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Abstract: Jüttner used the conventional theory of relativistic statistical mechanics to calculate the
energy of a relativistic ideal gas in 1911. An alternative derivation of the energy of a relativistic
ideal gas was published by Horwitz, Schieve and Piron in 1981 within the context of parametrized
relativistic statistical mechanics. The resulting energy in the ultrarelativistic regime differs from
Jüttner’s result. We review the derivations of energy and identify physical regimes for testing the
validity of the two theories in accelerator physics and cosmology.
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1. Introduction

The mass-energy density of the stress-energy tensor becomes theory dependent when the
temperature of an ideal gas is sufficiently high. Jüttner [1–3] used the conventional theory of relativistic
statistical mechanics (RSM) to calculate the energy of a relativistic ideal gas. Horwitz, Schieve and
Piron [4] showed that the energy of an ideal gas in the ultrarelativistic (UR) regime of parametrized
relativistic statistical mechanics (PRSM) is different from the energy calculated by Jüttner [1]. The energy
difference is due to the difference in partition functions used by the two theories and may have
measurable consequences.

Fanchi [5,6] proposed a test using the energy difference by combining an expression for the energy
calculated by Horwitz et al. [4] with a cosmological model that is consistent with the parametrized
theory. The test showed that the calculation of the Friedmann scale factor depends on the choice of
energy in the ultrarelativistic (UR) regime, but the test was not definitive because of uncertainties
associated with important cosmological factors. The uncertainties of the values of the cosmological
factors have been reduced since 1988. Furthermore, the capabilities of accelerator facilities have
increased significantly and provided another venue for testing the choice of energy in the UR regime.

The purpose of this paper is to review the energy derivations and show that the energy difference
between PRSM and RSM may have measurable consequences. We begin the comparative analysis
by showing that the calculation of energy for a relativistic ideal gas depends on the theory used
by comparing Jüttner’s [1] calculation with the Horwitz et al. [4] calculation. We then discuss the
implications in accelerator physics and cosmology.

2. Jüttner Energy Calculation

We begin by summarizing Jüttner’s [1] calculation of energy for a relativistic ideal gas
using the approach presented by Pauli [2] and Greiner et al. [3]. The canonical variables of N
identical, non-interacting relativistic particles are {q1, . . . , qN , p1, . . . , pN} where qi, pi are the canonical
coordinates and canonical momenta of particle i. The total energy E of each particle is
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E = m0c2

[
1 +

1
m2

0c2

(
p2
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y + p2

z

)] 1
2

(1)

where m0c2 is rest mass energy. The Hamiltonian is a function of the 2-N canonical variables. In our
case, the Hamiltonian H is the sum of kinetic energies

H =
N

∑
i=1

m0c2


[

1 +
1

m2
0c2

(
p2

xi + p2
yi + p2

zi

)] 1
2

− 1

 (2)

Rest mass energy m0c2 has been subtracted from the total energy E of each particle.
The partition function Z(T, V, 1) of a single particle is

Z(T, V, 1) =
1
h3

J

∫ ∫
exp
(
−E−m0c2

kBT

)
d3qid3 pi (3)

where kB is Boltzmann’s constant
(
1.38× 10−23 J/◦K

)
, T is absolute temperature, and hJ is a constant

with dimension length times momentum so that Z(T, V, 1) is dimensionless. Integrating over the
canonical coordinates gives the volume V =

∫
d3q of the gas so that

Z(T, V, 1) =
1
h3

J
exp
(

m0c2

kBT

)[
V
∫

exp
(
− E

kBT

)
d3 p
]

(4)

The total partition function for the N identical, non-interacting relativistic particles is

Z =
Z(T, V, 1)N

N!
(5)

where N! accounts for the degeneracy of states associated with N identical particles. Given the total
partition function, we can calculate thermodynamic properties. The Helmholtz free energy is

F = −kBTlnZ = − lnZ
β

, β = kBT (6)

Entropy S and internal energy E are calculated from F as

S = −
[

∂F
∂T

]
N,V

(7)

and
E = F + TS (8)

