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Abstract: The information-theoretical concept transfer entropy is an ideal measure for detecting
conditional independence, or Granger causality in a time series setting. The recent literature indeed
witnesses an increased interest in applications of entropy-based tests in this direction. However,
those tests are typically based on nonparametric entropy estimates for which the development
of formal asymptotic theory turns out to be challenging. In this paper, we provide numerical
comparisons for simulation-based tests to gain some insights into the statistical behavior of
nonparametric transfer entropy-based tests. In particular, surrogate algorithms and smoothed
bootstrap procedures are described and compared. We conclude this paper with a financial application
to the detection of spillover effects in the global equity market.
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1. Introduction

Entropy, introduced by Shannon [1,2], is an information theoretical concept with several appealing
properties, and therefore wide applications in information theory, thermodynamics and time series
analysis. Based on this classical measure, transfer entropy (TE) has become a popular information
theoretical measure for quantifying the flow of information. This concept, which was coined by
Schreiber [3], was applied to distinguish a possible asymmetric information exchange between the
variables of a bivariate system. When based on appropriate non-parametric density estimates, the TE is
a flexible non-parametric measure for conditional dependence, coupling structure, or Granger causality
in a general sense.

The notion of Granger causality was developed by the pioneering work of Granger [4] to capture
causal interactions in a linear system. In a more general model-free world, the Granger causal effect
can be interpreted as the impact of incorporating the history of another variable on the conditional
distribution of a future variable in addition to its own history. Recently, various nonparametric
measures have been developed to capture such difference between conditional distributions in
a more complex, and typically nonlinear system. There is a growing list of such methods, based on,
among others, correlation integrals [5], kernel density estimation [6], Hellinger distances [7], copula
functions [8] and empirical likelihood [9].

Entropy 2017, 19, 372; doi:10.3390/e19070372 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19070372 
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 372 2 of 38

In contrast with the above-mentioned methods, TE-based causality tests do not attempt to capture
the difference between two conditional distributions explicitly. Instead, with the information theoretical
interpretation, the TE offers a natural way to measure directional information transfer and Granger
causality. We refer to [10,11] for detailed reviews of the relation between Granger causality and directed
information theory. However, the direct application of entropy and its variants, though attractive,
turns out to be difficult, if not impossible altogether, due to the lack of asymptotic distribution theory for
the test statistics. For example, Granger and Lin normalize the entropy to detect serial dependence with
critical values obtained from simulations [12]. Hong and White provide the asymptotic distribution
for the Granger–Lin statistic with a specific kernel function [13]. Barnett and Bossomaier derive a χ2

distribution for the TE at the cost of the model-free property [14].
On the other hand, to obviate the asymptotic problem, several resampling methods on TE have

been developed for providing empirical distributions of the test statistics. Two popular techniques
are bootstrapping and surrogate data. Bootstrapping is a random resampling technique proposed by
Efron [15] to estimate the properties of an estimator by measuring those properties from approximating
distributions. The “surrogate” approach developed by Theiler et al. [16] is another randomization
method initially employing Fourier transforms to provide a benchmark in detecting nonlinearity in
a time series setting. It is worth mentioning that the two methods are different with respect to the
statistical properties of the resampled data. For the surrogate method the null hypothesis is maintained,
while the bootstrap method does not seek to impose the null hypothesis on the bootstrapped samples.
We refer to [17,18] for detailed applications of the two methods.

However, not all resampling methods are suitable for entropy-based dependence measures.
As Hong and White [13] put it, a standard bootstrap fails to deliver a consistent entropy-based statistic
because it does not preserve the statistical properties of a degenerate U-statistic [13]. Similarly,
with respect to traditional surrogates based on phase randomization of the Fourier transform,
Hinich et al. [19] criticize the particularly restrictive assumption of linear Gaussian process, and
Faes et al. [20] point out that it cannot preserve the whole statistical structure of the original time series.

As far as we are aware, there are several applications of both methods in entropy-based tests,
for example, Su and White [7] propose a smoothed local bootstrap for entropy-based test for serial
dependence, Papana et al. [21] apply stationary bootstrap in partial TE estimation, Quiroga et al. [22]
use time-shifted surrogates to test the significance of the asymmetry of directional measures of coupling,
and Marschinski and Kantz [23] introduce the effective TE, which relies on random shuffling surrogate
in estimation. Kugiumtzis [24] and Papana et al. [21] provide some comparisons between bootstrap
and surrogate methods for entropy-based tests.

In this paper, we adopt TE as a test statistic for measuring conditional independence (Granger
non-causality). Being aware of the fact that the analytical null distribution may not always be accurate
or available in an analytically closed form, we resort to resampling techniques for constructing the
empirical null distribution. The techniques under consideration include smoothed local bootstrap,
stationary bootstrap and time-shifted surrogates, all of which are shown in literature to be applicable to
entropy-based test statistics. Using different dependence structures, the size and power performance
of all methods are examined in simulations.

The remainder of this paper is organized as follows. Section 2 first provides the TE-based testing
framework and a short introduction to kernel density estimation; then bandwidth selection rules are
discussed. After presenting the resampling methods, including the smoothed local bootstrap and
time-shifted surrogates for different dependence structure settings. Section 3 examines the empirical
performance of different resampling methods, presenting the size and power of the tests. Section 4
considers a financial application with the TE-based nonparametric test and Section 5 summarizes.
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2. Methodology

2.1. Transfer Entropy and Its Estimator

Information theory is a branch of applied mathematical theory of probability and statistics.
The central problem of classical information theory is to measure transmission of information over
a noisy channel. Entropy, also referred to as Shannon entropy, is one key measure in the field of
information theory brought by [1,2]. Entropy measures the uncertainty and randomness associated
with a random variable. Supposing that S is a random vector with density fS(s), its Shannon entropy
is defined as

H(s) = −
∫

fS(s) log ( fS(s)) ds. (1)

There is a long history of applying information theoretical measures in time series analysis.
For example, Robinson [25] applies the Kullback–Leibler information criterion [26] to construct
a one-sided test for serial independence. Since then, nonparametric tests using entropy measures for
dependence between two time series are becoming prevalent. Granger and Lin [12] normalize the
entropy measure to identify the lags in a nonlinear bivariate time series model. Granger et al. [27]
study dependence with a transformed metric entropy, which turns out to be a proper measure of
distance. Hong and White [13] provide a new entropy-based test for serial dependence, and the test
statistic follows a standard normal distribution asymptotically.

Although those heuristic approaches work for entropy-based measures of dependence,
these methodologies do not carry over directly to measures of conditional dependence, i.e.,
Granger causality. The term TE was coined by Schreiber [3], although it appeared in the literature
earlier under different names, is a suitable measure to serve this purpose. The TE quantifies the amount
of information contained in one series at k steps ahead from the state of another series, given the current
and past state of itself. Suppose we have two series {Xt} and {Yt}, for brevity put X = {Xt}, Y = {Yt}
and Z = {Yt+k}, further we define a three-variate vector Wt as Wt = (Xt, Yt, Zt), where Zt = Yt+k;
and W = (X, Y, Z) is used when there is no danger of confusion. Within this bivariate setting, W is a
three dimensional continuous vector. In this paper, we limit ourselves to k = 1 for simplicity, but the
method can be generalized into multiple steps easily. The quantity TEX→Y is a nonlinear measure
for the amount of information explained in Z (future Y) by X, accounting for the information on Z
already contained in Y. Although TE defined in [3] applies to discrete variables, it is easily generalized
to continuous variables. Conditional on Y, TEX→Y is defined as

TEX→Y = EW

(
log

fZ,X|Y(Z, X|Y)
fX|Y(X|Y) fZ|Y(Z|Y)

)

=
∫ ∫ ∫

fX,Y,Z(X, Y, Z) log
fZ,X|Y(Z, X|Y)

fX|Y(X|Y) fZ|Y(Z|Y) dx dy dz

= EW

(
log

fX,Y,Z(X, Y, Z)
fY(Y)

− log
fX,Y(X, Y)

fY(Y)
− log

fY,Z(Y, Z)
fY(Y)

)
= EW (log fX,Y,Z(X, Y, Z) + log fY(Y)− log fX,Y(X, Y)− log fY,Z(Y, Z)) .

(2)

Using conditional mutual information I(Z, X|Y = y), the TE can be equivalently formulated in
terms of four Shannon entropy terms as

TEX→Y = I(Z, X|Y)
= H(Z|Y)− H(Z|X, Y)

= H(Z, Y)− H(Y)− H(Z, X, Y) + H(X, Y).

(3)

In order to construct a test for Granger causality based on the TE, one first needs to show
quantitatively that the TE is a proper basis for detecting whether the null hypothesis is satisfied.
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The following theorem, as a direct application of the Kullback–Leibler criterion, lays the quantitative
foundation for testing based on the TE.

Theorem 1. TEX→Y ≥ 0 with equality if and only if fZ,X|Y(Z, X|Y) = fX|Y(X|Y) fZ|Y(Z|Y).

Proof. The proof of Theorem 1 is given in [28].

It is not difficult to verify that the condition for TEX→Y = 0 coincides with the null hypothesis
of Granger non-causality defined in Equation (4), also referred to as conditional independence or no
coupling. Mathematically speaking, the null hypothesis of Granger non-causality, H0 : {Xt} is not a
Granger cause of {Yt}, can be phrased as

H0 :
fX,Y,Z(x, y, z)

fY(y)
=

fY,Z(y, z)
fY(y)

fX,Y(x, y)
fY(y)

, (4)

for (x, y, z) in the support of W. A nonparametric test for Granger non-causality seeks to find statistical
evidence of violation of Equation (4). There are many nonparametric measures available for this
purpose, some of which are mentioned above. Equation (4) provides the basis for a model-free
test without imposing any parametric assumptions about the data generating process or underlying
distributions for {Xt} and {Yt}. We only assume two things here. First, {Xt, Yt} is a strictly stationary
bivariate process. Second, the process has finite memory, i.e., variable lags lX, lY � ∞. The second
(finite Markov order) assumption is needed in this nonparametric setting to make conditioning
on past information feasible by conditioning on a finite number of past observations. Moreover,
strict stationarity and the mixing properties implied by the finite Markov order assumption ensure
that the transfer entropy can be estimated consistently through kernel density estimation of the
underlying densities.

