J(ω) =
1

Nλ

N

∑
i=1

exp {λ [1− kσ1 (e(i))]}

=
1

Nλ

N

∑
i=1

exp
{

λ
[
1− kσ1

(
d(i)−ωTu(i)

)]}
,

(4)

where u(i) represents the input vector, e(i) = d(i)− y(i) = d(i)−ωTu(i) is the prediction error at
time i, N is the number of samples, kσ1(·) is a Mercer kernel with kernel bandwidth σ1 which is used
to calculate the KRSL, and ω is the estimated value of the filter weight vector.

In accordance with the stochastic gradient descent method, the instantaneous cost function of the
MKRSL algorithm at time i is defined as:

J′(i) =
1
λ

exp {λ [1− kσ1 (e(i))]}. (5)

Then the process of updating the weight can be easily derived as:

ω(i + 1) = ω(i)− µ
∂

∂ω(i)
J′(i)

= ω(i) + ηexp {λ [1− kσ1 (e(i))]}kσ1 (e(i))e(i)u(i),
(6)

where ω(i) denotes the estimated weight vector at iteration i, µ is a learning update parameter, and
η = µ

σ2
1

is the step-size parameter.

The performance of linear adaptive filters will degrade dramatically when the mapping
between input u and desired output d is nonlinear. Therefore, the input u(i) is transformed into
a high-dimensional feature space as ϕ(u(i)) through the kernel-induced mapping (7):

ϕ : U→ F, (7)

where U is the input domain and the dimensionality of F is infinite while using Gaussian kernel.
For simplicity, we denote ϕ(u(i)) = ϕ(i). Then, we can obtain the weight update form for the

MKRSL algorithm:
ω(0) = 0,
e(i) = d(i)−ω(i− 1)Tϕ(i),
ω(i) = ω(i− 1) + ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)ϕ(i).

(8)

The sequential learning rule for the MKRSL algorithm is shown as:
f0 = 0,
e(i) = d(i)− fi−1(u(i)),
fi = fi−1 + ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)κσ2(u(i), ·),

(9)

where fi is the estimate of the nonlinear mappings between inputs and outputs at iteration i, kσ2(·)
is another kernel (Gaussian) with the kernel bandwidth σ2. Here, kσ2(·) is used to calculate the inner
product in the RKHS via the following kernel trick:

ϕ(u(i))Tϕ(u(j)) = k(u(i), u(j)). (10)

Through iterations, the system output to a new input u(i + 1) can be solely expressed as:

y(i + 1) = ω(i)Tϕ(u(i + 1))

= η
i

∑
j=1

exp {λ [(1− kσ1(e(j))]} kσ1(e(j))e(j)kσ2(u(j), u(i + 1))

=
i

∑
j=1

αj(i)kσ2(u(j), u(i + 1)),

(11)
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where αj(i) is the coefficient of center u(j).
For any λ, the weight update will approach zero when the error tends to infinity, which means

that the MKRSL algorithm will be robust to large outliers. The details of the MKRSL algorithm are
summarized in Algorithm 1. Here, α(i) denotes the coefficient vector at iteration i, and α(i) =

[
αj(i)

]i
j=1.

Additionally, C(i) denotes the center set at iteration i.

Algorithm 1 The minimum kernel risk-sensitive loss (MKRSL) algorithm.
Initialization:
Choose parameters η, λ, and σ1, σ2 > 0.
C(1) = {u(1)}, α1(1) = ηexp {λ [1− kσ1(d(1))]}kσ1(d(1))d(1).
Computation:
while (u(i), d(i)) is available do

(1) y(i) =
i−1
∑

j=1
αj(i− 1)kσ2(u(j), u(i));

(2) e(i) = d(i)− y(i);
(3) C(i) = {C(i− 1), u(i)};
(4) α(i) =

[
α(i− 1), ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)

]
;

