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Abstract: In this work, we investigate a three-user cognitive communication network where a primary
two-user multiple access channel suffers interference from a secondary point-to-point channel,
sharing the same medium. While the point-to-point channel transmitter—transmitter 3—causes
an interference at the primary multiple access channel receiver, we assume that the primary channel
transmitters—transmitters 1 and 2—do not cause any interference at the point-to-point receiver.
It is assumed that one of the multiple access channel transmitters has cognitive capabilities and
cribs causally from the other multiple access channel transmitter. Furthermore, we assume that the
cognitive transmitter knows the message of transmitter 3 in a non-causal manner, thus introducing
the three-user multiple access cognitive Z-interference channel. We obtain inner and outer bounds on
the capacity region of the this channel for both causal and strictly causal cribbing cognitive encoders.
We further investigate different variations and aspects of the channel, referring to some previously
studied cases. Attempting to better characterize the capacity region we look at the vertex points of
the capacity region where each one of the transmitters tries to achieve its maximal rate. Moreover, we
find the capacity region of a special case of a certain kind of more-capable multiple access cognitive
Z-interference channels. In addition, we study the case of full unidirectional cooperation between
the 2 multiple access channel encoders. Finally, since direct cribbing allows us full cognition in the
case of continuous input alphabets, we study the case of partial cribbing, i.e., when the cribbing is
performed via a deterministic function.

Keywords: cognitive radio; multiple access channel; interference channel; capacity region; cognition;
cribbing; cooperative communication

1. Introduction

Two of the most fundamental multi-terminal communication channels are the Multiple-Access
Channel (MAC) and the Interference Channel (IFC). The MAC, sometimes referred to as the uplink
channel, consists of multiple transmitters, sending messages to a single receiver (base station). The
capacity region of the two-user MAC channel was determined, early on, by Ahlswede [1], and Liao [2].
However, the capacity regions of many other fundamental multi-terminal channels are yet unknown.
One of these channels is the Interference Channel (IFC). The two-user IFC consists of two point to
point transmitter-receiver pairs, where each of the transmitters has its own intended receiver and
serves as an interference to the other transmitter-receiver. The study of this channel was initiated
by C.E. Shannon [3], and extended by R. Ahlswede [4] who gave simple but fundamental inner and
outer bounds to the capacity region. The fundamental achievable region of the discrete memoryless
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two-user IC is the Han-Kobayashi (HK) region [5] which can be exressed by a simplified expression [6].
Much progress has been made toward understanding this channel (see, e.g., [7–13] and the references
therein). Although widely investigated, this problem remains unsolved except for some specific
channel configurations, enforcing various constraints on the channel [14].

A common scenario of multi-terminal network is comprised of these two channels. For instance,
looking at Wi-Fi or cellular communication, there are usually several portable devices (i.e., laptops,
mobile phones, etc.) “talking” to a single end point (i.e., base station, Access Point, etc.). Moreover,
the same frequencies are frequently used by nearby base stations, causing interferences at adjacent
receivers. This increasing usage of wireless services and constant reuse of frequencies imply an ever
increasing problem of optimizing the wireless medium for achieving better transmission rates. Cognitive
radio technology is one of the novel strategies for overcoming the problem of inefficient spectrum
usage which has been receiving a lot of attention [15–17].

Cognition stands for awareness of system paramters, such as operative frequencies, time
schedules, space directivity, and actual transmission. The latter refers to transmitted messages of
interfering transmitters, which are either monitored by receiving the interfering signals (cribbing),
or on a network scale (a-priori available transmitted messages). Examples of signal awareness are
reflected by Dynamic Spectrum Access (DSA) (see the tutorial [18], and references therein), as well as
a variety of techniques for spectrum and activity sensing (see [19] and references therein). The timely
relevance of cognitive radios and the information theoretic framework that can assess the potential
benefits and limitations are reflected in recent literature (see [15] and references therein).

In our study, we focus on aspects of cognition in terms of the ability to recognize the primary
(licensed) user and adapt its communication strategy to minimize the interference that it generates,
while maximizing its own Quality of Service (QoS). Furthermore, cognition allows cooperation between
transmitters in relaying information to improve network capacity. The shared information used by the
cognitive transmitter might be achieved through a noisy observation of the channel or via a dedicated
link. The cognitive transmitter may apply different strategies such as decode-and-forward (DF) or
amplify-and-forward (AF) for relaying the other transmitter information.

To obtain information theoretical limits of cognitive radios, the Cognitive Interference Channel
(CIFC) is defined in [20]. CIFC refers to a two-user Interference Channel (IFC) in which the cognitive
user (secondary user) is cognizant of the message being transmitted by the other user (primary
user), either in a non-causal or causal manner. The two-user CIFC was further studied in [21–25].
Cognitive radio was applied to the MAC in 1985, when Willems and Van Der Meulen established
the capacity region of the MAC with cribbing encoders [26]. Cribbing encoders means that one or
both encoders crib from the other encoder and learn the channel input(s) (to be) emitted by this
encoder in a causal manner. Since then, the cognitive MAC has received much attention, recently
characterizing capacity regions for various extensions [27–32]. Today, there are already practical
implications of advanced processing techniques in the cognitive arena. For example, [33], shows
coding techniques for an Orthogonal Frequency-Division Multiple Access (OFDMA)-based secondary
service in cognitive networks that outperform traditional coding schemes, see also [34]. Hence, aspects
of binning (dirty-paper coding [35]), as well as rate splitting [5], used in cognitive coding schemes, do
have even stronger practical implications.

In this paper, we study a common wireless scenario in which a Multiple Access Channel
(MAC) suffers interferences from a point-to-point (P2P) channel sharing the same medium. The
main motivation behind this model is trying to interweave a MAC channel on top of a licensed P2P
channel. The P2P licensed user must not suffer interference while the other users may use cognitive
radio to improve performance. Adding cognition capabilities to one of the MAC transmitters, we
investigate the case in which it has knowledge of signals transmitted by another user intended for
the same receiver as well as signals transmitted by the P2P user on a separate channel resulting in
an interference at the MAC receiver. We introduce Multiple Access Cognitive Z-Interference Channel
(MA-CZIC) which consists of three transmitters and two receivers; two-user MAC as a primary
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network and a point-to-point channel as a secondary channel. The communication system, including
the primary and secondary channels (whose outputs are Y and Z, respectively), is depicted in Figure 1.
The signal X1 is generated by Encoder 1. Encoder 2 is assumed to be a cognitive cribbing encoder,
that is, it has causal knowledge of Encoder 1’s signal, as well as non-causal knowledge of Encoder 3’s
signal. We note that while the signal X3 interferes with the other signals creating Y, it is observed
interference-free by the second decoder creating Z. The cognition of the P2P signal may model the fact
that the same user produced a P2P message to another point, and hence naturally it is cognizant of the
message W3. This channel model generalizes several previously studied setups: without Encoder 3,
the system reduces to a MAC with a cribbing encoder as in [26]. Replacing the signal X3 with a state
process and ignoring the structure of X3, we get a MAC with states available at a cribbing encoder
as in [24,27]. Removing Encoder 2, the problem reduces to the standard Z-Interference channel, and
removing Encoder 1, we get the Cognitive Z-Interference channel, as in [36]. The Z-Gaussian Cognitive
Interference channel was further studied in [37]. The model of a cooperative state-dependent MAC
which is considered in [29] is very closely related to a special case of the MA-CZIC which is obtained
by replacing the interfering signal Xk of the MA-CZIC with an i.i.d. state sequence Sk which is known
non-causally to the cognitive transmitter. Some of the results which appear in this paper were presented
in part in [38,39].