As far as we are aware, the direct use of TE to test Granger non-causality in nonparametric setting
is difficult, if not impossible at all, due to the lack of asymptotic theory for the test statistic. As Granger
and Lin [12] put it, very few asymptotic distribution results for entropy-based estimators are available.
Although over the years several break-throughs have been made with application of entropy to testing
serial independence, the limiting distribution of TE statistic is still unknown. One may wish to use
simulation techniques to overcome the lack of asymptotic distributions. However, as noted by Su and
White [7], there are estimation biases of the TE statistics for non-parametric dependence measures
under the smoothed bootstrap procedure. Even for the parametric test statistic used by Barnett and
Bossomaier [14], the authors noticed that the TE-based estimator is generally biased.

2.2. Density Estimation and Bandwidth Selection

The non-negativity property in Theorem 1 makes TEX→Y a desirable measure for constructing
a one-sided test of conditional independence; any positive divergence from zero is a sign of conditional
dependence of Y on X. To estimate TE there are several different approaches, such as histogram-based
estimators [29], correlation sums [30] and nearest neighbor estimators [31]. However, the optimal rule
for the number of neighbor points is unclear, and as Kraskov et al. [31] comment, a small value of
neighbor points may lead to large statistical errors. A more natural method, kernel density estimators,
the properties of which have been well studied, is applied in this paper. With the plug-in kernel
estimates of densities, we may replace the expectation in Equation (2) by a sample average to get an
estimate for TEX→Y.

A local density estimator of a dW-variate random vector W at Wi is given by

f̂W(Wi) = ((n− 1)h)−dW
n

∑
j,j 6=i

K
(Wi −Wj

h

)
, (5)
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where K is a kernel function and h is the bandwidth. We take K(.) to be a product kernel function
defined as K(W) = ∏dW

s=1 κ(ws), where ws is sth element in W. Using a standard univariate Gaussian

kernel, κ(ws) = (2π)−1/2e−
1
2 (w

s)2
, K(.) is the standard multivariate Gaussian kernel as described by

Wand and Jones [32] and Silverman [33]. Using Equation (5) as the plug-in density estimator, and
replacing the expectation by the sample mean, we obtain the estimator for the TE given by

Î(Z, X|Y) = 1
n

n

∑
i=1

(
log f̂ (xi, yi, zi) + log f̂ (yi)− log f̂ (xi, yi)− log f̂ (yi, zi)

)
. (6a)

If we estimate the Shannon entropy in Equation (1) based on a sample of size n from the
dW-dimensional random vector W, by the sample average of the plug-in density estimates, we obtain

Ĥ(W) =
1
n

n

∑
i=1

(
log( f̂W(Wi))

)
, (6b)

then Equation (6a) can be equivalently expressed in terms of four entropy estimators, that is,

Î(Z, X|Y) = −Ĥ(xi, yi, zi)− Ĥ(yi) + Ĥ(xi, yi) + Ĥ(yi, zi). (6c)

To construct a statistical test, we develop the asymptotic properties of Î(Z, X|Y) defined in
Equations (6a) and (6c) through two steps. In the first step, given the density estimates the consistency
of entropy estimates is achieved and then the linear combination of four entropy estimates would
converge in probability to the true value. The following two theorems ensure the consistency of
Î(Z, X|Y).

Theorem 2. Given the kernel density estimate f̂W(Wi) for fW(Wi), where W is a dW-dimensional random
vector with length n, let Ĥ(W) be the plug-in estimate for the Shannon entropy as defined in Equation (6b).

Then Ĥ(W)
P−→ H(W).

Proof. The proof of Theorem 2 is given in [12] using results from [34].

The basic idea of the proof is to take the Taylor series expansion of log( f̂W(Wi)) around the true
value log( fW(Wi)) and use the fact that f̂W(Wi), given an appropriate bandwidth sequence, converges
to fW(Wi) pointwise to obtain consistency. In the next step, the consistency of Î(Z, X|Y) is provided
by the continuous mapping theorem.

Theorem 3. Given Ĥ(W)
P−→ H(W), with Î(Z, X|Y) defined as in Equation (6c), Î(Z, X|Y) P−→ I(Z, X|Y).

Proof. The proof is straightforward if one applies the Continuous Mapping Theorem. See Theorem 2.3
in [35].

Before we move to the next section, it is worth having a careful look at the issue of bandwidth
selection. The bandwidth h for kernel estimation determines how smooth the density estimation is;
a smaller bandwidth reveals more structure of the data, whereas a larger bandwidth delivers a smoother
density estimate. Bandwidth selection is essentially a trade-off between the bias and variance in density
estimation. A very small value of h could eliminate estimation bias, with a large variance. On the
other hand, a large bandwidth reduces estimation variance at the expense of incorporating more bias.
See Chapter 3 in [32] and [36] for details.

However, the bandwidth selection for the TE statistic is more involved. To the best of our
knowledge, there is a blank in the field of optimal bandwidth selection in kernel-based TE estimator.
As He et al. [37] show, when estimating the entropy estimator, two types of errors would be generated,
one is from entropy estimation and the other from density estimation, and the optimal bandwidth for
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density estimation may not coincide with the optimal one for entropy estimation. Thus, rather than
the rule-of-thumb bandwidth in [33], which aims at optimal density estimation, the bandwidth in our
study should provide an accurate estimator for I(Z, X|Y) in the minimal mean squared error (MSE)
sense, say. In [28] we develop such a bandwidth rule for a TE-based estimator. In that paper, rather
than directly developing asymptotic properties for TE, we study the properties of the first order Taylor
expansion of TE under the null hypothesis. The suggested bandwidth is shown to be MSE optimal
and allows us to obtain asymptotic normality for the test statistic. In principal, the convergence rate of
the TE estimator should be the same as the leading term of its Taylor approximation. We therefore
propose to use the same rate also here, giving

h = Cn−2/7, (7)

where C is an unknown parameter. This bandwidth would deliver a consistent test since the variance
of local estimate of Î(Zi, Xi|Yi) will dominate the MSE. In [28] we suggest to use C = 4.8 based
on simulations, while Diks and Panchenko suggest to set C ≈ 8 for autoregressive conditional
heteroskedasticity (ARCH) processes [6]. Our simulations here also may possibly prefer a larger value
of C because the squared bias is of higher order and hence less concern for the TE-based statistic.
A larger bandwidth could better control the estimation variance and deliver a more powerful test.
As a robustness check, we adopt C = 8 as well as C = 4.8 suggested by our other simulation study [28].
To match the Gaussian kernel, we standardize the data before estimate Equation (6a)–(6c) such that
the transformed time series have mean zero zero and unit variance; very similar results are obtained
by matching the mean absolute deviation instead of the variance of the standard Gaussian kernel for
TE estimation.

2.3. Resampling Methods

To develop simulation-based tests for the null hypothesis, given in Equation (4), of no Granger
causality from X to Y, or equivalently, for conditional independence, we consider three resampling
techniques, i.e., (1) time shifted surrogates developed by Quiroga et al. [22], (2) the smoothed
bootstrap of Su and White [7] and (3) the stationary bootstrap introduced by Politis and Romano [38].
The first technique is widely applied in coupling measures, as for example by Kugiumtzis [39] and
Papana et al. [40], while the latter two have already been used for detecting conditional independence
for decades. It worth mentioning that the surrogates and bootstrap methods treat the null quite
differently. Surrogate data are supposed to preserve the dependence structure imposed by H0 while
bootstrap data are not restricted to H0. It is possible to bootstrap the dataset without imposing the
conditional independence structure of {X, Y, Z} implied by the null hypothesis; see, for instance, [41] for
more details. To avoid resampling errors and to make different methods more comparable, we limit
ourselves to methods that impose the null hypothesis on the resampled data. The following three
different resampling methods are implemented with different sampling details.

1. Time-Shifted Surrogates

• (TS.a) The first resampling method only deals with the driving variable X. Suppose we have
observations {x1, ..., xn}, the time-shifted surrogates are generated by cyclically time-shifting
the components of the time series. Specifically, an integer d is randomly generated within the
interval ([0.05n], [0.95n]), and then the first d values of {x1, ..., xn} would be moved to the
end of the series, to deliver the surrogate sample X∗ = {xd+1, ..., xn, x1, ..., xd}. Compared
with the traditional surrogates based on phase randomization of the Fourier transform, the
time-shifted surrogates can preserve the whole statistical structure in X. The couplings
between X and Y are destroyed, although the null hypothesis of X not causing Y is imposed.

• (TS.b) The second scheme resamples both the driving variable X and the response variable
Y separately. Similar to (TS.a), Y∗ = {yc+1, ..., yn, y1, ..., yc} is created given another random
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integer c from the range ([0.05n], [0.95n]). In contrast with the standard time-shifted
surrogates described in (TS.a), in this setting we add more noise to the coupling between
X and Y.

2. Smoothed Local Bootstrap

The smoothed bootstrap selects samples from a smoothed distribution instead of drawing
observations from the empirical distribution directly. See [42] for a discussion of the smoothed
bootstrap procedure. Based on rather mild assumptions, Neumann and Paparoditis [43] show
that there is no need to reproduce the whole dependence structure of the stochastic process to
get an asymptotically correct nonparametric dependence estimator. Hence a smoothed bootstrap
from the estimated conditional density is able to deliver a consistent statistic. Specifically, we
consider two versions of the smoothed bootstrap that are different in dependence structure to
some extent.