(5) i = i + 1.
end while

3. The Proposed Algorithm

3.1. The Quantized MKRSL (QMKRSL) Algorithm

As mentioned above, the MKRSL will generate an RBF network that grows linearly with input.
This growing structure results in the significant increase of computing costs and memory requirement,
especially in the case of continuous adaptation [17]. The online VQ method has been successfully
applied to KAFs for containing their linearly growing RBF network. Here, we incorporate the online
VQ method into the MKRSL, thus proposing the QMKRSL algorithm. Here, the QMKRSL algorithm
is obtained by quantizing the feature vector ϕ(i) in the weight update Equation (8), which can be
shown as: 

ω(0) = 0,
e(i) = d(i)−ω(i− 1)TQ(ϕ(i)),
ω(i) = ω(i− 1) + ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)Q(ϕ(i)),

(12)

where Q(·) represents the quantization operator in F. However, considering that the dimensionality of
the feature space is very high, we usually perform the quantization operation in the input space U.
Therefore, the learning rule for the QMKRSL algorithm can be derived as:

f0 = 0,
e(i) = d(i)− fi−1(u(i)),
fi = fi−1 + ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)κσ2(Q(u(i)), ·),

(13)

where Q(·) is a quantization operator in U. Now, the QMKRSL algorithm has been obtained, and the
details are described in Algorithm 2. Here, γ > 0 is the quantization size, and C(i) =

{
Cq(i)

}size(C(i))
q=1

denotes the center set at iteration i.
Specifically, in the case that the current sample u(i) needs to be quantized, the network

topology of QMKRSL is shown in Figure 1. Here, Cq∗(i − 1) is the closet center of u(i),
4αq∗(i− 1) = ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i) is the update of the coefficient vector generated by
the redundant data u(i), and l = size(C(i− 1)).
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Algorithm 2 The quantized minimum kernel risk-sensitive loss (QMKRSL) algorithm.
Initialization:
Choose parameters η, λ, and σ1, σ2 > 0, γ > 0.
C(1) = {u(1)}, α1(1) = ηexp {λ [1− kσ1(d(1))]}kσ1(d(1))d(1).
Computation:
while (u(i), d(i)) is available do

(1) y(i) =
size(C(i−1))

∑
q=1

αq(i− 1)kσ2(Cq(i− 1), u(i));

(2) e(i) = d(i)− y(i);
(3) dis(u(i), C(i− 1)) = min

16q6size(C(i−1))

∥∥u(i)− Cq(i− 1)
∥∥ ;

// compute the distance between u(i) and C(i− 1)
(4) if dis(u(i), C(i− 1)) 6 γ

C(i) = C(i− 1);
αq∗(i) = αq∗(i− 1) + ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i),
where q∗ = arg min

16q6size(C(i−1))

∥∥u(i)− Cq(i− 1)
∥∥ ;

(5) else
C(i) = {C(i− 1), u(i)};
α(i) =

[
α(i− 1), ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)

]
;

(6) i = i + 1.
end while

Figure 1. Network topology for quantization operation in the i-th iteration computation of the
quantized minimum kernel risk-sensitive loss (QMKRSL). VQ: vector quantization.

As we can see, the quantization approach merely uses the Euclidean distance to determine whether
the new input should be added to the dictionary, and updates the coefficient vector of the closest
center with the redundant data to improve accuracy. This method is easy to compute and takes full
advantage of redundant data rather than discarding them directly, making it possible to avoid the
limitations of traditional sparsification methods.

However, it should be noted that the coefficient update process of QMKRSL ignores
the difference between the new input sample and its closest center. In addition, the difference between
the corresponding desired outputs of the samples in the same quantization region is also neglected. Hence,
there is still room for improvement of the QMKRSL algorithm, and the intensified algorithm will be
presented in the next subsection.
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3.2. The QMKRSL Using Bilateral Gradient Technique (QMKRSL_BG)

In the iterative process, QMKRSL only considers the change of input space, but does not take into
account of the difference between the samples in the same quantization region, which may make it
unable to make full use of the information hidden in the input and output spaces. Therefore, an efficient
way to update the desired output is needed. To further improve the performance, we propose
an intensified QMKRSL using bilateral gradient technique, named QMKRSL_BG.