Figure 1. Multiple-Access Cognitive Z-Interference Channel (MA-CZIC).

The rest of the paper is organized as follows. In Section 2 we formally define the memoryless
MA-CZIC with causal and strictly causal cribbing encoder. In Section 3 we proceed to derive inner and
outer bounds on the capacity region of the channel with causal and strictly causal cribbing encoders
including a special case of the channel where the bounds coincide and the capacity region is established.
Section 4 is devoted to the case of full unidirectional cooperation from Encoder 1 to Encoder 2
(a common message setup). Section 5 deals with the case of partial cribbing. Finally, concluding
remarks are given in Section 6.

2. Channel Model and Preliminaries

Throughout this work, we will use uppercase letters (e.g., X) to denote random variables (RVs)
and lowercase letters (e.g., x) to show their realization. Boldface letters are used for denoting n-vectors,
e.g., x = xn = (x1, ..., xn). For a set of RVs S = {X1, ..., Xk}, An

ε (S) denotes the set of ε-strongly, jointly
typical n-sequences of S as defined in ([40], Chapter 13). We may omit the index n from An

ε (S) when it
is clear from the context.

A more formal definition of the problem is as follows: A discrete memoryless multiple-access
Z-interference channel (MA-CZIC) is defined by the input alphabets (X1,X2,X3) and output alphabets
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(Y ,Z) and by the transition probabilities PY|X1,X2,X3
and PZ|X3

, that is, the channel outputs are
generated in the following manner:

Pr (yn, zn|xn
1 , xn

2 , xn
3 ) =

n

∏
t=1

p(yt|x1,t, x2,t, x3,t)p(zt|x3,t). (1)

Encoder i, i ∈ {1, 2, 3}, sends a message Wi which is drawn uniformly over the set Mi ,
{1, . . . , 2nRi} to its destined receiver. It is further assumed that Encoder 2 “cribs” causally and observes
the sequence of channel inputs emitted by Encoder 1 during all past transmissions before generating
its next channel input. The model is depicted in Figure 1.

An (2nR1 , 2nR2 , 2nR3 , n) code for the MA-CZIC with strictly causal Encoder 2 consists of:

1. Encoder 1 defined by a deterministic mapping

f1 : M1 → X n
1 (2)

which maps the message W1 to a channel input codeword.
2. Encoder 2 which observes Xi−1

1 and W3 prior to transmitting X2,i, is defined by the mappings

f (sc)
2,k : M2 ×M3 ×X k−1

1 → X2 k = 1, . . . , n. (3)

3. Encoder 3 is defined by a deterministic mapping

f3 : M3 → X n
3 . (4)

4. The primary (main) decoder is defined by a mapping

g1 : Yn → M1 ×M2. (5)

5. The secondary decoder is defined by a mapping

g3 : Zn → M3. (6)

An (2nR1 , 2nR2 , 2nR3 , n) code for the MA-CZIC with causal Encoder 2 differs only in the fact that
Encoder 2 observes Xi

1 (including the current symbol, X1,i) before transmitting X2,i, and is defined by
a the mappings

f (c)2,k : M2 ×M3 ×X k
1 → X2 k = 1, 2, . . . , n. (7)

For a given code, the block average error probability is

P(n)
e =

1
2n(R1+R2+R3)

2nR1

∑
w1=1

2nR2

∑
w2=1

2nR3

∑
w3=1

Pr{g1(Yn) 6= (w1, w2) ∪ g3(Zn) 6= w3|Wi = wi, i = 1, 2, 3}. (8)

A rate-triple (R1, R2, R3) is said to be achievable for the MA-CZIC if there exists a sequence of
(2nR1 , 2nR2 , 2nR3 , n) codes with limn→∞ P(n)

e = 0. The capacity region of the MA-CZIC with a cribbing
encoder is the closure of the set of achievable rate-triples.

3. Main Results

In this section, we provide inner and outer bounds to the capacity region of the discrete
memoryless MA-CZIC.
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3.1. Inner Bound

We next present achievable regions for the strictly causal and the causal MA-CZICs.

Definition 1. Let Rsc be the region defined by the closure of the convex hull of the set of all rate-triples
(R1, R2, R3) satisfying

R1 ≤ H(X1|V) (9a)

R2 ≤ I(U; Y|VLX1)− I(U; X3|VL) (9b)

R1 + R2 ≤ I(VUX1; Y|L)− I(U; X3|VL) (9c)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (9d)

for some probability distribution of the form

PVLUX1X2X3 = PV PLPX3|LPX1|V PUX2|VLX3
. (10)

Theorem 1. The regionRsc is achievable for the MA-CZIC with a strictly causal cribbing encoder.

The proof appears in Appendix A.

Definition 2. Let Rc be the region defined by the closure of the convex hull of the set of all rate-triples
(R1, R2, R3) satisfying (9a)–(9d), for some probability distribution of the form

PVLUX1X2X3 = PV PLPX3|LPX1|V PU|VLX3
PX2|UVLX3X1

. (11)

Theorem 2. The regionRc is achievable for the MA-CZIC with a causal cribbing encoder.

The outline of the proof appears in Appendix B.
A few comments regarding the achievability region (9a)–(9d) are in order. In the coding scheme,

Encoder 1 and Encoder 2 use Block–Markov superposition encoding, while the primary decoder uses
backward decoding [27]. In this scheme, the RV V represents the “resolution information” [26]; i.e., the
current block information used for encoding the proceeding block. Encoder 3 uses rate-splitting, where
the RV L represents the part of W3 that can be decoded by both the primary and secondary decoders
as can be observed by the term min{I(L; Y), I(L; Z)} which appears in (9d). The complementary
part of W3, while fully decoded by the secondary decoder, serves as a channel state for the primary
channel in the form of X3. To reduce interference the cognitive encoder (Encoder 2) additionally uses
Gel’fand–Pinsker binning [41] of U against X3, assuming an already successful decoding of V and L at
the primary decoder, as can be seen in (9b).

It is important to note that the achievable regionRsc is consistent with previously studied special
cases: By setting R1 = 0 and X1 = 0 we can also set V = ∅. The equations then reduce to

R2 ≤ I(U; Y|L)− I(U; X3|L) (12)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)}, (13)

and this results in the region achievable for the cognitive Z-Interference channel, studied in [36], with
user 2 and user 3 as the cognitive and non-cognitive users, respectively.