• (SMB.a) In the first setting, Y∗ is resampled without replacement from the smoothed local
bootstrap. Given the sample Y = {y1, ...yn}, the bootstrap sample is generated by adding
a smoothing noise term εY

i such that ỹ∗i = y∗i + hbεY
i , where hb > 0 is the bandwidth used in

bootstrap procedure, εY
i represents a sequence of i.i.d. N(0, 1) random variables. Without

random replacement from the original time series, this procedure does not disturb the original
dynamics of Y = {y1, ...yn} at all. After Y∗ is resampled, both X∗ and Z∗ are drawn from the
smoothed conditional densities f (x|Y∗) and f (z|Y∗) as described in [44].

• (SMB.b) Secondly, we implement the smoothed local bootstrap as in [7]. The only difference
between this setting and (SMB.a) is that the bootstrap sample Y∗ is drawn with replacement
from the smoothed kernel density.

3. Stationary Bootstrap

Politis and Romano [38] propose the stationary bootstrap to maintain serial dependence within the
bootstrap time series. This method replicates the time dependence of original data by resampling
blocks of the data with randomly varying block length. The lengths of the bootstrap blocks
follows a geometric distribution. Given a fixed probability p, the length Li of block i is decided
as P(Li = k) = (1 − p)k−1 p for k = 1, 2, ..., and the starting points of block i are randomly
and uniformly drawn from the original n observations. To restore the dependence structure
exactly under the null, we combine the stationary bootstrap with the smoothed local bootstrap
for our simulations.

• (STB) In short, firstly y∗1 is picked randomly from the original n observations of Y = {y1, ...yn},
denoted as y∗1 = ys where s ∈ [1, n]. With probability p, y∗2 is picked at random from the
data set; and with probability 1− p, y∗2 = ys+1, so that y∗2 would be the next observation
to ys in original series Y = {y1, ...yn}. Proceeding in this way, {y∗1 , ..., y∗n} can be generated.
If y∗i = ys and s = n, the “circular boundary condition” would kick in, so that y∗i+1 = y1.
After Y∗ = {y∗1 , ..., y∗n} is generated, both X∗ and Z∗ are randomly drawn from the smoothed
conditional densities f (x|Y∗) and f (z|Y∗) as in (SMB.b).

The resampling procedure works as the follows: once the TE statistic Î for the original data
W = {(Xi, Yi, Zi), i = 1, ..., n} is estimated according to Equation (6a)–(6c), we start to generate the
resampled data set, which is denoted by W∗j with j = 1, ..., B, where B is the number of simulations.

Using the simulated sample, for each j we compute the TE statistic Î∗j , in exactly the same way as Î
was computed. The p-value for the one-sided test is calculated as

p̂ =
1

B + 1

(
1 +

B

∑
j=1

1( Î∗j ≥ Î)

)
, (8)
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where the constant 1 is added to avoid p-values equal to zero.
A final remark concerns the difference between this paper and [21]; there both time-shifted

surrogate and the stationary bootstrap are implemented for an entropy-based causality test. However,
our paper provides additional insights into several aspects. Firstly, the smoothed bootstrap,
being shown in the literature to work for nonparametric kernel estimators under general dependence
structure, is applied in our paper. Secondly, they treat the bootstrap and surrogate sample in a similar
way, but as we noted above, the bootstrap method is not designed to impose the null hypothesis but
designed to keep the dependence structure present in the original data. The stationary bootstrap
procedure in [21] might be incompatible with the null hypothesis of conditional independence since it
destroys the dependence completely. Because they restore independence between X and Y rather than
conditional independence between X|Y and Z|Y during resampling, the distribution of the estimated
statistics from the resampled data may not necessary correspond to that of the statistic under the
null of only conditional independence. Thirdly, we provide rigorous size and power result in our
simulations, which is missing in their paper.

3. Simulation Study

In this section, we investigate the performance of the five resampling methods in detecting
conditional dependence for several data generating processes. In Equations (9)–(16), we use a
single parameter a to control the strength of the conditional dependence. The size assessment is
obtained based on testing Granger non-causality from {Xt} to {Yt}, and for the power we use the
same process but we test for Granger non-causality from {Yt} to {Xt}. We set a = 0.4 to represent
moderate dependence in the size performance investigation and a = 0.1 to evaluate the power of the
tests. Further, Equation (17) represents a stationary autoregressive process with regime switching,
and Equation (18) is included to investigate the power performance in the presence of two-way causal
linkages, where the two control parameters are b = −0.2 and c = 0.1.

In each experiment, we run 500 simulations for sample sizes n = {200, 500, 1000, 2000}.
The surrogate and the bootstrap sample size is set to B = 999. For fair comparisons between (TS.a) and
(TS.b), as well as between (SMB.a) and (SMB.b), we fix the seeds of the random number generator in
the resampling functions to eliminate the potential effect of randomness. Besides, we use the empirical
standard deviation of {Yt} as the bootstrapping bandwidth and C = {4.8, 8} in the bandwidth equation
Equation (7) for the kernel density estimation.

The processes under consideration include a linear vector autoregressive process (VAR) in
Equation (9), a nonlinear VAR process in Equation (10), a bivariate ARCH process in Equation (11),
a bilinear process in Equation (12), a bivariate AR(2)-GARCH process in Equation (13) where “GARCH”
stands for “generalized ARCH”, a bivariate autoregressive-moving average (ARMA)-GARCH process
in Equation (14), a bivariate AR(1)-EGARCH process in Equation (15) where “EGARCH” represents
“exponential GARCH”, a vector error correction (VECM) process in Equation (16), a threshold AR(1)
process in Equation (17), and a two-way VAR process in Equation (18).

It is worth mentioning that the data generating processes in Equations (9)–(12), (17) and (18) are
stationary and of finite memory as we assumed earlier. However, it is also important to be aware of the
behavior of the proposed non-parametric test for robustness consideration when the two assumptions
are not satisfied. The finite memory assumption is violated in Equations (13)–(15) since the GARCH
process, being equivalent to an infinite ARCH process, strictly speaking is of infinite Markov order;
and the stationarity assumption does not hold in Equation (16) where Xt and Yt are cointegrated of
order one. Since for the VECM process the two time series {Xt} and {Yt} are not stationary, we can not
directly apply our nonparametric test. In this case, we perform the Engle–Granger approach [45] first to
eliminate the influence of the co-integration, and then perform the nonparametric test on the collected
stationary residuals from the linear regression of ∆Xt and ∆Yt on a constant and the co-integration
term. The procedure is similar to that in [46].
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1. Linear vector autoregressive process (VAR).

Xt = aYt−1 + εx,t, εx,t ∼ N(0, 1)
Yt = aYt−1 + εy,t, εy,t ∼ N(0, 1).

(9)

2. Nonlinear VAR. This process is considered in [47] to show the failure of linear Granger
causality test.

Xt = aXt−1Yt−1 + εx,t, εx,t ∼ N(0, 1)
Yt = 0.6Yt−1 + εy,t, εy,t ∼ N(0, 1).

(10)

3. Bivariate ARCH process.

Xt ∼ N(0, 1 + aY2
t−1)

Yt ∼ N(0, 1 + aY2
t−1).

(11)

4. Bilinear process considered in [48].

Xt = 0.3Xt−1 + aYt−1εy,t−1 + εx,t, εx,t ∼ N(0, 1)
Yt = 0.4Yt−1 + εy,t, εy,t ∼ N(0, 1).

(12)

5. Bivariate AR(2)-GARCH process.

Xt = 0.5Xt−1 − 0.2Xt−2 + εx,t,
εx,t =

√
hx,tυx,t, υx,t ∼ t(5),

hx,t = 0.9 + aε2
y,t−1 + 0.2hx,t−1;

Yt = 0.3Yt−1 + 0.2Yt−2 + εy,t,
εy,t =

√
hy,tυy,t, υy,t ∼ t(5),

hy,t = 0.3 + 0.1ε2
y,t−1 + 0.2hy,t−1.

(13)

6. Bivariate ARMA-GARCH process.

Xt = 0.3Xt−1 + 0.3εx,t−1 + εx,t,
εx,t =

√
hx,tυx,t, υx,t ∼ t(5),

hx,t = 0.5 + aε2
y,t−1 + 0.3hx,t−1;

Yt = 0.4Yt−1 − 0.2εy,t−1 + εy,t,
εy,t =

√
hy,tυy,t, υy,t ∼ t(5),

hy,t = 0.8 + 0.05ε2
y,t−1 + 0.4hy,t−1.

(14)

7. Bivariate AR(1)-EGARCH process.

Xt = 0.5Xt−1 + εx,t,
εx,t =

√
hx,tυx,t, υx,t ∼ t(5),

log(hx,t) = −0.5 + a| ε2
y,t−1√
hx,t−1
|+ 0.2

ε2
y,t−1√
hx,t−1

+ 0.9 log(hx,t−1);

Yt = 0.6Yt−1 + εy,t,
εy,t =

√
hy,tυy,t, υy,t ∼ t(5),

log(hy,t) = −0.6 + 0.05| ε2
y,t−1√
hx,t−1
|+ 0.02

ε2
y,t−1√
hx,t−1

+ 0.8 log(hx,t−1).

(15)

8. VECM process. Note that in this situation both {Xt} and {Yt} are not stationary.

Xt = 1.2 + 0.6Yt−1 + εx,t

εx,t =
√

1− a2υx,t + aεY,t−1, υx,t ∼ N(0, 1)
Yt = Yt−1 + εy,t, εy,t ∼ N(0, 1).

(16)
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9. Threshold AR(1) process.