Using the stochastic gradient descent method to minimize the instantaneous cost function (5) in
the output space, the current desired output is updated by:

dU(i) = d(i)− ηd∇d(i) J′(i)

= d(i)− ηd
1
σ2

1
exp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)

= d(i)− η1exp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i),

(14)

where ∇d(i) J′(i) represents the gradient of the cost function in the desired output direction, ηd is
a learning update parameter, and η1 = ηd

σ2
1

is the step-size parameter used to update the current

desired output.
Then, the prediction error and cost function could be updated by:

eU(i) = dU(i)− y(i), (15)

J′U(i) =
1
λ

exp {λ [1− kσ1(eU(i))]}. (16)

Similarly, using the stochastic gradient descent method to minimize J′U(i) in the input space,
the coefficient update rule of the closest center is derived as:

αq∗(i) = αq∗(i− 1)− ηα∇αq∗(i−1) J′U(i)

= αq∗(i− 1) + ηα
1
σ2

1
kσ2(Cq∗(i− 1), u(i))exp {λ [1− kσ1(eU(i))]}kσ1(eU(i))eU(i)

= αq∗(i− 1) + η2SCq∗(i−1),u(i)exp {λ [1− kσ1(eU(i))]}kσ1(eU(i))eU(i),

(17)

where ∇αq∗(i−1) J′U(i) is the gradient of the cost function with respect to the coefficient vector, ηα is
a learning update parameter, and η2 = ηα

σ2
1

is the step-size parameter used to update the coefficient

of the closest center. In addition, SCq∗(i−1),u(i) = kσ2(Cq∗(i− 1), u(i)) reflects the difference between
the input u(i) and the its closest center Cq∗(i− 1), which can be seen as a weight parameter.

Considering the difference between samples in the same quantization region, the update rules
shown in (14)∼(17) could be used when the new sample need to be quantified. For other cases,
the update rule for QMKRSL_BG is the same as that of QMKRSL. A specific description of the
proposed QMKRSL_BG is summarized in Algorithm 3.

Here, it can easily be found that, through the use of the gradient descent method in output space,
QMKRSL_BG employs the prediction error caused by current desired output to update the coefficient
vector. Thus, the QMKRSL_BG considers the difference between the desired outputs of samples
which are very close in the input space. Moreover, an additive term SCq∗(i−1),u(i) is introduced in the
coefficient update using gradient descent method in input space, which reflects the difference between
the current input u(i) and the its closest center Cq∗(i− 1). Consequently, the QMKRSL_BG can obtain
more information from the input and output spaces, so as to achieve better filtering accuracy.
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Algorithm 3 Quantized MKRSL using the bilateral gradient technique (QMKRSL_BG) algorithm.
Initialization:
Choose parameters η1, η2, λ, and σ1, σ2 > 0, γ > 0.
C(1) = (u(1)), α1(1) = ηexp {λ [1− kσ1(d(1))]}kσ1(d(1))d(1), dU(1) = d(1).
Computation:
while (u(i), d(i)) is available do

(1) y(i) =
size(C(i−1))

∑
q=1

αq(i− 1)kσ2(Cq(i− 1), u(i));

(2) e(i) = d(i)− y(i);
(3) dis(u(i), C(i− 1)) = min

16q6size(C(i−1))

∥∥u(i)− Cq(i− 1)
∥∥ ;

// compute the distance between u(i) and C(i− 1)
(4) if dis(u(i), C(i− 1)) 6 γ

dU(i) = d(i)− η1exp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i);
eU(i) = dU(i)− y(i);
C(i) = C(i− 1);
αq∗(i) = αq∗(i− 1) + η2SCq∗(i−1),u(i)exp {λ [1− kσ1(eU(i))]}kσ1(eU(i))eU(i),
where q∗ = arg min

16q6size(C(i−1))

∥∥u(i)− Cq(i− 1)
∥∥ ;