Jüttner [1] showed that

EJ =
N
β

[
1− iσ

H′(1)2 (iσ)

H(1)
2 (iσ)

]
(9)

where

β = kBT and σ =
m0c2

kBT
(10)

for the system of N identical, non-interacting relativistic particles. The function H(i)
n is the n-th order

Hankel function of the i-th kind [7,8], and the prime in H′(1)2 denotes differentiation with respect to
the argument of the Hankel function. A more modern discussion of Jüttner’s calculation is given by
Pauli [2] (pages 139–141).
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3. Parametrized Statistical Mechanics

An alternative to Jüttner’s calculation of energy for a relativistic ideal gas was published by
Horwitz et al. [4] (see also [9,10]). An understanding of the Horwitz et al. [4] calculation depends on a
familiarity with parametrized statistical mechanics.

The concepts of statistical mechanics may be applied to an N-body system of particles if N is
sufficiently large to be statistically significant. Furthermore, it is sufficient for our purposes to assume that
the number of particles N is conserved. This means that annihilation and creation processes do not play
a significant role in the present analysis. Parametrized Hamilton’s equations for this N-body system are

dqµ
i

ds
=

∂K
∂piµ

,
dpµ

i
ds

= − ∂K
∂qiµ

. (11)

where we assume } = c = 1 and K is the parametrized Hamiltonian. In general, a parametrized
Hamiltonian K = K0 + KI depends on a non-interaction term K0 plus an interaction term KI . The term
K0 for N free particles with mass {Mi, i = 1, . . . , N}may be written as

K0 =
N

∑
i=1

piµ pµi
2Mi

. (12)

Substituting Equation (12) into Equation (11) gives Hamilton’s equations for the free particle system:

dqµ
i

ds
=

pµ
i

Mi
,

dpµ
i

ds
= 0. (13)

Integrating the equations of motion gives

qµi = (q0)
µ
i +

pµi
Mi

s (14)

where {q0} denotes the set of initial space-time positions. Calibrating our clocks so that (q0)
0
i = 0 lets

us calculate the relationship between the temporal coordinate (qµ with µ = 0) and the parameter s as

q0
i

Mi

p0
i
= s = t

Mi
ωi

(15)

where we have replaced q0
i and p0

i with the coordinate time t and energy ωi respectively. We have
assumed that all of the particle clocks are calibrated and run at the same rate, thus all temporal
coordinates

{
q0

i
}

are replaced with a single coordinate time s.
For particle mass and energy fixed, as they are for the system under study, the differential of

Equation (15) is

ds =
Mi
ωi

dt. (16)

Using Equation (16) in Equation (13) for the spatial components gives the expected result

d
→
q i

dt
=

→
p i
ωi

. (17)

3.1. Relativistic Ideal Gas

According to statistical mechanics, the state of a classical mechanical system is characterized by
its trajectory in phase space. An ensemble is the collection of all states of the microscopic (or particle)
system which is consistent with the constraints imposed on the macroscopic system. The primary
assumption of statistical mechanics is that the observed value of a property should correspond to
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its ensemble average. A Gibbs ensemble is a set of independent, classical relativistic systems. Using
these ideas, we derive the macroscopic thermodynamic relation governing the behavior of a relativistic
ideal gas.

The forces between particles in an ideal gas should be sufficiently weak that the relation

pµi piµ ≈ M2
i (18)

holds for each particle. Particle rest masses do not change under this assumption. If we further assume
that the system of N-particles is an isolated system, then it may be viewed from a statistical mechanical
perspective as a microcanonical ensemble and should obey an ideal gas law, as we now show.

3.2. Microcanonical Ensemble

A microcanonical ensemble is characterized by specifying two microscopic constraints, such as
fixed total energy and size. We take the phase space for the microcanonical ensemble of PRCM to be

Γ(κ,ω) =
∫
δ(K− κ)δ

(
N

∑
i=1

p0
i −ω

)
dµp dµq (19)

where the measures are defined as

dµp = d4 p1 . . . d4 pN , dµq = d4q1 . . . d4qN (20)

Both K and ∑i p0
i are constants of the motion, i.e., their derivatives with respect to s vanish.