Xt =

{
0.2Xt−1 + εx,t εx,t ∼ N(0, 1), if Yt−1 < 0

0.9Xt−1 + εx,t εx,t ∼ N(0, 1), if Yt−1 ≥ 0
Yt = εy,t, εy,t ∼ N(0, 1).

(17)

10. Two-way VAR process.

Xt = 0.7Xt−1 + bYt−1 + εx,t, εx,t ∼ N(0, 1)
Yt = cXt−1 + 0.5Yt−1 + εy,t, εy,t ∼ N(0, 1).

(18)

The empirical rejection rates are summarized in Tables 1–10. The top panels in each table
summarize the empirical rejection rates obtained for the 5% and 10% nominal significance levels for
processes (9)–(18) under the null hypothesis, and the bottom panels report the corresponding empirical
power under the alternatives. Generally speaking, the size and power are quite satisfactory for almost
all combinations of the constant C, sample size n and nominal significance level. The performance
differences for the various resampling schemes are not substantial.

With respect to the size performance, most of the time we see that the realized rejection rates stay
in line with the nominal size. Besides, the bootstrap methods outperform the time-shifted surrogate
methods in that their empirical size is slightly closer to the nominal size. Lastly, the size of the tests
is not very sensitive to the choice of the constant C apart from the cases for the models given in
Equations (13)–(15), where the data generating process has infinite memory.

From the point of view of power, (TS.a) and (SMB.a) seem to outperform their counterparts, yet,
the differences are subtle. Along the dimension of the sample size, clearly we see that the empirical
power increases in the sample size in most cases. Furthermore, the results are very robust with respect
to choices for the constant C in the kernel density estimation bandwidth. For the VAR and nonlinear
processes given by Equations (9), (10) and (12) a smaller C seems to give more powerful tests while a
larger C is more beneficial for detecting conditional dependence structure in the (G)ARCH processes
of Equations 11 and (13)–(15).

Finally, Table 10 presents the empirical power for the two-way VAR process, where the two
variables {X} and {Y} are inter-tangled with each other. Due to the setting b = −0.2 and c = 0.1 in
Equation (18), it is obvious that {Y} is a stronger Granger cause for {X} than the other way around.
As a consequence, the reported rejection rates in Table 10 are overall higher when testing Y → X
than X → Y.

To visualize the simulation results, Figures 1–10 report the empirical size and power against
the nominal size. Since the performance of the five difference resampling methods is quite similar,
we only show the results for (SMB.a) for simplicity. In each figure, the left (right) panels show the
realized size (power), and we choose C = 4.8 (C = 8) for the top (bottom) two panels. We can see
from the figures that the empirical performance of the TE test are overall satisfactory, apart for those
(G)ARCH processes where a small C may lead to conservative testing size for large sample sizes (see
Figures 3a, 5a, 6a and 7a). The under-rejection problem is caused by the inappropriate choice C = 4.8,
which makes the bandwidth for kernel estimation too small. The influence of an inappropriately small
bandwidth can also be seen in Figures 5b and 6b, where the test has limited power for the alternative.
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Table 1. Observed size and power of the TE-based test for the linear VAR process in Equation (9).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0560 0.0500 0.0460 0.0420 0.0440 0.0820 0.0740 0.0740 0.0780 0.0780
500 0.0740 0.0680 0.0660 0.0700 0.0660 0.1160 0.1120 0.1200 0.1160 0.1220
1000 0.0620 0.0560 0.0600 0.0560 0.0560 0.0940 0.0920 0.0980 0.0960 0.0980
2000 0.0380 0.0340 0.0380 0.0460 0.0460 0.0940 0.0920 0.0960 0.0980 0.0980

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0500 0.0440 0.0460 0.0460 0.0440 0.1120 0.1000 0.0960 0.0960 0.0920
500 0.0840 0.0760 0.0760 0.0720 0.0660 0.1360 0.1300 0.1060 0.1160 0.1140
1000 0.0720 0.0680 0.0620 0.0560 0.0580 0.1280 0.1280 0.1160 0.1260 0.1200
2000 0.0880 0.0780 0.0820 0.0760 0.0820 0.1420 0.1380 0.1320 0.1340 0.1440

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.1880 0.1980 0.1900 0.1920 0.1900 0.2780 0.2780 0.2880 0.2860 0.2920
500 0.3460 0.3460 0.3400 0.3480 0.3420 0.4520 0.4460 0.4580 0.4500 0.4500
1000 0.5440 0.5340 0.5320 0.5340 0.5280 0.6400 0.6520 0.6460 0.6480 0.6460
2000 0.7500 0.7420 0.7500 0.7460 0.7460 0.8160 0.8080 0.8100 0.8120 0.8120

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.1660 0.1680 0.1640 0.1680 0.1700 0.2660 0.2640 0.2680 0.2740 0.2740
500 0.2900 0.2900 0.3020 0.3040 0.3020 0.4020 0.3960 0.3940 0.4020 0.3980
1000 0.4980 0.4980 0.5000 0.4900 0.4980 0.6040 0.6120 0.6120 0.6140 0.6120
2000 0.8420 0.8380 0.8400 0.8340 0.8460 0.8960 0.8880 0.8900 0.8900 0.8900

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (9) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study we consider C = 4.8 and C = 8.
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Table 2. Observed size and power of the TE-based test for the nonlinear VAR process in Equation (10).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0500 0.0360 0.0340 0.0380 0.0360 0.0760 0.0720 0.0780 0.0760 0.0720
500 0.0580 0.0580 0.0580 0.0580 0.0580 0.0960 0.0980 0.1040 0.1040 0.0980
1000 0.0340 0.0360 0.0380 0.0360 0.0380 0.0620 0.0580 0.0740 0.0700 0.0720
2000 0.0380 0.0320 0.0440 0.0460 0.0420 0.0780 0.0700 0.0960 0.0920 0.0880

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0560 0.0480 0.0460 0.0520 0.0480 0.1000 0.0800 0.0940 0.0940 0.0940
500 0.0640 0.0620 0.0500 0.0480 0.0540 0.1120 0.1100 0.1080 0.1040 0.1040
1000 0.0440 0.0360 0.0320 0.0300 0.0280 0.0900 0.0860 0.0820 0.0780 0.0800
2000 0.0260 0.0300 0.0280 0.0280 0.0260 0.0700 0.0640 0.0740 0.0660 0.0640

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.1400 0.1360 0.1380 0.1400 0.1440 0.2480 0.2420 0.2300 0.2360 0.2300
500 0.3380 0.3360 0.3340 0.3360 0.3320 0.4400 0.4400 0.4440 0.4300 0.4360
1000 0.6060 0.6040 0.6240 0.6220 0.6220 0.7180 0.7260 0.7140 0.7180 0.7160
2000 0.8760 0.8760 0.8780 0.8740 0.8780 0.9440 0.9300 0.9320 0.9300 0.9280

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0940 0.0900 0.0900 0.0900 0.0880 0.1800 0.1740 0.1700 0.1680 0.1760
500 0.1880 0.1800 0.1800 0.1760 0.1780 0.2960 0.2960 0.3000 0.2980 0.3020
1000 0.3800 0.3940 0.3900 0.3840 0.3820 0.5520 0.5440 0.5480 0.5520 0.5480
2000 0.8340 0.8300 0.8280 0.8220 0.8300 0.9040 0.9040 0.9060 0.8980 0.9040

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (10) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 3. Observed size and power of the TE-based test for the bivariate ARCH process in Equation (11).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0660 0.0580 0.0620 0.0640 0.0620 0.1420 0.1280 0.1260 0.1340 0.1280
500 0.0640 0.0560 0.0560 0.0560 0.0580 0.1120 0.1060 0.1080 0.1020 0.1000
1000 0.0480 0.0460 0.0400 0.0420 0.0340 0.0740 0.0700 0.0700 0.0660 0.0620
2000 0.0220 0.0200 0.0080 0.0080 0.0080 0.0460 0.0500 0.0220 0.0260 0.0180

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0920 0.0760 0.0760 0.0720 0.0840 0.1540 0.1360 0.1280 0.1260 0.1320
500 0.1100 0.0900 0.0720 0.0760 0.0800 0.1980 0.1860 0.1620 0.1480 0.1600
1000 0.0920 0.0960 0.0740 0.0720 0.0800 0.1500 0.1500 0.1220 0.1180 0.1240
2000 0.0780 0.0740 0.0660 0.0620 0.0600 0.1260 0.1180 0.1140 0.1160 0.1120

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.2320 0.2240 0.2180 0.2240 0.2160 0.3320 0.3340 0.3320 0.3520 0.3460
500 0.3520 0.3420 0.3520 0.3540 0.3540 0.4800 0.4800 0.4740 0.4780 0.4780
1000 0.5020 0.5060 0.5120 0.5120 0.5000 0.6340 0.6320 0.6340 0.6280 0.6300
2000 0.6020 0.6060 0.5940 0.5920 0.5960 0.7340 0.7280 0.7360 0.7300 0.7280

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.2940 0.2880 0.3220 0.3180 0.3080 0.4360 0.4320 0.4380 0.4400 0.4340
500 0.5520 0.5500 0.5620 0.5720 0.5680 0.6880 0.6940 0.6880 0.6900 0.6920
1000 0.7720 0.7720 0.7820 0.7800 0.7740 0.8600 0.8560 0.8640 0.8600 0.8640
2000 0.9780 0.9720 0.9780 0.9740 0.9760 0.9900 0.9900 0.9920 0.9920 0.9920

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (11) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 4. Observed size and power of the TE-based test for the bilinear process in Equation (12).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0460 0.0420 0.0420 0.0420 0.0460 0.0820 0.0780 0.0900 0.0860 0.0900
500 0.0540 0.0480 0.0480 0.0500 0.0480 0.0980 0.0940 0.1040 0.1040 0.1040
1000 0.0440 0.0440 0.0440 0.0420 0.0500 0.1020 0.1020 0.1060 0.1000 0.1040
2000 0.0460 0.0480 0.0480 0.0480 0.0520 0.0940 0.0940 0.1000 0.1000 0.1020