Removing Encoder 2 by setting R2 = 0 and X2 = 0 we can also set U = ∅ and we get the classical
Z-Interference channel with the 2 users, Encoder 1 and Encoder 3. In this case Y is dependent of V
only through X1, since V → X1 → Y, and I(VUX1; Y|L) = I(X1; Y|L). We get
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R1 ≤ I(X1; Y|L) (14)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)}. (15)

An interesting setup arises by setting W2 = 0 without removing Encoder 2. This models a relay
channel, where Encoder 2 is a relay which has no message of its own and learns the information of the
transmitter by cribbing (modeling excellent SNR conditions on this path). This model relates to [42],
if the structure of the primary user (X3) is not accounted for, thus assuming i.i.d. state symbols known
a-causally at the relay, as in [42].

Removing Encoder 3 by setting R3 = 0 and X3 = 0 we can also set L = ∅, and the expression
reduces to

R1 ≤ H(X1|V) (16)

R2 ≤ I(U; Y|VX1) (17)

R1 + R2 ≤ I(VUX1; Y). (18)

By setting U = X2 we get the achievable region of the MAC with Encoder 2 as the cribbing
encoder [26].

By setting L = 0, removing inequality (9d) and replacing X3 by S, whose given probability
distribution is not to be optimized, the region reduces to the one in [27].

It is worth noting that in the case of a Gaussian channel, Encoder 2 can become fully cognitive
of the message W1 from a single sample of X1. This special case can be made non-trivial by adding
a noisy channel or some deterministic function (quantizer for instance) between X1 and Encoder 2.

Finally, we examine the case where Encoder 1’s output may be viewed as two parts
X1 = (X1a, X1b) where only the first part of the input affects the channel; i.e., PY|X1X2X3

= PY|X1aX2X3
.

In this case, if the second part X1b is rich enough (e.g. continuous alphabet) Encoder 1 is able to
transfer to Encoder 2 infinite amount of data, specifically the entire message W1. This is equivalent
to the case of full cooperation from Encoder 1 to Encoder 2; i.e., the case where Encoder 2 has full
knowledge of Encoder 1’s data W1. Hence, the cooperative state-dependent MAC where the state
is known non-causally at the cognitive encoder [29] may also be considered as a special case of the
MA-CZIC, when X3 is replaced with an i.i.d. state S.

3.2. Outer Bound

In this section, we present an outer bound on the achievable region of the strictly causal and
causal MA-CZIC.

Theorem 3. Achievable rate-triples (R1, R2, R3) for the MA-CZIC with a strictly causal cribbing encoder
belong to the closure of the convex hull of all rate triples that satisfy

R1 ≤ H(X1|V) (19a)

R2 ≤ I(U; Y|VLX1)− I(U; Z|VL) (19b)

R1 + R2 ≤ I(VUX1; Y|L)− I(VU; Z|L) (19c)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (19d)

for some probability distribution of the form

PVLUX1X2X3 = PX3 PV PL|X3V PX1|V PUX2|VLX3
. (20)
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The proof is provided in Appendix C, it is based on Fano’s Inequality [40] and from the Csiszár
and Körner’s identity ([43], Lemma 7).

Theorem 4. Achievable rate-triples (R1, R2, R3) for the MA-CZIC with a causal cribbing encoder belong to the
closure of the convex hull of all rate regions given by (19a)–(19d) for some probability distribution of the form

PVLUX1X2X3 = PX3 PV PL|X3V PX1|V PUX2|VLX3X1
. (21)

The outline of the proof is provided in Appendix D.
As for the alphabet cardinalities: using standard applications of Carathéodory’s Theorem we

obtain that it is sufficient to consider the alphabet cardinalities which are bounded as follows:

|L| ≤|X1||X2||X3|+ 4 (22)

|V| ≤|X1||X2||X3||L|+ 3 (23)

|U | ≤|X1||X2||X3||L||V|+ 2. (24)

The details are omitted for the sake of brevity.

3.3. Special Cases

For the special case of a more-capable MA-CZIC channel we can actually establish the capacity
region of the channel, both in the causal and the strictly causal cases.

Definition 3. We say that the strictly-causal MA-CZIC is more-capable if I(X3; Y) ≥ I(X3; Z) for all
probability distributions of the form PV PX1|V PX3 PX2|VX3

PY|X1X2X3
PZ|X3

.

Theorem 5. The capacity region of the more-capable strictly-causal MA-CZIC channel is the closure of the
convex hull of the set of all rate-triples (R1, R2, R3) satisfying

R1 ≤ H(X1|V) (25a)

R2 ≤ I(X2; Y|VX1X3) (25b)

R1 + R2 ≤ I(X1X2; Y|X3) (25c)

R3 ≤ I(X3; Z) (25d)

for some probability distribution of the form

PVX1X2X3 = PV PX1|V PX3 PX2|VX3
. (26)

The proof of Theorem 5 is provided in Appendix E.

Theorem 6. The capacity region of the more-capable causal MA-CZIC channel is the closure of the convex hull
of the set of all rate-triples (R1, R2, R3) satisfying (25a)–(25d), for some probability distribution of the form

PVX1X2X3 = PV PX1|V PX3 PX2|VX1X3
. (27)

The proof of Theorem 6; i.e., the causal case, follows in the same manner as that of Theorem 5 and
thus omitted.

Unfortunately, the requirement that the MA-CZIC is more-capable implies that the receiver Y has
a better reception of the signal X3 than its designated receiver Z, which is somewhat optimistic.

We next consider the cases where either one of the transmitters wishes to achieve its maximal
possible rate; i.e., the vertex point of the capacity region.
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• Maximal rate at Transmitter 1:

Transmitter 2 may help Transmitter 1’s transmission and by doing so increase its rate. Therefore,
we that assume Transmitter 2 dedicates its transmission to help transmitting W1. Transmitter 3
should minimize its interference at the Y Receiver. Setting L = X3, the entire interference caused by
transmitter 3 at receiver 1 may be reduced via successive cancellation decoding. With no interference
caused by transmitter 3, transmitter 2 may drop the Gelfand–Pinsker scheme, setting U = X2 to
maximize the rates. Thus, from (9a)–(9d) we get

R1 ≤ min{H(X1|V), I(VX1X2; Y|X3)} (28a)

R2 ≤ min{I(X2; Y|VX1X3),

I(VX1X2; Y|X3)− R1} (28b)

R3 ≤ min{I(X3; Y), I(X3; Z)}. (28c)

From the Markov chain V − X1X2X3 − Y we get I(VX1X2; Y|X3) = I(X1X2; Y|X3). Therefore,
we can rewrite (28a)–(28c) as

R1 ≤ min{H(X1|V), I(X1X2; Y|X3)} (29a)

R2 ≤ min{I(X2; Y|VX1X3),

I(X1X2; Y|X3)− R1} (29b)

R3 ≤ min{I(X3; Y), I(X3; Z)}. (29c)

where in the strictly-causal MA-CZIC case, the union is over all probability distributions of the form

PVX1X2X3 = PV PX3 PX1|V PX2|V . (30)

• Maximal rate at Transmitter 2:

Both Transmitter 1 and 3 are not cognitive and have no knowledge of the message W2, thus they
cannot help convey W2 to Y and should only reduce their interference to a minimal level. Setting
L = X3 and U = X2 follows as in maximizing R1 in (28a)–(29c).