Given a phase space integral, we define entropy in the usual way as

S(κ,ω) = kB `nΓ(κ,ω) (21)

where kB is Boltzmann’s constant. The constraint

N

∑
i=1

p0
i = ω (22)

with ω, a constant is needed so that temperature T can have the usual definition

1
T
≡ ∂ S(κ, ω)

∂ ω
. (23)

Elements of the microcanonical ensemble are uniformly distributed around

mi ≡
[ (

p0
i

)2
−→p i ·

→
p i

] 1
2

(24)

where mi ≈ Mi by Equation (18). The space-time four-volume is limited to a finite volume of space
V over a finite duration Y. Recalling that K ≈ K0 since K0 >> KI for an ideal gas, we neglect the
interaction potential KI and evaluate the phase space integral over the space-time coordinates to get

Γ(κ,ω) ≈ VN f (κ,ω) (25)

where

f (κ,ω) ≡ YN
∫
δ(K0 − κ)δ

(
N

∑
i=1

p0
i −ω

)
dµp. (26)
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3.3. Ideal Gas Law

The macroscopic thermodynamic quantities entropy and temperature are calculated from
Equations (21) and (23). The results are

S = kB `nVN + kB `n f (κ,ω) (27)

and
1
T

=
kB

f (κ, ω)

∂ f (κ, ω)

∂ ω
. (28)

The energy derivative in Equation (28) is obtained by taking the implicit derivative of entropy S
with respect to volume V for S constant. Taking the derivative gives

∂ S
∂ V

∣∣∣∣
S
= 0 =

N kB
V

+
kB

f (κ, ω)

[
∂ f (κ, ω)

∂ ω

∂ ω

∂ V

]
S

(29)

Defining pressure P in the usual way as

P ≡ − ∂ ω

∂ V

∣∣∣∣
S

(30)

lets us rewrite Equation (29) in the form

0 =
NkB

V
− P

T
(31)

or
PV = NkBT. (32)

Equation (32) is the expected result that the ideal gas law applies to an isolated, weakly interacting
relativistic gas.

4. Horwitz et al., Calculation of the Energy of an Ideal Gas

The system studied above was an isolated system and was represented as a microcanonical
ensemble with two macroscopic constraints. The energy of a relativistic ideal gas is obtained by
working with a canonical ensemble.

4.1. Canonical Ensemble

In this case, we are physically allowing one system to be in communication with another system.
We continue to work with N particles, but the N particles are partitioned into two subsystems. We let
the experimental subsystem with Ne particles exchange heat in the form of kinetic energy with the much
larger “heat reservoir” subsystem containing Nr = N−Ne >> Ne particles. Assuming the interactions
between particles are dominated by short-range forces, we can decompose the Hamiltonian into

K ≈ Ke + Kr. (33)

The equilibrium configuration of all particles is uniform in phase space, so the constraints of the
experimental subsystem must be the same as the reservoir of Nr particles. The phase space integral for
the microcanonical ensemble becomes

Γ (ω, M) =
∫

δ(Ke − κe)δ(Kr − κr)δ(ωr + ωe −ω)

×d4 p1 . . . d4 pNe d4q1 . . . d4qNe

×d4 pNe+1 . . . d4 pNd4qNe+1 . . . d4qN

(34)
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where

ωe =
Ne

∑
i=1
ωi,ωr =

N=Ne+Nr

∑
i=Ne+1

ωi. (35)

Writing
Γr(ω−ωe, κr) =

∫
δ (Kr − κr)δ(ωr − (ω−ωe))

×d4 pNe+1 . . . d4 pNd4qNe+1 . . . d4qN
(36)

for the phase space integral of the experimental subsystem lets us simplify Equation (34). The result is

Γ(ω, κ) =
∫

δ (Ke − κe) Γr(ω−ωe, κr)

×d4 p1 . . . d4 pNe d4q1 . . . d4qNe

(37)

Introducing an integral over the Dirac delta function δ(ωe −ω′) gives

Γ(ω, κ) =
∫ ∫

δ(Ke − κe)δ(ωe −ω′) Γr(ω−ω′, κr)

×d4 p1 . . . d4 pNe d4q1 . . . d4qNe dω′
(38)

or
Γ(ω, κ) =

∫
Γe
(
ω′, κe

)
Γr
(
ω−ω′, κr

)
dω′ (39)

where
Γe(ω′, κe) =

∫
δ(Ke − κe)δ(ωe −ω′)
×d4 p1 . . . d4 pNe d4q1 . . . d4qNe .