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0440 0.0400 0.0460 0.0460 0.0460 0.0940 0.0860 0.0940 0.0900 0.0940
500 0.0500 0.0480 0.0440 0.0420 0.0420 0.0840 0.0880 0.0820 0.0820 0.0820
1000 0.0660 0.0620 0.0540 0.0520 0.0560 0.1220 0.1200 0.1180 0.1140 0.1100
2000 0.0360 0.0380 0.0400 0.0340 0.0360 0.0880 0.0920 0.1000 0.0980 0.0960

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.1800 0.1800 0.2040 0.2000 0.1960 0.3000 0.2900 0.3020 0.3000 0.3060
500 0.4620 0.4580 0.4680 0.4460 0.4640 0.5920 0.5940 0.6020 0.6060 0.6100
1000 0.7700 0.7800 0.7780 0.7820 0.7820 0.8620 0.8560 0.8640 0.8580 0.8600
2000 0.9780 0.9820 0.9800 0.9800 0.9780 0.9860 0.9880 0.9880 0.9880 0.9880

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.1440 0.1380 0.1540 0.1440 0.1460 0.2340 0.2320 0.2540 0.2420 0.2440
500 0.3240 0.3200 0.3320 0.3320 0.3320 0.4620 0.4680 0.4680 0.4700 0.4700
1000 0.6400 0.6360 0.6400 0.6240 0.6260 0.7520 0.7480 0.7460 0.7500 0.7460
2000 0.9620 0.9580 0.9620 0.9600 0.9640 0.9880 0.9900 0.9860 0.9900 0.9840

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (12) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.



Entropy 2017, 19, 372 15 of 38

Table 5. Observed size and power of the TE-based test for the AR(2)-GARCH process in Equation (13).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0600 0.0540 0.0840 0.0780 0.0740 0.1280 0.1280 0.1520 0.1500 0.1520
500 0.0580 0.0560 0.0740 0.0720 0.0700 0.1100 0.1060 0.1380 0.1320 0.1300
1000 0.0420 0.0480 0.0440 0.0540 0.0540 0.0900 0.0840 0.0920 0.0920 0.0900
2000 0.0480 0.0440 0.0320 0.0340 0.0320 0.0800 0.0800 0.0660 0.0680 0.0660

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0680 0.0620 0.0920 0.0880 0.0860 0.1280 0.1200 0.1440 0.1400 0.1340
500 0.0880 0.0880 0.1120 0.1060 0.1040 0.1400 0.1400 0.1480 0.1520 0.1520
1000 0.0600 0.0620 0.0660 0.0680 0.0680 0.1120 0.1140 0.1080 0.1160 0.1140
2000 0.0820 0.0800 0.0800 0.0840 0.0760 0.1380 0.1380 0.1360 0.1300 0.1300

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0860 0.0800 0.0860 0.0840 0.0840 0.1420 0.1460 0.1500 0.1440 0.1400
500 0.0980 0.0920 0.0980 0.0840 0.0920 0.1700 0.1700 0.1500 0.1480 0.1580
1000 0.0760 0.0800 0.0520 0.0540 0.0620 0.1500 0.1480 0.1220 0.1160 0.1080
2000 0.0540 0.0480 0.0280 0.0260 0.0260 0.1080 0.1200 0.0460 0.0460 0.0500

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.1120 0.1020 0.1320 0.1300 0.1360 0.1900 0.1860 0.2200 0.2120 0.2140
500 0.1540 0.1560 0.1740 0.1660 0.1680 0.2560 0.2480 0.2680 0.2640 0.2560
1000 0.2180 0.2100 0.2080 0.2000 0.2020 0.3080 0.3140 0.3020 0.2960 0.3020
2000 0.2740 0.2820 0.2540 0.2500 0.2560 0.3900 0.3900 0.3420 0.3460 0.3540

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (13) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 6. Observed size and power of the TE-based test for the ARMA-GARCH process in Equation (14).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0580 0.0480 0.0600 0.0560 0.0600 0.1080 0.0980 0.1160 0.1160 0.1080
500 0.0640 0.0640 0.0660 0.0640 0.0700 0.1060 0.0960 0.1120 0.1100 0.1080
1000 0.0540 0.0500 0.0460 0.0420 0.0440 0.0940 0.0980 0.0760 0.0800 0.0820
2000 0.0240 0.0260 0.0160 0.0180 0.0200 0.0660 0.0720 0.0280 0.0300 0.0280

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0540 0.0380 0.0780 0.0760 0.0700 0.1160 0.1000 0.1520 0.1480 0.1520
500 0.0900 0.0820 0.1020 0.1060 0.0940 0.1480 0.1240 0.1600 0.1520 0.1520
1000 0.0540 0.0580 0.0600 0.0620 0.0660 0.1220 0.1140 0.1220 0.1220 0.1260
2000 0.0620 0.0640 0.0640 0.0660 0.0680 0.1220 0.1220 0.1180 0.1140 0.1080

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.2680 0.2620 0.2560 0.2600 0.2640 0.3840 0.3820 0.3800 0.3720 0.3760
500 0.3540 0.3460 0.3540 0.3600 0.3580 0.4580 0.4500 0.4600 0.4640 0.4520
1000 0.3380 0.3420 0.3280 0.3240 0.3260 0.4200 0.4260 0.3880 0.3860 0.3900
2000 0.2740 0.2800 0.2300 0.2320 0.2320 0.3360 0.3380 0.2820 0.2820 0.2880

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.3860 0.3800 0.4140 0.4060 0.4100 0.5180 0.5000 0.5320 0.5260 0.5180
500 0.7260 0.7280 0.7220 0.7200 0.7180 0.8060 0.8020 0.8040 0.8000 0.7980
1000 0.8500 0.8440 0.8400 0.8380 0.8320 0.8780 0.8740 0.8700 0.8700 0.8700
2000 0.8900 0.8960 0.8860 0.8880 0.8900 0.9240 0.9200 0.9160 0.9160 0.9140

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (14) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 7. Observed size and power of the TE-based test for the AR(1)-EGARCH process in Equation (15).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0420 0.0420 0.0740 0.0740 0.0740 0.1000 0.0940 0.1560 0.1500 0.1480
500 0.0640 0.0520 0.0820 0.0860 0.0860 0.1040 0.0940 0.1460 0.1460 0.1460
1000 0.0400 0.0360 0.0460 0.0440 0.0480 0.0760 0.0740 0.0880 0.0880 0.0900
2000 0.0360 0.0400 0.0320 0.0380 0.0360 0.0680 0.0680 0.0520 0.0520 0.0580

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0540 0.0480 0.0860 0.0880 0.0860 0.1140 0.1060 0.1460 0.1440 0.1460
500 0.0900 0.0740 0.1020 0.1020 0.1020 0.1440 0.1340 0.1760 0.1660 0.1580
1000 0.0720 0.0640 0.0800 0.0800 0.0800 0.1240 0.1200 0.1380 0.1320 0.1340
2000 0.0660 0.0640 0.0680 0.0700 0.0720 0.1020 0.1080 0.1100 0.1100 0.1160

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.1660 0.1460 0.2200 0.2220 0.2280 0.2580 0.2520 0.3280 0.3280 0.3260
500 0.2500 0.2420 0.2940 0.2960 0.2960 0.3740 0.3720 0.4140 0.4080 0.4140
1000 0.2860 0.2860 0.3040 0.3100 0.3000 0.3840 0.3820 0.4000 0.4020 0.3960
2000 0.3180 0.3020 0.2900 0.2900 0.2900 0.3780 0.3840 0.3520 0.3440 0.3600

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.2160 0.2000 0.2740 0.2660 0.2640 0.3000 0.2880 0.3560 0.3580 0.3600
500 0.3660 0.3520 0.4040 0.4080 0.4020 0.4900 0.4720 0.5720 0.5600 0.5580
1000 0.6200 0.6020 0.6600 0.6520 0.6520 0.7280 0.7140 0.7420 0.7440 0.7460
2000 0.8300 0.8360 0.8460 0.8420 0.8380 0.8840 0.8820 0.8880 0.8860 0.8920

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (15) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 8. Observed size and power of the TE-based test for the VECM process in Equation (16).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0060 0.0060 0.0040 0.0040 0.0040 0.0220 0.0200 0.0220 0.0220 0.0200
500 0.0220 0.0220 0.0240 0.0240 0.0220 0.0460 0.0480 0.0500 0.0480 0.0560
1000 0.0400 0.0400 0.0400 0.0400 0.0420 0.0840 0.0860 0.0900 0.0840 0.0860
2000 0.0440 0.0420 0.0380 0.0360 0.0360 0.0800 0.0780 0.0820 0.0740 0.0700

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0080 0.0100 0.0100 0.0080 0.0100 0.0340 0.0300 0.0300 0.0280 0.0340
500 0.0240 0.0220 0.0220 0.0200 0.0240 0.0680 0.0660 0.0680 0.0680 0.0660
1000 0.0480 0.0420 0.0420 0.0440 0.0440 0.0860 0.0840 0.0840 0.0820 0.0880
2000 0.0200 0.0220 0.0200 0.0200 0.0220 0.0560 0.0540 0.0520 0.0560 0.0540

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.2540 0.2520 0.2600 0.2600 0.2640 0.3260 0.3300 0.3400 0.3380 0.3440
500 0.5140 0.5120 0.5220 0.5280 0.5120 0.6120 0.5920 0.5980 0.6060 0.6080
1000 0.7840 0.7840 0.7800 0.7840 0.7800 0.8340 0.8320 0.8420 0.8440 0.8420
2000 0.9240 0.9260 0.9280 0.9260 0.9280 0.9560 0.9560 0.9520 0.9540 0.9520

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.2500 0.2440 0.2500 0.2560 0.2480 0.3100 0.3000 0.3140 0.3160 0.3140
500 0.4600 0.4640 0.4680 0.4700 0.4740 0.5600 0.5560 0.5540 0.5600 0.5580
1000 0.7620 0.7660 0.7780 0.7680 0.7760 0.8220 0.8180 0.8240 0.8240 0.8280
2000 0.9520 0.9560 0.9560 0.9540 0.9520 0.9780 0.9700 0.9780 0.9780 0.9780

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (16) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 9. Observed size and power of the TE-based test for the threshold AR(1) process in Equation (17).