Therefore, we get (28a)–(28c) where the maximization is on R2 instead of R1, i.e.

R1 ≤ min{H(X1|V), I(X1X2; Y|X3)− R2} (31a)

R2 ≤ I(X2; Y|VX1X3) (31b)

R3 ≤ min{I(X3; Y), I(X3; Z)}. (31c)

• Maximal rate at Transmitter 3:

Looking at (9d) and (19d) we see that the lower and upper bounds on R3 coincide. Since
transmitter 3 is not affected by the transmission of both transmitters 1 and 2, we can treat the
transmitter 3—receiver 3 pair as a single user channel and thus achieve the Shannon capacity; i.e.,

R3 ≤ I(X3; Z). (32)
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In the general case, the maximum rate at transmitter 3 is achieved by setting L = 0. In this case,
the higher rate at transmitter 3 comes at the expense of the other transmitters, since L was used for
conveying part of the interference X3 to Y. Thus, (9a)–(9d) become

R1 ≤ H(X1|V) (33a)

R2 ≤ I(U; Y|VX1)− I(U; X3|V) (33b)

R1 + R2 ≤ I(VUX1; Y)− I(U; X3|V) (33c)

R3 ≤ I(X3; Z). (33d)

Examining (9d), we see that maximum rate at transmitter 3 may also be achieved without
affecting R1 and R2. This is true when the receiver Y is less-noisy than receiver Z in the sense that
I(L; Y) ≥ I(L; Z) for all probability distributions of the form (20). In this case (9d) becomes

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)}
= I(X3; Z|L) + I(L; Z)

= I(X3; Z) (34)

Actually, it suffices to require that the channel will be more-capable; i.e., I(X3; Y) ≥ I(X3; Z) for all
probability distributions of the form (20), for achieving maximum rate at R3.

4. Cooperative Encoding

Let us now consider the case of full unidirectional cooperation from Encoder 1 to Encoder 2.
This becomes a setup in which Encoders 1 and 2 share a common message, and Encoder 2 transmits
a separate additional private message. Thus we have an interference cognitive channel (cognition
in terms of W3) with a common message, as depicted in Figure 2. Hence, Encoder 2 is given by
the mapping

f2 : M1 ×M2 ×M3 → X n
2 k = 1, . . . , n. (35)

For this channel setup, a simpler outer bound on the capacity region can be derived providing
some insights on the original problem. A special case of this channel, in which the secondary channel
is removed and X3 is replaced with an i.i.d. state S for the main channel; i.e., PY|X1X2S, was studied
in [29] and the single-letter characterization of the capacity region was established for that channel.

Figure 2. MA-CZIC with full unidirectional cooperation from Encoder 1 to Encoder 2.

The following theorem provides a single-letter expression for an achievable region of the
MA-CZIC with full unidirectional cooperation (common message).
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Theorem 7. The closure of the convex hull of the set of all rate-triples (R1, R2, R3) satisfying

R1 + R2 ≤ I(X1U; Y|L)− I(U; X3|LX1) (36a)

R2 ≤ I(U; Y|LX1)− I(U; X3|LX1) (36b)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (36c)

for some probability distribution of the form

PLUX1X2X3 = PX1 PLPX3|LPUX2|X1LX3
(37)

is achievable for the MA-CZIC with with full unidirectional cooperation.

The outline of the proof for Theorem 7 appears in Appendix F.
The following theorem provides a single-letter expression for an outer bound on the capacity

region of the MA-CZIC with full unidirectional cooperation.

Theorem 8. Achievable rate-triples (R1, R2, R3) for the MA-CZIC with full unidirectional cooperation belong
to the closure of the convex hull of rate-regions given by

R1 + R2 ≤ I(VUX1; Y|L)− I(VU; Z|L) (38a)

R2 ≤ I(U; Y|LVX1)− I(U; Z|LV) (38b)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (38c)

for some probability distribution of the form

PLVUX1X2X3 = PV PX3 PL|VX3
1{X1= f (V)}PUX2|VLX3

(39)

The outline of the proof of Theorem 8 is provided in Appendix G.
Notice that inequalities (38a)–(38c) are identical to (19b)–(19d), where the probability distribution

form (39) is a special case of (20). Thus, the outer bound established for R2, R3 and the sum-rate R1 + R2

in the strictly-causal MA-CZIC, also holds for the case of full unidirectional cooperation. However, we
would expect the outer bounds on R2 and the sum-rate R1 + R2 to be smaller for the channel with the
cribbing encoder, thus implying that the outer bound for the MA-CZIC is generally not tight.

5. Partial Cribbing

Next we consider the case of partial cribbing, where Encoder 2 views X1 through a deterministic
function

h : X1 → Y2 (40)

instead of obtaining X1 directly. This cribbing scheme is motivated by continuous input alphabet
MA-CZIC, since perfect cribbing results in the degenerated case of full cooperation between the
encoders and requires an infinite capacity link.

We define the strictly-causal MA-CZIC with partial cribbing as in (2)–(6) with the exception that
Encoder 2 is defined by the mapping

f (sc)
2,k : M2 ×M3 ×Y k−1

2 → X2 k = 1, . . . , n (41)

where y2,k = h(x1,k) for k = 1, . . . , n. The causal MA-CZIC with partial cribbing differs by setting

f (sc)
2,k : M2 ×M3 ×Y k

2 → X2 k = 1, . . . , n. (42)
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It is worth noticing that the state-dependent MAC with state information known non-causally at
one encoder [44] is a special case of the MA-CZIC with partial cribbing. This case is derived by setting
h(X1) ≡ 0 and replacing X3 with an i.i.d. state S. The capacity region of this simpler case remains
an open problem. Therefore, it is hard to expect that capacity region would be established for the
MA-CZIC with partial cribbing. Next, we establish inner and outer bounds for the MA-CZIC with
partial cribbing.

Theorem 9. The closure of the convex hull of the set of rate-triples (R1, R2, R3) satisfying

R1 ≤ H(Y2|V) + I(X1; Y|VY2UL) (43)

R2 ≤ I(U; Y|VLX1)− I(U; X3|VL) (44)

R1 + R2 ≤ I(VUX1; Y|L)− I(U; X3|VL) (45)

R1 + R2 ≤ I(UX1; Y|VLY2) + H(Y2|V)− I(U; X3|VL) (46)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (47)

for some probability distribution of the form

PVLUX1Y2X2X3 = PV PLPX3|LPX1Y2|V PUX2|VLX3
. (48)

is achievable for the strictly-causal MA-CZIC with partial cribbing.

The outline proof of Theorem 9 appears in Appendix H.

Theorem 10. The closure of the convex hull of the set of rate-triples (R1, R2, R3) satisfying (43)–(47), for some
probability distribution of the form

PVLUX1Y2X2X3 = PV PLPX3|LPX1Y2|V PU|VLX3
PX2|VY2ULX3

. (49)

is achievable for the causal MA-CZIC with partial cribbing.