(5) else
C(i) = {C(i− 1), u(i)};
α(i) =

[
α(i− 1), ηexp {λ [1− kσ1(e(i))]}kσ1(e(i))e(i)

]
;

(6) i = i + 1.
end while

3.3. Complexity Analysis

Here, we will analyze the time complexity of the proposed two algorithms. We can see from
the update process that MKRSL shares the computational simplicity of MCC. As shown in (11),
the time complexity of MKRSL is O(N), where N represents the number of input samples. Like
other quantized methods, e.g., quantized kernel least mean square (QKLMS) and quantized kernel
maximum correntropy (QKMC), the key parts of QMKRSL are the calculation for online VQ and
updating coefficient vector α(i). Each input sample needs to calculate the Euclidean distance from
the dictionary (center set), which means that the complexity of the online VQ method is linearly
related to the size of dictionary. According to the above analysis on the output expression of QMKRSL,
the time complexity of those two parts of the QMKRSL is O(L), where L represents the network
size. Hence, the overall computational complexity of QMKRSL is equal to O(L). Compared with
QMKRSL, the proposed QMKRSL_BG only increases the computational effort slightly due to updating
the desired output, and it does not affect its practical application.

4. Simulation Results and Discussion

In this section, we conduct simulations related to short-term chaotic time-series prediction, with the
purpose of validating the performance of the proposed algorithms QMKRSL and QMKRSL_BG.

4.1. Dataset and Metric

The Lorenz chaotic system is a nonlinear dynamical system with chaotic flow, known for its
butterfly shape, which is generated from the following differential equations [44]:

dx
dt

= −βx + yz,

dy
dt

= δ(z− y),

dz
dt

= −xy + ρy− z.

(18)
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Here the parameters are set as β = 8
3 , δ = 10, and ρ = 28. Using this setting, the time-series data

are obtained with sampling period 0.01.
We use the first component, i.e., x, to perform the prediction task. The first 1000 samples of

the processed Lorenz time-series are shown in Figure 2. In our simulations, we utilize the previous
five samples u(i) = [x(i − 5), x(i − 4), x(i − 3), x(i − 2), x(i − 1)]T to predict the current point x(i),
where u(i) and x(i) represent the input vector and the corresponding desired output, respectively. Here,
we select 4005 continuous samples to generate the training input set (5× 4000) and the corresponding
desired output set (4000× 1), and use the following 1005 samples to generate the testing input set
(5× 1000) and the corresponding desired output set (1000× 1).

In our simulations, the mean square error (MSE) is utilized to evaluate the performance of our
proposed algorithms. It is defined as follows:

MSE =
1
N

N

∑
i=1

(d(i)− y(i))2, (19)

where N represents the number of predicted values.
In addition to the original MKRSL, the filtering performance is also compared with other quantized

methods, including QKLMS and QKMC, under the same simulation condition to demonstrate
the superiority of our algorithms. To verify the performance of these algorithms in different noise
environments, various noise are adopted in the simulations. They include zero-mean Gaussian noise
with variance 0.04, Uniform noise distributed over [−0.3, 0.3], Bernouli noise with variance 0.21, and sine
wave noise sin(ϕ) with ϕ uniformly distributed over [−π/10; π/10]. Here, all simulations are performed
in a MATLAB computing environment running in an Intel Core i5-3317U, 1.70 GH.

0 200 400 600 800 1000
−3

−2

−1

0

1

2

3

sample

va
lu

e

Figure 2. The portion of the processed Lorenz time-series.

4.2. Simulation Results

The quantization size γ is a key parameter in quantized KAF algorithms. Hence, we firstly analyze
how the performance will be influenced by the quantization size. Generally speaking, the larger
the quantization size, the more input vectors need to be quantized to their nearest center, which means
that when the quantization size becomes larger, the network size decreases dramatically to a certain
degree. While using QMKRSL, the effect of γ on final network size under different noise environments
can be seen in Figure 3. Meanwhile, the final network sizes of QKLMS, QKMC and QMKRSL_BG
are equal to that of QMKRSL, because they use the same online VQ method for sparsification, and
the quantization parameter has no effect on MKRSL.