Size

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.0420 0.0360 0.0420 0.0360 0.0360 0.0780 0.0680 0.0720 0.0700 0.0720
500 0.0460 0.0420 0.0440 0.0460 0.0480 0.0880 0.0880 0.0860 0.0900 0.0940
1000 0.0380 0.0420 0.0420 0.0400 0.0360 0.0980 0.0900 0.0760 0.0840 0.0800
2000 0.0440 0.0480 0.0420 0.0400 0.0400 0.0860 0.0900 0.0780 0.0800 0.0780

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.0400 0.0400 0.0380 0.0400 0.0400 0.0800 0.0800 0.0920 0.0800 0.0860
500 0.0420 0.0380 0.0440 0.0560 0.0560 0.1080 0.1020 0.1020 0.1040 0.1060
1000 0.0480 0.0440 0.0440 0.0440 0.0500 0.1020 0.0980 0.0960 0.1080 0.1000
2000 0.0440 0.0460 0.0480 0.0440 0.0460 0.0940 0.0860 0.0840 0.0880 0.0920

Power

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.8520 0.8460 0.8200 0.8280 0.8120 0.9080 0.9120 0.8940 0.8960 0.8920
500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.3900 0.3740 0.3120 0.3160 0.3180 0.4980 0.5000 0.4420 0.4460 0.4440
500 0.9460 0.9440 0.9220 0.9240 0.9200 0.9760 0.9760 0.9600 0.9640 0.9660
1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Empirical size and power of the TE-based test at 5% and 10% significance levels for process Equation (17) for different resampling methods. The values represent observed rejection
rates over 500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter a = 0.4 for size evaluation and a = 0.1 for establishing powers. For this simulation
study, we consider C = 4.8 and C = 8.
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Table 10. Observed Power of the TE-based test for the two-Way VAR process in Equation (18).

X → Y

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.2780 0.2600 0.3540 0.3520 0.3560 0.3980 0.3760 0.4560 0.4560 0.4660
500 0.5640 0.5360 0.6260 0.6240 0.6260 0.6780 0.6680 0.7420 0.7400 0.7460
1000 0.8380 0.8320 0.8800 0.8740 0.8780 0.9040 0.8980 0.9200 0.9240 0.9200
2000 0.9900 0.9900 0.9980 0.9960 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.2480 0.2240 0.3080 0.3180 0.3100 0.3540 0.3360 0.3900 0.3940 0.3920
500 0.4180 0.4020 0.4740 0.4700 0.4700 0.5400 0.5320 0.5880 0.5920 0.5800
1000 0.7960 0.7840 0.8140 0.8140 0.8160 0.8560 0.8540 0.8740 0.8720 0.8720
2000 0.9800 0.9780 0.9820 0.9800 0.9800 0.9900 0.9880 0.9900 0.9900 0.9920

Y → X

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 4.8

200 0.5140 0.5060 0.5480 0.5560 0.5480 0.6120 0.5960 0.6920 0.6920 0.6940
500 0.9400 0.9340 0.9480 0.9440 0.9460 0.9620 0.9580 0.9720 0.9700 0.9740
1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

α = 0.05 α = 0.10

n TS.a TS.b SMB.a SMB.b STB TS.a TS.b SMB.a SMB.b STB

C = 8

200 0.4040 0.3700 0.4420 0.4400 0.4280 0.5060 0.4900 0.5400 0.5400 0.5320
500 0.8260 0.8220 0.8220 0.8200 0.8160 0.8740 0.8740 0.8700 0.8720 0.8680
1000 0.9820 0.9840 0.9820 0.9800 0.9800 0.9940 0.9940 0.9940 0.9920 0.9940
2000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note: Empirical power of the TE-based test at 5% and 10% significance levels for process Equation (18) for different resampling methods. The values represent observed rejection rates over
500 realizations for nominal size 0.05. Sample sizes go from 200 to 2000. The control parameter b = −0.2 and c = 0.1 for establishing powers. For this simulation study, we consider
C = 4.8 and C = 8.
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Figure 1. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The data generating process (DGP) is the bivariate VAR process in
Equation (9), with Y affecting X. The left (right) column shows observed rejection rates under the null
(alternative) hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 2. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bivariate non-linear VAR process in Equation (10),
with Y affecting X. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 3. Size-size and size-power plots of Granger non-causality tests, based on 500 replications and
smoothed local bootstrap (a). The DGP is the bivariate ARCH process in Equation (11), with Y affecting
X. The left (right) column shows observed rejection rates under the null (alternative) hypothesis.
The sample size varies from n = 200 to n = 2000.
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Figure 4. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bilinear process in Equation (12), with Y affecting
X. The left (right) column shows observed rejection rates under the null (alternative) hypothesis.
The sample size varies from n = 200 to n = 2000.
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Figure 5. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bivariate AR2-GARCH process in Equation (13),
with Y affecting X. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 6. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bivariate ARMA-GARCH process in Equation (14),
with Y affecting X. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 7. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bivariate AR1-EGARCH process in Equation (15),
with Y affecting X. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 8. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the VECM process in Equation (16), with Y affecting
X. The left (right) column shows observed rejection rates under the null (alternative) hypothesis.
The sample size varies from n = 200 to n = 2000.
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Figure 9. Size-size and size-power plots of Granger non-causality tests, based on 500 replications
and smoothed local bootstrap (a). The DGP is the bivariate threshold AR(1) process in Equation (17),
with Y affecting X. The left (right) column shows observed rejection rates under the null (alternative)
hypothesis. The sample size varies from n = 200 to n = 2000.
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Figure 10. Size-power plots of Granger non-causality tests, based on 500 replications and smoothed
local bootstrap (a). The DGP is the two-way VAR process in Equation (18), with X affecting Y and
Y affecting X. The left (right) column shows observed rejection rates for testing X (Y) causing Y (X).
The sample size varies from n = 200 to n = 2000.

4. Application

In this section, we apply the TE-based nonparametric test on detecting financial market
interdependence, in terms of both return and volatility. Diebold and Yilmaz [49] performed a
variance decomposition of the covariance matrix of the error terms from a reduced-form VAR model to
investigate the spillover effect in the global equity market. More recently, Gamba-Santamaria et al. [50]
extended the framework and considered the time-varying feature in global volatility spillovers. Their
research, although providing simple and intuitive methods for measuring directional linkages between
global stock markets, may suffer from the limitation of the linear parametric modeling, as discussed
above. We revisit the topic of spillovers in the global equity market by the nonparametric method.

For our analysis, we use daily nominal stock market indexes from January 1992 to March 2017,
obtained from Datastream, for six developed countries including the US (DJIA), Japan (Nikkei 225),
Hong Kong (Hangseng), the UK (FTSE 100), Germany (DAX 30) and France (CAC 40). The target
series are weekly return and volatility for each index. The weekly returns are calculated in terms of
diffferenced log prices multiplied by 100, from Friday to Friday. Where the price for Friday is not
available due to a public holiday, we use the Thursday price instead.
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The weekly volatility series are generated following [49] by making use of the weekly high, low,
opening and closing prices, obtained from the underlying daily high, low, opening and closing data.
The volatility σ2

t for week t is estimated as

σ̂t
2 = 0.511(Ht − Lt)2 − 0.019[(Ct −Ot)(Ht + Lt − 2Ot)− 2(Ht −Ot)(Lt −Ot)]− 0.383(Ct −Ot)2, (19)

where Ht is the Monday-Friday high, Lt is the Monday–Friday low, Ot is the Monday-Friday open
and Ct is the Monday-Friday close (in natural logarithms multiplied by 100). Futher, after deleting the
volatility estimates for the New Year week in 2002, 2008 and 2013 due to the lack of observations for
Nikkei 225 index, we have 1313 observations in total for weekly returns volatilities. The descriptive
statistics, Ljung Box (LB) test statistics and Augmented Dickey Fuller (ADF) test statistics for both
series are summarized in Table 11. From the ADF test results, it is clear that all time series are stationary
for further analysis (we also performed the Johansen cointegration test pair-wisely on the price levels
and no cointegration was found for the six market indexes.).

Table 11. Descriptive statistics for global stock market return and volatility.