(40)

Following the usual statistical arguments, we assume the existence of an energy ω∗ that dominates
the integral over ω′ in a bimodal distribution such that

S = kB `nΓ(ω, κ) ≈ kB `nΓe(ω
∗, κe) + kB `nΓr(ω−ω∗, κr). (41)

Equation (41) implies the additivity of entropy

S = Se + Sr, (42)

and the existence of a maximum ω∗ implies the equality of temperature for each subsystem:

1
T

=
∂Se

∂ω′
|ω′=ω∗ =

∂Sr

∂ω′
|ω′=ω−ω∗ . (43)

Expressing entropy in terms of the phase space integral lets us write

∂ `nΓr

∂ω′
|ω′=ω−ω∗ =

1
kBT

≡ β. (44)

If temperature changes slowly with respect to ω′ in the region near ω′ = ω−ω∗, we have

Γr(ω−ωe, κr) ≈ eβω
′
= eβωe−βωe . (45)

Substituting Equation (45) into Equation (37) gives

Γ(ω, κ) = eβω
∫
δ(Ke − κe)e−βωe · d4 p1 . . . d4 pNe d4q1 . . . d4qNe . (46)

4.2. Energy Calculation

Let us consider a gas of non-interacting, identical particles. The normalized distribution for
the canonical ensemble is proportional to the integrand of Equation (46) with the proportionality
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constant determined by probability conservation. The resulting distribution of non-interacting identical
particles is

D(p, q) = δ(K− κ) e−βω

QN(V(4), T, κ)
(47)

where we have dropped the subscript e, V(4) is the space-time four-volume, and the partition function
QN is

QN

(
V(4), T, κ

)
≡
∫

δ(K− κ)e−βω dµpdµq

h4N
H N!

. (48)

The measures in Equation (48) are given by (20), and N! accounts for the degeneracy of states
associated with N identical particles. Following Horwitz [10] (page 181), we have inserted a constant
h4N

H in the denominator of Equation (48). The constant hH has dimension momentum times length and
makes the partition function QN dimensionless. Equation (48) is the starting point for our calculation
of the energy of the relativistic ideal gas.

The partition function may be simplified by recognizing that Mi = M0 where M0 is the particle
rest mass for our system of identical particles. The resulting partition function is

QN

(
V(4), T, κ

)
= 1

h4N
H N!

∫
δ

[
N
∑

i=1

(
p2

0i
2M0
−
→
p i ·
→
p i

2M0

)
− κ

]
×e
−β

N
∑

i=1
ωi

dµpdµq.

(49)

Integrating over the space-time coordinates gives

QN

(
V(4), T, κ

)
=

(V(4))
N

h4N
H N!

∫ m1 dm1(→
p 1·
→
p 1+m2

1

)1/2 . . . mN dmN(→
p N ·

→
p N+m2

N

)1/2

×2M0δ

(
N
∑

i=1
m2

i − NM2
0

)
e
−β

N
∑

i=1
(
→
p i ·
→
p i+m2

i )
1/2

d3 p1 . . . d3 pN .

(50)

where the relations
p0 =

(→
p ·→p + m2

)1/2

, dp0 =
mdm(→

p ·→p + m2
) 1/2

(51)

and
κ =

NM0

2
(52)

have been used. To compare the parametrized expression with the result based on the conventional
paradigm, we must restrict the range of masses close to M0. The results of this restriction are
the replacements

mi(→
p i ·

→
p i + m2

i

) 1
2
≈ M0(→

p i ·
→
p i + M2

0

) 1
2

(53)

and

e
−β

N
∑

i=1
(
→
p i ·
→
p i+m2

i )
1/2

≈ e
−β

N
∑

i=1
(
→
p i ·
→
p i+M2

0)
1/2

(54)

Substituting Equations (53) and (54) into (50) gives

QN

(
V(4), T, κ

)
=

(V(4))
N

h4N
H N!