The proof of Theorem 10 is similar to that of Theorem 9 and thus is omitted.
Comparing this result to the achievability region found for the MA-CZIC we can see that

inequalities (44), (45) and (47) are identical to (9b)–(9d), while inequality (43) differs and inequality (46)
was added. In correspondence, the coding scheme for the MA-CZIC with partial cribbing differs from
Theorem 1 mainly in Encoder 1. Encoder 1 now needs to transmit data in a lossy manner to both Y
receiver and Encoder 2. To do so, Encoder 1 employs the rate-splitting technique. It splits its message
W1 into two parts (W1a, W1b) with rates R1a, R1b accordingly, such that R1 = R1a + R1b. The rate R1a
represents the rate of transmission to Encoder 2. Combining the rate-splitting with the superposition
block Markov encoding (SBME) at Encoder 1 results in another codebook {yn

2}, in addition to the
two codebooks {vn} and {xn

1}. The codebooks are created in an i.i.d. manner as follows: First, 2nR1a

codewords {vn} are created using PV . Then, for each codeword vn, 2nR1a codewords {yn
2} are drawn

i.i.d. ∼ PY2|V given vn. Finally, for each pair (vn, yn), 2R1b codewords {xn} are drawn i.i.d. ∼ PX1|Y2V
given (vn, yn

2 ). Next, as in the scheme which corresponds to Theorem 1 SBME coding scheme, the
index of the codeword yn

2 in time i becomes the index of vn in time i + 1. For successful decoding at
Encoder 2, we must require R1a ≤ H(Y2|V). The rate R1a is therefore that of the information jointly
transmitted to Y by both encoders. The remaining quantity in (43), that is, I(X1; Y|VY2UL) represents
the rate R1b super-imposed by X1 and decoded by Y via successive decoding. One may notice that in
inequalities (44)–(45), the pair (X1, Y2) can replace X1, however since Y2 is a deterministic function of
X1 it can be dropped.

This result is based on [28], where a capacity region was established for the case of the two-user
MAC with cribbing through a deterministic function at both encoders.
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Theorem 11. Achievable rate-triples (R1, R2, R3) for the strictly-causal MA-CZIC with partial cribbing belong
to a closure of the convex hull of the set of rate-regions given by

R1 ≤ H(Y2|V) + I(X1; Y|VY2UL) (50)

R2 ≤ I(U; Y|TLX1)− I(U; Z|TL) (51)

R1 + R2 ≤ I(TUX1; Y|L)− I(TU; Z|L) (52)

R1 + R2 ≤ I(TUX1; Y|VLY2) + H(Y2|V)− I(TU; Z|VL) (53)

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)} (54)

for some probability distribution of the form

PVLUTX1Y2X2X3 = PT1{V=h(T)}PX3 PL|TX3
PX1|T1{Y2=h(X1)}PUX2|VLX3

. (55)

The proof of Theorem 11 as well as the following Theorem Theorem 12 appear in Appendix I.

Theorem 12. Achievable rate-triples (R1, R2, R3) for the causal MA-CZIC with partial cribbing belong to
the closure of the convex hull of the set of rate-regions given by (50)–(54), for some probability distribution of
the form

PVLUTX1Y2X2X3 = PT1{V=h(T)}PX3 PL|TX3
PX1|T1{Y2=h(X1)}PUX2|VLX3X1

. (56)

It is easy to see that setting h(·) to be the identity function, T = V and Y2 = X1, the region of
Theorem 11 degenerates to the outer bound of the MA-CZIC with noiseless cribbing (Theorem 3).

A related problem is the Cognitive State-Dependent MAC with Partial Cribbing. This setup is
obtained by removing user 3 and replacing X3 with an i.i.d. state S known non-causally at Encoder 2.
From the inner bound (Theorem 9) and outer bound (Theorem 11) for the MA-CZIC with partial
cribbing derived in previous sections it is immediate to derive inner and outer bounds for the channel
by setting L = 0 and X3 = Z = S. Doing so yields the following inner and outer bounds.

Theorem 13. The closure of the convex hull of the set of rate-pairs (R1, R2) satisfying

R1 ≤ H(Y2|V) + I(X1; Y|VY2U) (57)

R2 ≤ I(U; Y|VX1)− I(U; S|V) (58)

R1 + R2 ≤ I(VUX1; Y)− I(U; S|V) (59)

R1 + R2 ≤ I(UX1; Y|VY2) + H(Y2|V)− I(U; S|V) (60)

for some probability distribution of the form

PVLUX1Y2X2S = PV PSPX1Y2|V PUX2|VS (61)

is achievable for the state-dependent cognitive MAC with partial (strictly-causal) cribbing.

Theorem 14. Achievable rate-pairs (R1, R2) for the state-dependent cognitive MAC with partial
(strictly-causal) cribbing belong to the closure of the convex hull of rate-regions given by

R1 ≤ H(Y2|V) + I(X1; Y|VY2U) (62)

R2 ≤ I(U; Y|TX1)− I(U; S|T) (63)

R1 + R2 ≤ I(TUX1; Y)− I(TU; S) (64)

R1 + R2 ≤ I(TUX1; Y|VY2) + H(Y2|V)− I(TU; S|V) (65)
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for some probability distribution of the form

PVUTX1Y2X2S = PT1{V=h(T)}PSPX1|T1{Y2=h(X1)}PUX2|VS. (66)

6. Discussion and Future Work

The use of cognitive radio holds tremendous promise in better exploiting the available spectrum.
Sensing its environment, a cognitive radio can use it as network side information resulting in better
performances for all users. The cognitive transmitter may use this information to reduce interference
at its end, reduce interference for the other users or help relaying information. However, obtaining this
side-information is not always practical in actual scenarios. The assumption of a-priori knowledge of
the other user’s information may only be applied to certain situations where the transmitters share
information through a separate channel. The assumption of causally sensing the environment is more
realistic in many cases of distinct transmitters. Nevertheless, the cognitive transmitter will most likely
acquire a noisy version of the information limiting its ability to cooperate. In addition, sensing the
environment involves complicated implementations of the transmitter as well as power consumption
for which the cognition improvement is weighed against. Nevertheless, the improved transmission
rates achieved via cognitive schemes motivate their integration into various wireless systems such
as Wi-Fi and Cellular networks. We note that cribbing requires parallel receiver/transmit technology
(duplex operation), which is useful and usually available, as in the 5G systems. Although receiving
much attention recently ([15,16]), many of the fundamental problems of cognitive multi-terminal
networks remain unsolved.

In this paper we investigated some cognitive aspects of multi-terminal communication networks.
We introduced the MA-CZIC as generalization of a compound cognitive multi-terminal network. The
MA-CZIC incorporates various multi-terminal communication channels—MAC, Z-IFC—as well as
several cognition aspects—cooperation and cribbing. For the MA-CZIC we have drawn inner and
outer bounds on its capacity region. In an effort to better characterize the capacity region, we studied
the extreme points of the achievability region, and were able to find the capacity region in the case
the channel is more-capable. Furthermore, we investigated some variations of the channel regarding
the nature of cooperation between the cognitive encoder—Encoder 2—and the non-cognitive encoder
sharing its receiver—Encoder 1. The case in which Encoder 2 has better cognition abilities and obtains
full knowledge of Encoder 1’s message was investigated. Furthermore, the case where Encoder 2 has
worse cognition abilities and cribs from Encoder 1 via a deterministic function, such as quantizer,
was studied.