Furthermore, those parameters for all the algorithms under different noise environments are
selected in accordance with Table 1. Using these settings, we also show the final testing MSE of these
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five algorithms under four types of noise environments with different quantization size in Figure 4.
Here, the final testing MSE is determined by the average value of the last 200 iterations in the learning
curves, and for each iteration, the testing MSE is calculated using 1000 test data. It can be found from
Figure 4 that the efficient performance surface makes QMKRSL outperform QKLMS and QKMC in
terms of testing MSE. In addition, the bilateral gradient descent method enables QMKRSL_BG to
further improve filtering accuracy for all quantization sizes. Due to the fast decrease of network size,
the testing MSE will increase significantly when the quantization size increases to a certain degree.
Hence, the QMKRSL and QMKRSL_BG are superior to MKRSL when the quantization size is bounded
within a certain range. Therefore, we can conclude that the algorithms QMKRSL and QMKRSL_BG
can effectively address time-series prediction while constraining the network structure.

Then, we compare the learning performance of QMKRSL and QMKRSL_BG with that of the
original MKRSL, QKLMS, and QKMC, in an effort to demonstrate the superiority of KRSL function
and online VQ method. In the simulations below, considering the prediction accuracy and the
computational cost simultaneously, we select γ as 0.2 to make the network size reduce to a modest
range, on the basis of the analysis for those results in Figures 3 and 4. Then, the final network sizes for
the Gaussian, uniform, Bernouli, and sine wave noise cases are reduced to 2455, 2048, 1373, and 1555,
respectively. Therefore, only 2455, 2048, 1373, and 1555 items of training data are chosen as network
centers from 4000 input samples for the final filter network.

Figure 5 shows the learning curves of these algorithms under different noise environments. It is
clear that the testing MSE of the QMKRSL is smaller than that of the QKLMS and the QKMC in all
four types of noise environments, and the QMKRSL_BG performs better than all other four algorithms.
It indicates that the efficient performance surface of KRSL function can make the QMKRSL outperform
the QKMC and QKLMS; the online VQ method using a bilateral gradient technique can obtain more
hidden information in the system, and thus the QMKRSL_BG can achieve a higher filtering accuracy
than the QMKRSL and other algorithms. Let ε be the required prediction accuracy. If the prediction
error is less than the threshold ε, the error is within acceptable range and thus the prediction is
successful. Otherwise, the prediction fails. With the same noise model used in Figure 5d, the successful
prediction rates of these algorithms with changeable threshold ε are shown in Figure 6. It can be seen
that the larger the threshold ε, the higher the successful rate. Moreover, the successful prediction rate
of QMKRSL is similar to that of the MKRSL, and the successful prediction rate of the QMKRSL_BG
is higher than other algorithms. This result also verifies that the QMKRSL can maintain the filtering
accuracy while effectively limiting the network size, and the QMKRSL_BG can further improve the
filtering accuracy.
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Figure 3. The effect of the quantization size γ on final network size under different noise environments
using QMKRSL.
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Table 1. Parameter settings for different algorithms under different noise environments. MKRSL:
minimum kernel risk-sensitive loss; QKMC: quantized kernel maximum correntropy; QKLMS: quantized
kernel least mean square; QMKRSL_BG: quantized MKRSL using the bilateral gradient technique.