2M0(M0)
N

×
∫

dm1 . . . dmNδ

(
N
∑

i=1
m2

i − NM2
0

)(
Iβ

)
i

(55)
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where

(Iβ)i ≡
N

∏
i=1

∫ d3 pi
e−β(

→
p i ·
→
p i+M2

0)
1/2(→

p i ·
→
p i + M2

0

)1/2

. (56)

A comparison of the momentum integral in Equation (4) with the momentum integral in
Equation (56) shows that the Horwitz et al. [4] analysis modifies the integrand by the denominator(→

p i ·
→
p i + M2

0

)1/2

. The momentum integrals differ primarily when
→
p i ·

→
p i is large.

The Jüttner distribution is a distribution of speeds of particles in an ideal gas of classical relativistic
particles. It is also known as the Maxwell–Jüttner distribution because it is the relativistic analog of
Maxwell’s distribution. A distribution of particle momenta such as the Jüttner distribution is needed
for applications that include the theoretical description of relativistic many-particle systems, the
interpretation of high-energy experiments, and understanding of astrophysical and cosmological
phenomena. Chacon-Acosta et al. [11] presented references for several applications, including
heavy-ion collisions and the thermal history of the universe.

Ghodrat and Montakhab [12] viewed the momentum-dependent denominator as a
momentum-dependent reference density in what they called a modified Jüttner distribution.
They pointed out that they had “no rigorous theoretical analysis or experimental evidence to favor one
reference density or measure to the other” (page 011110-2). Chacon-Acosta et al. [11] also questioned the
validity of the Horwitz et al. [4,13] analysis that led to a modified Jüttner distribution. They referenced
criticisms of the modified Jüttner distribution by Debbasch [14].

Referring to the parametrized statistical mechanical framework presented by Schieve [15],
Debbasch [14] argued in Section 4.2 that “The real and apparently only reason to develop the approach
presented in [15] is a historical one, namely the desire to treat relativistic interactions in the framework
of action-at-a-distance theories. These theories are today widely considered unrealistic; indeed, not
only does the theoretical framework used in [15] allow the (non-quantum) particles to wander off
their mass-shells, but action-at-a-distance theories do not seem to permit a theoretical treatment of the
particle creation/annihilation phenomenon, which is naturally an experimental fact.”

Debbasch’s critique and subsequent conclusions showed a limited knowledge of parametrized
theories. A more general introduction to parametrized relativistic quantum theory is provided by
Fanchi [5,6], Pavšič [16], and Horwitz [10]. Parametrized relativistic quantum field theory was
introduced by Fanchi [5,17], and discussed more fully by Pavšič [16] (Chapter 1), including canonical
quantization and creation/annihilation operators. More recent references and a discussion of branes
and quantized fields are discussed by Pavšič [18]. Horwitz [10] (Chapter 3) discussed the construction
of Fock space, quantum field theory, and creation/annihilation operators. Action-at-a-distance,
nonlocality and superluminal motion are discussed by Fanchi [5,6] and Pavšič [16,19]. The relativistic
ideal gas in the ultrarelativistic regime is a regime where different results by Jüttner [1] and
Horwtiz et al. [4] can be tested, as we discuss further in Section 4.

The energy of the ensemble is calculated as the average

〈ω〉 = 1
h4N

H N!

∫
ωD (p, q) dµp dµq

=

1
h4N

H N!

∫
ωδ(K−κ) e−βωdµp dµq

QN(V(4),T,κ)
.

(57)

Equation (57) may be rewritten as

〈ω〉 =

∫
δ(K− κ)

[
− ∂e−βω

∂β

]
dµp dµq

h4N
H N!