Return

DJIA Nikkei Hangseng FTSE DAX CAC

Mean 0.1433 −0.0126 0.1294 0.0823 0.1535 0.0790
Median 0.2911 0.1472 0.2627 0.2121 0.4029 0.1984

Maximum 10.6977 11.4496 13.9169 12.5845 14.9421 12.4321
Minimum −20.0298 −27.8844 −19.9212 −23.6317 −24.3470 −25.0504
Std. Dev. 2.2321 3.0521 3.3819 2.3367 3.0972 2.9376
Skewness −0.8851 −0.6978 −0.3773 −0.8643 −0.6398 −0.6803
Kurtosis 10.8430 8.9250 5.9522 13.2777 7.9186 8.0780

LB Test 49.9368 ∗∗ 15.4577 28.7922 61.0916 ∗∗ 28.0474 43.5004 ∗∗

ADF Test −38.9512 ∗∗ −37.1989 ∗∗ −35.4160 ∗∗ −38.8850 ∗∗ −37.2015 ∗∗ −38.7114 ∗∗

Volatility

DJIA Nikkei Hangseng FTSE DAX CAC

Mean 4.5983 7.7167 9.6164 5.5306 8.5698 8.2629
Median 2.2155 4.6208 4.5827 2.7161 4.0596 4.7122

Maximum 208.2227 265.9300 379.4385 149.1572 175.0968 179.8414
Minimum 0.0636 0.1882 0.1554 0.1154 0.1263 0.2904
Std. Dev. 9.9961 13.5154 21.3838 10.1167 15.2845 12.7872
Skewness 10.9980 9.6361 10.2868 6.7179 5.3602 6.0357
Kurtosis 180.0844 140.7606 152.4263 67.0128 42.0810 58.3263

LB Test 1924.0870 ∗∗ 933.3972 ∗∗ 1198.6872 ∗∗ 1970.7366 ∗∗ 2770.5973 ∗∗ 1982.4141 ∗∗

ADF Test −16.0378 ∗∗ −17.9044 ∗∗ −17.4896 ∗∗ −14.0329 ∗∗ −14.1928 ∗∗ −13.6136 ∗∗

Note: Descriptive statistics for six globally leading indexes. The sample size is 1313 for both Returns and Volatilities.
The nominal returns are measured by weekly Friday-to-Friday log price difference multiplied by 100 and the
Monday-to-Friday volatilities are calculated following [49]. For the LB test and the ADF test statistics, the asterisks
indicate the significance of the corresponding p-value at 1% (∗∗) levels.

We firstly provide a full-sample analysis of global stock market return and volatility spillovers
over the period from January 1992 to March 2017, summarized in Tables 12 and 13. The two tables
report the pairwise test statistics for conditional independence between index X and index Y, given the
constant C in the bandwidth for kernel estimation is 4.8 or 8 and 999 resampling time series. In other
words, we test for the absence of the one-week-ahead directional linkage from index X to Y by using
the five resampling methods described in Section 2. For example, the first line in the top panel in
Table 12 reports the one-week-ahead influence of DJIA returns upon other indexes by using the first
time-shifted surrogates method (TS.a). Given C = 8, DJIA return is shown to be a strong Granger
cause for Nikkei, FTSE and CAC at the 1% level, and for DAX at the 5% level.
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Table 12. Detection of Conditional Dependence in Global Stock Returns.

From
To DJIA Nikkei Hangseng FTSE DAX CAC

C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8

TS.a

DJIA - 0.367 0.002 ∗∗ 0.972 0.273 0.609 0.009 ∗∗ 0.533 0.012 ∗ 0.277 0.001 ∗∗

Nikkei 0.231 0.081 - 0.997 0.951 0.883 0.059 0.868 0.242 0.004 ∗∗ 0.001 ∗∗

Hangseng 0.898 0.197 0.963 0.407 - 0.701 0.035 ∗ 0.969 0.174 0.640 0.005 ∗∗

FTSE 0.483 0.004 ∗∗ 0.004 ∗∗ 0.001 ∗∗ 0.419 0.001 ∗∗ - 0.839 0.185 0.917 0.615
DAX 0.977 0.149 0.027 ∗ 0.001 ∗∗ 0.009 ∗∗ 0.001 ∗∗ 0.004 ∗∗ 0.001 ∗∗ - 0.695 0.025 ∗

CAC 0.995 0.713 0.001 ∗∗ 0.001 ∗∗ 0.294 0.001 ∗∗ 0.918 0.741 0.639 0.203 -

TS.b

DJIA - 0.402 0.004 ∗∗ 0.967 0.341 0.595 0.020 ∗ 0.569 0.049 ∗ 0.288 0.012 ∗

Nikkei 0.219 0.110 - 0.999 0.956 0.853 0.103 0.855 0.255 0.009 ∗∗ 0.006 ∗∗

Hangseng 0.899 0.269 0.975 0.485 - 0.696 0.088 0.971 0.231 0.664 0.023 ∗

FTSE 0.477 0.016 ∗ 0.006 ∗∗ 0.003 ∗∗ 0.404 0.018 ∗ - 0.847 0.245 0.896 0.642
DAX 0.976 0.221 0.027 ∗ 0.002 ∗∗ 0.009 ∗∗ 0.005 ∗∗ 0.011 ∗ 0.010 ∗∗ - 0.692 0.065
CAC 0.993 0.729 0.002 ∗∗ 0.002 ∗∗ 0.346 0.016 ∗ 0.907 0.763 0.650 0.244 -

SMB.a

DJIA - 0.564 0.001 ∗∗ 0.999 0.349 0.796 0.003 ∗∗ 0.817 0.014 ∗ 0.425 0.001 ∗∗

Nikkei 0.321 0.147 - 0.988 0.946 0.957 0.085 0.944 0.321 0.006 ∗∗ 0.002 ∗∗

Hangseng 0.946 0.273 0.967 0.483 - 0.860 0.016 ∗ 0.994 0.188 0.793 0.004 ∗∗

FTSE 0.579 0.005 ∗∗ 0.021 ∗ 0.001 ∗∗ 0.701 0.003 ∗∗ - 0.947 0.297 0.943 0.739
DAX 0.988 0.240 0.044 ∗ 0.001 ∗∗ 0.012 ∗ 0.001 ∗∗ 0.006 ∗∗ 0.001 ∗∗ - 0.788 0.020 ∗

CAC 0.993 0.762 0.006 ∗∗ 0.001 ∗∗ 0.594 0.001 ∗∗ 0.946 0.861 0.842 0.270 -

SMB.b

DJIA - 0.583 0.002 ∗∗ 0.994 0.334 0.797 0.001 ∗∗ 0.855 0.014 ∗ 0.413 0.001 ∗∗

Nikkei 0.351 0.155 - 0.992 0.940 0.952 0.088 0.965 0.322 0.002 ∗∗ 0.003 ∗∗

Hangseng 0.945 0.276 0.970 0.506 - 0.866 0.015 ∗ 0.997 0.215 0.829 0.004 ∗∗

FTSE 0.637 0.006 ∗∗ 0.008 ∗∗ 0.001 ∗∗ 0.714 0.003 ∗∗ - 0.954 0.345 0.953 0.789
DAX 0.980 0.256 0.034 ∗ 0.001 ∗∗ 0.011 ∗ 0.001 ∗∗ 0.009 ∗∗ 0.001 ∗∗ - 0.831 0.042 ∗

CAC 0.993 0.825 0.003 ∗∗ 0.001 ∗∗ 0.591 0.002 ∗∗ 0.980 0.898 0.862 0.304 -

STB

DJIA - 0.645 0.001 ∗∗ 0.996 0.334 0.787 0.002 ∗∗ 0.823 0.015 ∗ 0.430 0.001 ∗∗

Nikkei 0.363 0.114 - 0.989 0.944 0.946 0.079 0.955 0.296 0.003 ∗∗ 0.002 ∗∗

Hangseng 0.964 0.272 0.984 0.491 - 0.859 0.013 ∗ 0.987 0.197 0.786 0.004 ∗∗

FTSE 0.652 0.005 ∗∗ 0.016 ∗ 0.001 ∗∗ 0.688 0.003 ∗∗ - 0.940 0.262 0.965 0.761
DAX 0.982 0.234 0.048 ∗ 0.001 ∗∗ 0.017 ∗ 0.001 ∗∗ 0.006 ∗∗ 0.001 ∗∗ - 0.828 0.029 ∗

CAC 0.996 0.814 0.007 ∗∗ 0.001 ∗∗ 0.578 0.001 ∗∗ 0.967 0.835 0.799 0.265 -

Note: Statistics for pairwise TE-based test on returns of global stock-indexes for one-week ahead conditional non-independence. The results are shown both for the five different resampling
methods in Section 2.3. The constant C takes value 4.8 and 8 for robustness-check. The asterisks indicate the significance of the corresponding p-value, at the 5% (∗) and 1% (∗∗) levels.
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Table 13. Detection of Conditional Dependence in Global Stock Volatilities.

From
To DJIA Nikkei Hangseng FTSE DAX CAC

C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8 C = 4.8 C = 8

TS.a

DJIA - 0.997 0.998 0.998 0.994 0.974 0.853 0.828 0.001 ∗∗ 0.005 ∗∗ 0.001 ∗∗

Nikkei 0.998 0.995 - 0.996 1.000 0.997 0.994 0.971 0.950 1.000 0.999
Hangseng 0.943 0.003 ∗∗ 0.989 0.992 - 0.822 0.001 ∗∗ 0.001 ∗∗ 0.001 ∗∗ 0.973 0.953

FTSE 0.010 ∗∗ 0.001 ∗∗ 0.955 0.944 0.997 1.000 - 0.806 0.001 ∗∗ 0.985 0.946
DAX 0.975 0.931 0.934 0.898 0.999 0.995 0.001 ∗∗ 0.001 ∗∗ - 0.072 0.001 ∗∗

CAC 0.996 0.944 0.988 0.987 0.999 0.997 0.003 ∗∗ 0.001 ∗∗ 0.054 0.001 ∗∗ -

TS.b

DJIA - 0.993 0.994 0.996 0.992 0.958 0.857 0.806 0.010 ∗∗ 0.018 ∗ 0.005 ∗∗

Nikkei 0.986 0.994 - 0.996 0.997 0.988 0.988 0.942 0.926 0.998 0.996
Hangseng 0.919 0.011 ∗ 0.976 0.966 - 0.819 0.002 ∗∗ 0.001 ∗∗ 0.001 ∗∗ 0.965 0.941