As for possible future work, several directions can be considered. First, it would be interesting to
identify some concrete non-trivial channel specification for which the MA-CZIC inner and outer bounds
coincide, at least in partial regions. Finding such a channel may help us get insight about the capacity
region as well as the margins given by the inner and outer bounds. Moreover, the characterization of
the capacity region may be further improved by examining different interference regimes. Determining
the exact capacity region for the MA-CZIC will subsequently result in the capacity region for the
cognitive Z-IFC [36] as a special case. We believe that the opposite derivation also applies; i.e., the
capacity region of the MA-CZIC will follow from the capacity region of the cognitive Z-IFC. Our
model assumed that the cognitive transmitter—transmitter 2—has full non-causal knowledge of the
interference signal X3. While modeling the interference signal as a transmitter is very realistic in many
scenarios, the assumption of non-causal knowledge of the signal, may not hold in practice in case the
cognitive transmitter has sensing capabilities but not shared information. Therefore, the model where
transmitter 2 cribs from transmitter 3 is very much in place, and it would be very interesting to see if it
is possible to determine the capacity region for the channel. Possible iprovement of the achievable
bounds may incorporate the fact that X3 is associated with a coding scheme, and hence the interference
can be mitigated by partial/full decoding, with possible aid of the cognizant transmitter 2.



Entropy 2017, 19, 378 14 of 33

Acknowledgments: This work was supported by the Heron consortium via the Israel ministry of economy
and science.

Author Contributions: All three authors cooperated in the theoretical research leading to the reported results
and in composing this submitted paper.

Conflicts of Interest: The founding sponsors had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

MAC Multiple-Access Channel
IFC Interference Channel
OFDMA Orthogonal Frequency-Division Multiple Access
HK Han-Kobayashi
QoS Quality of Service
DF Decode and Forward
AF Amplify and Forward
CIFC Cognitive Interference Channel
MA-CZIC Multiple-Access Cognitive Z-Interference Channel
P2P point-to-point
RV Random Variable
AEP Asymptotic Equipartition Property

Appendix A

Proof of Theorem 1. Below is a description of the random coding scheme we use to prove achievability
of rate-triples inRsc, the analysis of the average probability of error is omitted.

We propose the following coding scheme, which includes Block–Markov superposition coding,
backward decoding, rate splitting and Gelfand–Pinsker coding [41]. The coding scheme combines the
coding techniques of [36] with that of [27], which, in turn, is based on the coding technique of [26,29].

For a fixed distribution PV PLPX3|LPX1|V PUX2|VLX3
the coding schemes are as follows:

Appendix A.1. Encoder 3 and Decoder 3 Coding Scheme

Appendix A.1.1. Encoder 3 Codebook generation

Generate independently 2nγ codewords l = (l1, ... , ln), each with probability Pr(l) = ∏n
i=1 pL(li).

These codewords constitute the inner codebook of Transmitter 3. Denote them as l(k) where
k ∈ {1, ..., 2nγ}. For each codeword l(k), generate 2n(R3−γ) codewords x3 = (x3,1, ..., x3,n), each
with probability Pr(x3|l(k)) = ∏n

i=1 PX3|L(x3,i|li(k)). Denote them as x3(j, k), j = 1, ..., 2n(R3−γ).

The codewords {x3(j, k)}2n(R3−γ)

j=1 constitute the outer codebook of Transmitter 3 associated with the
codeword l(k).

Appendix A.1.2. Encoding Scheme of Encoder 3

Encoder 3 splits its message W3 into two independent parts W3 = (W3a, W3b), with rates γ and
R3 − γ respectively. For W3a = w3a and W3b = w3b it transmits x3(w3a, w3b).

Appendix A.1.3. Receiver 3 Decoding

Receiver 3 looks for ŵ3 = (ŵ3a, ŵ3b) such that(
l(ŵ3a), x3(ŵ3a, ŵ3b), z

)
∈ Aε(L, X3, Z).
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If no such ŵ3 exists an error is declared, and if there exists more than one ŵ3 that satisfies the condition,
the decoder chooses ŵ3 at random among them.

Appendix A.2. Encoder 1, Encoder 2 and Main Decoder Coding Scheme

We consider B Blocks, each of n symbols. A sequence of B− 1 message pairs (W(b)
1 , W(b)

2 ) for
b = 1, ..., B− 1, will be transmitted during B transmission blocks. As B→ ∞, for a fixed n, the rate pair
of the message (W1, W2), (R̃1, R̃2) = (R1(B− 1)/B, R2(B− 1)/B) converges to (R1, R2).

Appendix A.2.1. Encoder 1 Codebook generation

Generate 2nR1 codewords v = (v1, ..., vn), each with probability Pr(v) = ∏n
i=1 PV(vi). These

codewords constitute the inner codebook of Transmitter 1. Denote them as v(w0) , where
w0 ∈ {1, ..., 2nR1}. For each codeword v(w0) generate 2nR1 codewords x1, each with probability
Pr(x1|v(w0)) = ∏n

i=1 PX1|V(x1,i|vi(w0)). These codewords, {x1}, constitute the outer codebook of
Transmitter 1 associated with v(w0). Denote them as x1(w1, w0) where w0 is as before, representing the
index of the codeword v(w0) in the inner codebook and w1 ∈ {1, ..., 2nR1} the index of the codeword
x1 in the associated outer codebook.

Appendix A.2.2. Encoding Scheme of Encoder 1

Given W(b)
1 = w(b)

1 ∈ {1, ..., 2nR1} for b = 1, 2, ..., B, we define w(b+1)
0 = w(b)

1 for b = 1, 2, ..., B− 1.
In block 1 Encoder 1 sends

x(1)1 = x1(w
(1)
1 , 1),

in block b = 2, 3, ..., B− 1 Encoder 1 sends

x(b)1 = x1(w
(b)
1 , w(b)

0 )

and in block B Encoder 1 sends
x(B)

1 = x1(1, w(B)
0 )

Appendix A.2.3. Encoder 2 Codebook Generation

This encoder’s codebook is based on both Encoder 1 and Encoder 3 inner codebooks. For each
two codewords v(w0) and l(k) generate 2n(R2+β) codewords u = (u1, ..., un), each with probability
Pr(u|v(w0)l(k)) = ∏n

i=1 pU|VL(ui|vi(w0)li(k)). These codewords constitute Encoder 2’s codebook
associated with v(w0) and l(k). Randomly partition each of the codebooks into 2nR2 bins, each
consisting of 2nβ codewords. Now label the codewords by u(w0, w2, w3a, t), where the codebook is
chosen according to v(w0) and l(w3a), w2 ∈ {1, ..., 2nR2} defines the bin according to Encoder 2’s
message, and t ∈ {1, ..., 2nβ} is the index within the bin.