QN(V(4), T, κ)
. (58)
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Factoring out the derivative with respect to β gives

〈ω〉 = − 1
QN (V(4),T,κ)

∂
∂β

∫
δ(K− κ)e−βω dµp dµq

h4N
H N!

= − 1
QN (V(4),T,κ)

∂
∂β QN

(
V(4), T, κ

) (59)

or

〈ω〉 ≡ ωH = −
∂ `n QN

(
V(4), T, κ

)
∂ω

(60)

where we have written 〈ω〉 as ωH . Evaluating the integral Iβ in Equation (56) yields

Iβ=
∫

d3 p
e−β(

→
p ·→p+M2

0)
1/2(→

p ·→p + M2
0

)1/2
= −2π2 M0

β
H(1)

1 (iσ),

σ≡ M0β

(61)

where the function H(i)
n is the n-th order Hankel function of the i-th kind [7,8]. Substituting Equation (61)

into Equation (55) and carrying out the derivative in Equation (60) gives

ωH =
N
β

[
2− iσ

H(1)
0 (iσ)

H(1)
1 (iσ)

]
. (62)

5. Energy Comparison

In the previous section, we fixed both the number of free particles and the mass of each particle.
These restrictions are equivalent to specifying a system that is stationary, that is, independent of the
relativistic scalar evolution parameter. The restrictions are needed to make possible a comparison of
Equation (62) with Jüttner’s [1] result:

ωJ =
N
β

[
1− iσ

H′(1)2 (iσ)

H(1)
2 (iσ)

]
. (63)

Equation (63) is equivalent to Equation (9) with units of } = 1 to be consistent with Equation (62).
Differences between Equations (62) and (63) reflect differences between the parametrized theory [4,7,8]
and the conventional paradigm. A more direct comparison can be made by manipulating the Hankel
functions in Equation (63) to arrive at the equivalent form

ωJ =
N
β

[
3− iσ

H(1)
1 (iσ)

H(1)
2 (iσ)

]
. (64)

Equations (62) and (64) agree in the non-relativistic limit (σ→ ∞):

(ωH)NR =
(
ωJ
)

NR = N M0 +
1
2

NkBT. (65)

At the opposite extreme—the ultrarelativistic limit (σ→ 0)—the expressions have different values:

(ωH)UR = 2NkB T (66)

and (
ωJ
)

UR = 3NkBT. (67)

The ratio is
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(
ωJ

ωH

)
UR

=
3
2

. (68)

Calculation of the energies begins by first transforming the Hankel functions to confluent
hypergeometric functions [16]:

ωH =
N
β

[
2 +

1
2

U(0.5, 1, Z)
U(1.5, 3, Z)

]
, Z = 2σ (69)

and

ωJ =
N
β

[
3 +

1
2

U(1.5, 3, Z)
U(2.5, 5, Z)

]
, Z = 2σ (70)

where U(a, b, Z) is a confluent hypergeometric function.

In SI units, σ = M0c2

kBT so that Z = 2σ = 2M0c2

kBT and T = M0c2

kBσ . For a proton, we
have M0 = 1.673× 10−27kg, c = 3.00 × 108 m/s, and kB = 1.381 × 10−23 J · ◦K−1 which gives

T = 1.09× 1013[◦K] at σ = 1. In general, Z = 2σ and T = 2M0c2

kBZ = 2.18×1013

Z [◦K]. For hydrogen-like
masses, M0 = 1.673× 10−27kg, so that

σHydrogen ≈
(

1.1× 1013K
)

/T. (71)

We determine the temperature at which the difference between calculated energies becomes
significant by evaluating the energies as a function of temperature or, equivalently, σ.