Noise QKLMS QKMC MKRSL QMKRSL QMKRSL_BG

Gaussian
η = 0.09
σ = 0.16

η = 0.09
σ1 = 0.45
σ2 = 0.16

η = 0.09
σ1 = 1.8
σ2 = 0.16
λ = 2

η = 0.09
σ1 = 1.8
σ2 = 0.16
λ = 2

η1 = 0.1
η2 = 0.09
σ1 = 1.8
σ2 = 0.16
λ = 2

Uniform
η = 0.13
σ = 0.23

η = 0.13
σ1 = 0.22
σ2 = 0.23

η = 0.11
σ1 = 1.3
σ2 = 0.23
λ = 2

η = 0.11
σ1 = 1.3
σ2 = 0.23
λ = 2

η1 = 0.3
η2 = 0.11
σ1 = 1.3
σ2 = 0.23
λ = 2

Bernouli
η = 0.1
σ = 0.21

η = 0.1
σ1 = 0.26
σ2 = 0.21

η = 0.08
σ1 = 2.1
σ2 = 0.21
λ = 4

η = 0.08
σ1 = 2.1
σ2 = 0.21
λ = 4

η1 = 1
η2 = 0.09
σ1 = 2.1
σ2 = 0.21
λ = 4

Sine wave
η = 0.11
σ = 0.24

η = 0.11
σ1 = 0.43
σ2 = 0.24

η = 0.11
σ1 = 2
σ2 = 0.24
λ = 4

η = 0.11
σ1 = 2
σ2 = 0.24
λ = 4

η1 = 0.65
η2 = 0.11
σ1 = 2
σ2 = 0.24
λ = 4
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Figure 4. The effect of the quantization size γ on final testing mean square error (MSE) under different
noise environments: (a) Gaussian; (b) uniform; (c) Bernouli; (d) sine wave.
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Figure 5. Learning curves in terms of the testing MSE for QKLMS, QKMC, MKRSL, QMKRSL, and
QMKRSL_BG under different noise environments: (a) Gaussian; (b) uniform; (c) Bernouli; (d) sine wave.
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Figure 6. The successful prediction rates of QKLMS, QKMC, MKRSL, QMKRSL, and QMKRSL_BG
with different threshold ε under sine wave noise environment.

Hence, in consideration of the final network size and prediction effect simultaneously,
the QMKRSL and QMKRSL_BG proposed in this article may be two competitive choices to constrain
the network size as well as achieve better prediction performance.
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5. Conclusions

On the basis of KRSL criterion, an effective nonlinear KAF algorithm called the MKRSL has been
derived to a achieve better filtering performance in non-Gaussian noise environments. To constrain
the linearly growing RBF network structure of MKRSL, the quantization technique is incorporated into
the original MKRSL, and thus the QMKRSL is proposed in this article. The simulation results of chaotic
time-series show that QMKRSL can effectively reduce network size while maintaining simplicity
and prediction accuracy. Considering the difference between the samples in a same quantization
region, an intensified QMKRSL using the bilateral gradient technique is accordingly developed to
further improve the accuracy, and it is named the QMKRSL_BG. In contrast to the traditional gradient
descent method, the bilateral gradient descent approach can update the coefficient vector of centers
and desired output of samples in the same quantization region simultaneously. This property allows
the QMKRSL_BG to get more hidden information from the input and output spaces, and thus achieves
higher accuracy. Simulation results have verified the theoretical expectations and demonstrated that
the QMKRSL_BG can achieve better filtering performance than some other quantized algorithms.
In practical scenarios, computing devices usually have limited computational capacity and physical
memory, and are often disturbed by non-Gaussian noises. Therefore, how to effectively constrain the
network size as well as achieve higher accuracy in non-Gaussian noise environments is a problem to
be solved. In consideration of those facts mentioned above, the proposed algorithms may be the good
choices for nonlinear adaptive learning tasks in realistic scenarios.

Due to the smoothness and strict positive-definiteness of Gaussian function, the kernel used in
this article defaults to the Gaussian kernel. However, Gaussian kernel is not always the best choice in
some cases. Therefore, how to select a better kernel function appropriately is an interesting subject for
future study. In addition, as a key parameter in quantized KAF algorithms, the quantization size is
determined as a tradeoff between prediction accuracy and computational complexity (network size).
Thus, how to select the quantization size appropriately and adaptively is also an important issue to be
solved in the future. Moreover, how to achieve good performance when the final network size is fixed
in advance is another interesting and important future research topic along this direction.
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