FTSE 0.019 ∗ 0.003 ∗∗ 0.950 0.927 0.994 0.997 - 0.785 0.002 ∗∗ 0.982 0.932
DAX 0.976 0.904 0.943 0.890 0.997 0.999 0.001 ∗∗ 0.001 ∗∗ - 0.113 0.009 ∗∗

CAC 0.998 0.951 0.979 0.983 0.999 0.998 0.009 ∗∗ 0.002 ∗∗ 0.077 0.003 ∗∗ -

SMB.a

DJIA - 0.823 0.786 0.984 0.968 0.468 0.189 0.210 0.004 ∗∗ 0.027 ∗ 0.002 ∗∗

Nikkei 0.957 0.941 - 1.000 1.000 0.843 0.800 0.743 0.614 0.998 0.993
Hangseng 0.458 0.030 ∗ 0.888 0.808 - 0.165 0.007 ∗∗ 0.001 ∗∗ 0.001 ∗∗ 0.839 0.736

FTSE 0.034 ∗ 0.001 ∗∗ 0.557 0.417 1.000 1.000 - 0.358 0.001 ∗∗ 0.967 0.793
DAX 0.702 0.255 0.448 0.327 1.000 1.000 0.001 ∗∗ 0.001 ∗∗ - 0.030 ∗ 0.001 ∗∗

CAC 0.887 0.241 0.673 0.643 1.000 1.000 0.005 ∗∗ 0.001 ∗∗ 0.012 ∗ 0.001 ∗∗ -

SMB.b

DJIA - 0.851 0.806 0.973 0.969 0.563 0.269 0.226 0.004 ∗∗ 0.032 ∗ 0.001 ∗∗

Nikkei 0.950 0.940 - 1.000 1.000 0.888 0.849 0.792 0.675 0.999 0.993
Hangseng 0.451 0.022 ∗ 0.919 0.869 - 0.209 0.005 ∗∗ 0.002 ∗∗ 0.001 ∗∗ 0.868 0.793

FTSE 0.023 ∗ 0.001 ∗∗ 0.561 0.457 1.000 1.000 - 0.434 0.001 ∗∗ 0.974 0.840
DAX 0.819 0.442 0.491 0.356 1.000 1.000 0.001 ∗∗ 0.001 ∗∗ - 0.030 ∗ 0.001 ∗∗

CAC 0.958 0.554 0.781 0.696 1.000 1.000 0.009 ∗∗ 0.001 ∗∗ 0.014 ∗ 0.001 ∗∗ -

STB

DJIA - 0.847 0.813 0.972 0.964 0.602 0.278 0.221 0.009 ∗∗ 0.045 ∗ 0.004 ∗∗

Nikkei 0.967 0.956 - 1.000 1.000 0.835 0.789 0.777 0.624 0.998 0.997
Hangseng 0.527 0.033 ∗ 0.933 0.887 - 0.222 0.010 ∗∗ 0.003 ∗∗ 0.001 ∗∗ 0.860 0.762

FTSE 0.024 ∗ 0.002 ∗∗ 0.635 0.497 1.000 1.000 - 0.405 0.001 ∗∗ 0.977 0.826
DAX 0.795 0.392 0.561 0.410 1.000 1.000 0.004 ∗∗ 0.001 ∗∗ - 0.027 ∗ 0.001 ∗∗

CAC 0.903 0.561 0.809 0.748 1.000 1.000 0.020 ∗ 0.001 ∗∗ 0.010 ∗∗ 0.001 ∗∗ -

Note: Statistics for pairwise TE-based test on volatilities of global stock-indexes for one-week ahead conditional non-independence. The results are shown both for the five different
resampling methods in Section 2.3. The constant C takes value 4.8 and 8 for robustness-check. The asterisks indicate the significance of the corresponding p-values at the 5% (∗) and 1%
(∗∗) levels.
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Based on Tables 12 and 13, we may draw several conclusions. Firstly, the US index and German
index are the most important return transmitters and Hong Kong is the largest source for volatility
spillover, judged by the numbers of significant linkages. Note that this finding is similar as the
result in [49], where the total return (volatility) spillovers from US (Hong Kong) to others are found
to be much higher than from any other country. Figure 11 provides a graphical illustration of the
global spillover network based on the result of (SMB.a) from Tables 12 and 13. Apart from the main
transmitters, we can clearly see that Nikkei and CAC are the main receivers in the global return
spillover network, while DAX is the main receiver of global volatility transmission.

Secondly, the result obtained is very robust, no matter which re-sampling method is applied.
Although the differences between the five resampling methods are small, (TS.a) is seen to be slightly
more powerful than (TS.b) in Table 12. The three different bootstrap methods are very consistent
almost all the time, similarly to what we observed in Section 3.

DJIA

Nikkei

Hangseng

FTSE

DAX

CAC

(a) Network of Global Stock Return Spillover

DJIA

Nikkei

Hangseng

FTSE

DAX

CAC

(b) Network of Global Stock Volatility Spillover

Figure 11. Graphical representation of pairwise causalities on global stock returns and volatilities.
All ”−→” in the graph indicate a significant directional causality at the 5% level.

However, the summary results in Tables 12 and 13 are static in the sense that they do not take into
account possible time-variation. The statistics are measurements for averaged-out directional linkages
over the whole period from 1992 to 2017. The conditional dependence structure of the time series,
at any point in time, can be very different. Hence, the full-sample analysis is very likely to oversee
the cyclical dynamics between each pair of stock indices. To investigate the dynamics in the global
stock market, we now move from the full-sample analysis to a rolling-window study. Considering
a 200-week rolling window starting from the beginning of the sample and admitting a 5-week forward
step for the iterative evaluation of the conditional dependence, we can assess the variation of the
spillover in the global equity market over time.

Taking the return series of the DJIA as an illustration, we iteratively exploit the local smoothed
bootstrap method for detecting Granger causality from and to the DJIA return in Figure 12 (all volatility
series are extremely skewed, see Table 11. In a small sample analysis, the test statistics turn out to
be sensitive to the clustering outliers, which typically occur during the market turmoil. As a result,
the volatility dynamics are more radical and less informative than that of returns). The red line
represents the p-values for the TE-based test on DJIA weekly return as the information transmitter
while the blue line shows the p-values associated with testing on DJIA as a receiver of information
spillover on a weekly basis from others. The plots displays an event-dependent pattern, particularly
for the recent financial crisis; from early 2009 until the end of 2012, all pairwise tests show the presence
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of a strong bi-directional linkage. Besides, the DJIA is strongly leading the Nikkei, Hangseng and CAC
during the first decade of this century.
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Figure 11. The time-varying p-values for the TE-based Granger causality test in Return series are
presented. The causal linkages from DJIA to other markets, as well as the linkages from other markets
to DJIA are tested.

Figure 12. Time-varying p-values for the TE-based Granger causality test in Return series. The causal
linkages from DJIA to other markets, as well as the linkages from other markets to DJIA are tested.

Further, we see that the influence from other indices to the DJIA are different, typically responding
to economics events. For example, the blue line in the second panel of Figure 12 plunges below the
5% level twice before the recent financial crisis, meaning that the Hong Kong Hangseng index causes
fluctuations in the DJIA during those two periods; first in the late 90’s and again by the end of 2004.
The timing of the first fall matches the 1997 Asian currency crisis and the latter one was in fact caused
by China’s austerity policy in October 2004.

Finally, the dynamic plots provide additional insights into the sample period that the full sample
analysis may omit. The DAX and CAC are found to be less relevant for future fluctuations in the
weekly return of the DJIA, according to Table 12 and Figure 11. However, one can clearly see that since
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2001, the p-values for DAX→DJIA and CAC→DJIA are consistently below 5% for most of the time,
suggesting an increase of the integration of global financial markets.

5. Conclusions

This paper provides guidelines for the practical application of TE in detecting conditional
dependence, i.e., Granger causality in a more general sense, between two time series. Although
there already is a tremendous literature that tried to apply the TE in this context, the asymptotics
of the statistic and the performance of the resampling-based measures are still not understood well.
We have considered tests based on five different resampling methods, all of which were shown in the
literature to be suitable for entropy-related tests, and investigated the size and power of the associated
tests numerically. Two time-shifted surrogates and three smoothed bootstrap methods are tested
on simulated data from several processes. The simulation results in this controlled environment
suggest that all five measures achieve reasonable rejection rates under the null as well as the alternative
hypotheses. Our results are very robust with respect to the density estimation method, including the
procedure used for standardizing the location and scale of the data and the choice of the bandwidth
parameter, as long as the convergence rate of the kernel estimator of TE is consistent with its first order
Taylor expansion.

In the empirical application, we have shown how the proposed resampling techniques can be
used on real world data for detecting conditional dependence in the data set. We use global equity data
to carry out the detection in pairwise causalities in the return and volatility series among the world
leading stock indexes. Our work can be viewed as a nonparametric extension of the spillover measures
considered by Diebold and Yilmaz [49]. In accordance with them, we found evidence that the DJIA and
the DAX are the most important return transmitters and Hong Kong is the largest source for volatility
spillover. Furthermore, the rolling window-based test for Granger causality in pairwise return series
demonstrated that the causal linkages in the global equity market are time-varying rather than static.
The overall dependence is more tight during the most recent financial crisis, and the fluctuations of the
p-values are shown to be event dependent.

As for future work, there are several directions for potential extensions. On the theoretical side,
it would be practically meaningful to consider causal linkage detection beyond the single period lag
and to deal with the infinite order issue in a nonparametric setting. Further nonparametric techniques
need to be developed to play a similar role as the information criterion does for order selection of an
estimation model in the parametric world. On the empirical side, it will be interesting to further exploit
entropy-based statistics in testing conditional dependence when there exists a so-called common factor,
i.e., looking at multivariate systems with more than two variables. One potential candidate for this
type of test in the partial TE has been coined by Vakorin et al. [51], but its statistical properties still
need to be thoroughly studied yet.
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