Integral representations of U(1.5, 3, Z) and U(2.5, 5, Z) were numerically evaluated using both
four-point and six-point Gauss–Laguerre quadratures [20]. The difference between each of the
four-point and six-point quadrature values was less than one percent, which is sufficient accuracy
for our purposes. A Gauss–Laguerre quadrature does not yield asymptotically correct values for the
remaining function U(0.5, 1, Z). It is evaluated using Lebedev’s [21] series expansion for Z < 1, and
by asymptotic approximation for Z > 10. Intermediate values are interpolated by nonlinear regression.
Results of the calculations are shown in Figures 1–3. The functions are smooth on a log-log plot.
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A physically more interesting plot is the semilogarithmic graph of ωJ/ωH versus Z shown in
Figure 4. The ratio ωJ/ωH as a function of Z is

ωJ

ωH
=

[
3 +

1
2

U(1.5, 3, Z)
U(2.5, 5, Z)

]/[
2 +

1
2

U(0.5, 1, Z)
U(1.5, 3, Z)

]
, Z = 2σ (72)
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According to Figure 4, the energies are equivalent for values of Z greater than 10. The UR regime
is reached for values of Z less than 0.1.
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The relatively narrow region in Figure 4 from Z = 0.1 to Z = 10 is the region of transition from
non-relativistic to ultrarelativistic behavior. For hydrogen-like masses, the transition region occurs
for temperatures ranging from T = 1.1× 1014K to T = 1.1× 1012K, and the UR limit is reached at
T = 1.1× 1014K. For comparison, the central temperature of the Sun is approximately 1.5× 107K,
which is several orders of magnitude less than the temperature associated with the beginning of the
transition region.

6. Discussion and Conclusions

Energy differences can affect the energy density of the stress-energy tensor used in stellar models
(e.g., the Tolman–Oppenheimer–Volkoff equation), relativistic gas dynamics, and cosmology. Of these,
only cosmology was considered a viable testing ground in 1988 [22]. Today, relativistic gas dynamics
has also become a viable testing ground because of advances in accelerator physics.

The transition to the UR regime in Figure 4 begins at T = 1.1× 1014K which corresponds to an
energy of approximately 95 MeV, and the UR regime is reached at T = 1.1× 1014K which corresponds
to an energy of approximately 9.5 GeV. Modern accelerators can operate at temperatures in the UR
regime. For example, the Large Hadron Collider at CERN consists of two high energy particle beams
that circulate in rings at speeds close to the speed of light. The maximum beam energy is expected to
be 7 TeV in 2024 according to Patrignani et al. [23], and the design value of the total collision energy is
14 TeV [24]. The maximum beam energy of 7 TeV corresponds to temperature T ≈ 8× 1016K, which is
in the UR regime.

Greiner et al. [3] pointed out that the collision of high energy beams of nucleons with a target can
result in a gas of nucleons that approximately behaves like an ideal gas of non-interacting classical
particles. It has also been observed by the ALICE Collaboration [25] that nuclear matter can transition
to a quark-gluon plasma at sufficiently high temperature and energy density. The energy that is being
achieved by modern accelerators is making it possible to study the behavior of matter during the
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earliest, and hottest, moments of the big bang. Parametrized electrodynamics [26,27] may need to be
extended to study matter in a plasma state.

The difference in energy between Equations (69) and (70) could have observable consequences
in cosmological models during epochs when temperatures are high enough to be in the UR
regime. Fanchi [22] studied the energy difference in cosmology by using a model based on the
Robertson–Walker metric and solving the resulting Friedmann equation for the age of the universe.
The energy difference made its appearance through the density parameter in the model. The model
was not considered a definitive test because of uncertainties associated with important cosmological
parameters such as the Hubble parameter, which varied from 50 to 100 km/s/Mpc at the time. Today,
some cosmological parameters are better understood but the model is considered too simple to account
for the different epochs in the Standard Big-Bang model.

The Big-Bang Cosmology review article by Olive and Peacock in Patrignani et al. [28] pointed
out that the Standard Big-Bang model includes the assumption that the universe was hottest and
densest at the moment of the Big-Bang. The temperature and density began to decline thereafter.
The early hot and dense universe was thought to be dominated by a gas of radiation or relativistic
particles. The most likely periods to provide opportunities for testing the difference in energy between
Equations (69) and (70) are the early universe from the Big-Bang through the quark epoch because this
period is thought to exist in the UR regime. An especially fertile area for seeking a test of the energy
difference is the quark-gluon plasma because it is the state of matter that has application to the quark
epoch in cosmology and links to the capabilities of high energy particle accelerators.
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