Appendix A.2.4. Encoding Scheme of Encoder 2

Given (w(b)
0 , w(b)

1 , w(b)
3 ) as before and W(b)

2 = w(b)
2 ∈ {1, ..., 2nR2}, search for the lowest

t ∈ {1, ..., 2nβ} such that u(b) = u(w(b)
0 , w(b)

2 , w(b)
3a , t) is jointly typical with the triplet(

v(w(b)
0 ), l(w(b)

3a ), x3(w
(b)
3 )
)
, denoting that t as t(w(b)

0 , w(b)
2 , w(b)

3 ). If such a t is not found or if the

triplet
(
v(w(b)

0 ), l(w(b)
3a ), x3(w

(b)
3 )
)

is not jointly typical, an error is declared and t(w(b)
0 , w(b)

2 , w(b)
3 ) = 1.

Now, create the codeword x(b)2 = x2(w
(b)
0 , w(b)

2 , w(b)
3 ) by drawing its components i.i.d. conditionally on

the quadruple
(
v(w(b)

0 ), l(w(b)
3a ), u(w(b)

0 , w(b)
2 , w(b)

3a , t), x3(w
(b)
3 )
)
, where the conditional law is induced

by (10).



Entropy 2017, 19, 378 16 of 33

In block 1 Encoder 2 sends
x2(1, w(1)

2 , w(1)
3 ).

As a result of cribbing from Encoder 1, before the beginning of block b = 2, 3, ..., B, Encoder 2 has
an estimate ˆ̂w(b)

0 for w(b)
0 . Then, for b = 2, 3, ..., B− 1, Encoder 2 sends

x2( ˆ̂w(b)
0 , w(b)

2 , w(b)
3 )

and in block B Encoder 2 sends
x2( ˆ̂w(B)

0 , 1, w(B)
3 ).

Schematic description of the encoding appears in Figure A1.

Figure A1. A schematic description of the codebooks hierarchy and encoding procedure at the
three encoders.

Appendix A.2.5. Decoding at the Primary Receiver (g1)

After receiving B blocks the decoder uses backward decoding starting from decoding block B
moving on downward to block 1. In block B the receiver looks for ŵ(B)

0 = ŵ(B−1)
1 such that

(
v(ŵ(B−1)

1 ), x1(1, ŵ(B−1)
1 ), u(ŵ(B−1)

1 , 1, w(B)
3a , t), l(w(B)

3a ), y(B)) ∈ Aε(V, X1, U, L, Y)
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for some w(B)
3a , where t = t(ŵ(B−1)

1 , 1, w(b)
3 ).

At block b = 1, 2, ..., B− 1, assuming that a decoding was done backward down to (and including)
block b + 1, the receiver decoded ŵ(B−1)

1 , (ŵ(B−1)
2 , ŵ(B−2)

1 ), ..., (ŵ(b+1)
2 , ŵ(b)

1 ). Then, to decode block b,

the receiver looks for (ŵ(b)
2 , ŵ(b−1)

1 ) such that

(
v(ŵ(b−1)

1 ), x1(ŵ
(b)
1 , ŵ(b−1)

1 ), u(ŵ(b−1)
1 , ŵ(b)

2 , w(b)
3a , t), l(w(b)

3a ), y(b)) ∈ Aε(V, X1, U, L, Y)

for some w(b)
3a , where t = t(ŵ(b−1)

1 , ŵ(b)
2 , w(b)

3 ).

Appendix A.2.6. Decoding at Encoder 2

To obtain cooperation, after block b = 1, 2, ..., B− 1, Encoder 2 chooses w̃(b)
1 such that

(
v(w̃(b)

0 ), x1(w̃
(b)
1 , w̃(b)

0 ), x(b)1
)
∈ Aε(V, X1, X1)

where w̃0
(b) = w̃(b−1)

1 was determined at the end of block b− 1 and w̃(1)
0 = 1.

At each of the decoders, if a decoding step either fails to recover a unique index (or index pair)
which satisfies the decoding rule, or there is more than one index (or index pair), then an index
(or index pair) is chosen at random among the indices which satisfies the decoding rule.

It can be shown that the error probability will be arbitrarily small if (9a)–(9d) hold.

Appendix A.3. Bounding the Probability of Error

We define the error events E(b)
0 − E(b)

7 as follows:

• E(b)
0 : Codebook error, the codewords v,x1,l,x3 are not jointly typical. That is

(
v(w(b)

0 ), x1(w
(b)
1 , w(b)

0 )
)

/∈ Aε(V, X1) ∪
(
l(w(b)

3a ), x3(w
(b)
3a , w(b)

3b )
)

/∈ Aε(L, X3)

• E(b)
1 : Error decoding w(b)

1 at Encoder 2, that is, there exists w̃(b)
1 6= w(b)

1 such that

(
v(w(b)

0 ), x1(w̃
(b)
1 , w(b)

0 ), x(b)1
)
∈ Aε(V, X1, X1) (A1)

• E(b)
2 : Encoding error at Encoder 2, no suitable encoding index t. That is, there is no t ∈ {1, ..., 2nβ}

such that (
v(w(b)

0 ), l(w(b)
3a ), u(w(b)

0 , w(b)
2 , w(b)

3a , t), x3(w
(b)
3a , w(b)

3b )
)
∈ Aε(V, L, U, X3)

• E(b)
3 : Channel error, one or more of the input signals is not jointly typical with the outputs y and z.

That is (
v(w(b)

0 ), u(w(b)
0 , w(b)

2 , w(b)
3a , t), x1(w

(b)
1 , w(b)

0 ), l(w(b)
3a ), x3(w

(b)
3a , w(b)

3b ), y(b), z(b)
)

/∈ Aε(V, U, X1, L, X3, Y, Z) (A2)

• E(b)
4 : Codebook error in decoding w(b)

3a at either one of the decoders, a false message was detected.

That is, there exists w̃(b)
3a 6= w(b)

3a such that

(
l(w̃(b)

3a ), y(b)) ∈ Aε(L, Y) ∪
(
l(w̃(b)

3a ), z(b)
)
∈ Aε(L, Z)

• E(b)
5 : Codebook error in decoding w(b)

0 . There exists w̃(b)
0 6= w(b)

0 such that

(
v(w̃(b)

0 ), u(w̃(b)
0 , j, w(b)

3a , t), x1(w
(b)
1 , w̃(b)

0 ), l(w(b)
3a ), y(b)) ∈ Aε(V, U, X1, L, Y)
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for some pair (j, t) j ∈W2, t ∈ {1, ..., 2nβ}.
• E(b)

6 : Codebook error in decoding w(b)
2 . There exists a different bin w̃(b)

2 6= w(b)
2 , such that

(
v(w(b)

0 ), u(w(b)
0 , w̃(b)

2 , w(b)
3a , t), x1(w

(b)
1 , w(b)

0 ), l(w(b)
3a ), y(b)) ∈ Aε(V, U, X1, L, Y)

for some t ∈ {1, ..., 2nβ}.
• E(b)

7 : Codebook error in decoding w(b)
3b . There exists w̃(b)

3b 6= w(b)
3b such that

(
l(w(b)

3a ), x3(w
(b)
3a , w̃(b)

3b ), z(b)
)
∈ Aε(L, X3, Z)

Notice that when Encoder 2 observes x1 error-free, as in this setup, the error event E(b)
1 (A1) can

be replaced with the explicit case of having two identical codewords in {x1} codebook, i.e, there exists
w̃(b)

1 6= w(b)
1 such that x1(w̃

(b)
1 , w(b)

0 ) = x(b)1 .

We now define the events Fi, i = 0 . . . 5 as follows:

• F0 ,
⋃B

b=1 E(b)
0

• F1 ,
⋃B

b=1(E(b)
0 ∪ E(b)

1 )

• F2 ,
⋃B

b=1(E(b)
0 ∪ E(b)

1 ∪ E(b)
2 )

• F3 ,
⋃B

b=1(E(b)
0 ∪ E(b)

1 ∪ E(b)
2 ∪ E(b)

3 )

• F4 ,
⋃B

b=1(E(b)
0 ∪ E(b)

1 ∪ E(b)
2 ∪ E(b)

3 ∪ E(b)
4 )

• F(b)
5 ,

⋃7
i=5 E(b)

i , b = 1, ..., B

We upper bound the average probability of error P̄e averaged over all codebooks and all random
partitions, as in [27], by

P̄e ≤
B

∑
b=1

{
Pr[E(b)

0 ] + Pr[E(b)
1 |F

c
0 , E(1...b−1)C

1 ]
}
+

B

∑
b=1

{
Pr[E(b)

2 |F
c
1 ] + Pr[E(b)

3 |F
c
2 , E(1...b−1)C

3 ]
}

+
B

∑
b=1
{Pr[E(b)

4 |F
c
3 ] + Pr[F(b)

5 |F
c
4 , F(b+1...B)C

5 ]} (A3)

where F(1...b−1)C
denotes the complement of the event

⋃b−1
i=1 F(i).

Furthermore, we can upper bound each of the summands in the last component of (A3) by the
union bound as

Pr[F(b)
5 |F

c
4 , F(b+1...B)C

5 ]

=Pr
( 7⋃

i=5

E(b)
i |F

c
4 , F(b+1...B)C

5

)

≤
7

∑
i=5

Pr(E(b)
i |F

c
4 , F(b+1...B)C

5 ). (A4)

Now, we can separately examine and upper bound each of the summands in (A3):

• By the Asymptotic Equipartition Property (AEP) [40], Pr[E(b)
0 ]→ 0 as n→ ∞.

• In the second summand, Pr[E(b)
1 |Fc

0 , E(1...b−1)C

1 ], the conditioning on Fc
0 , E(1...b−1)C

1 insures that

(x(b)1 , v(b)) are jointly typical, and that Encoder 2 decoded correctly all the previous messages

w(1)
1 , ..., w(b−1)

1 and specifically w(b)
0 (= w(b−1)

1 ). Since each codeword x1(·, w(b)
0 ) is drawn i.i.d.

given w(b)
0 , from the strong typicality Lemma we get

Pr[E(b)
1,j |F

c
0 , E(1...b−1)C

1 ] ≤ 2−n[H(X1|V)−ε], ∀j 6= w(b)
1 (A5)
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where E(b)
1,j is the event

(
v(w(b)

0 ), x1(j, w(b)
0 ), x(b)1

)
∈ Aε(V, X1, X1). (A6)

Assuming, without loss of generality, that w(b)
1 = 1, we get by using the union bound

Pr[E(b)
1 |F

c
0 , E(1...b−1)C

1 ] ≤
2nR1

∑
j=2

Pr[E(b)
1,j |F

c
0 , E(1...b−1)C

1 ] ≤ (2nR1 − 1)× 2−n[H(X1|V)−ε].

Hence for
R1 ≤ H(X1|V)− ε (A7)

we get Pr[E(b)
1 |Fc

0 , E(1...b−1)C

1 ]→ 0 as n→ ∞.
• Since the codewords {u} are generated in an i.i.d. manner we have

E(b)
2 =

2nβ⋂
t=1

E(b)
2,t (A8)

where E(b)
2,t is the event

(
v(w(b)

0 ), l(w(b)
3a ), u(w(b)

0 , w(b)
2 , w(b)

3a , t), x3(w
(b)
3 )
)

/∈ Aε(V, L, U, X3)

for a specific index t. Hence, we have

Pr[E(b)
2 |F

c
1 ] =

2nβ

∏
t=1

Pr[E(b)
2,t |F

c
1 ]. (A9)

Conditioning on V and L in ([41], Lemma 3) we get

Pr[E(b)
2,t |F

c
1 ] ≤ 1− 2−n[I(U;X3|VL)+ε1] (A10)

for all t ∈ {1, ..., 2nβ}, where ε1 → 0 as ε→ 0. Hence

Pr[E(b)
2 |F

c
1 ] ≤ (1− 2−n[I(U;X3|VL)+ε1])2nβ

. (A11)

The expression converges to 0 as n→ ∞ for

β > I(U; X3|VL) + ε1. (A12)

• By the AEP Pr[E(b)
3 |Fc

2 , E(1...b−1)C

3 ]→ 0 as n→ ∞.
• If

γ ≤ min{I(L; Y), I(L; Z)} (A13)

then, from joint typicality decoding, Pr[E(b)
4 |Fc

3 ]→ 0 as n→ ∞ .
• We state that

Pr[E(b)
5 |F

c
4 , F(b+1...B)C

5 ] ≤
2nR1

∑
i=1

2nR2

∑
j=1

2nβ

∑
t=1

Pr[E(b)
5,ijt|F

c
4 , F(b+1...B)C

5 ]

where E(b)
5,ijt stands for the event

(
v(i), u(i, j, w(b)

3a , t), x1(w
(b)
1 , i), l(w(b)

3a ), y(b)) ∈ Aε(V, U, X1, L, Y).
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By using the strong typicality Lemma we bound each of the summands above

Pr[E(b)
5,ijt|F

c
4 , F(b+1...B)C

5 ] ≤ 2n[H(VUX1LY)+ε]

2n[H(VUX1L)−ε]2n[H(Y|L)−ε]

= 2−n[I(UVX1;Y|L)−3ε].

Summing over all codewords we get

Pr[E(b)
5 |F

c
4 , F(b+1...B)C

5 ] ≤ 2−n[I(UVX1;Y|L)+3ε]2n(R1+R2+β).

Therefore, if
R1 + R2 + β ≤ I(VUX1; Y|L) + 3ε (A14)

then Pr[E(b)
5 |Fc

4 , F(b+1...B)C

5 ]→ 0 as n→ ∞.
• Similarly, using the same technique as the previous step, if

R2 + β ≤ I(U; Y|VLX1) + 3ε (A15)

then Pr[E(b)
6 |Fc

4 , F(b+1...B)C

5 ]→ 0 as n→ ∞.
• Finally, if

R3 − γ ≤ I(X3; Z|L) (A16)

then Pr[E(b)
7 |Fc

4 , F(b+1...B)C

5 ]→ 0 as n→ ∞.

From (A7)–(A16) we get (9a)–(9d), thus concluding the proof.

Appendix B

Outline of the Proof of Theorem 2:

The achievability part follows similarly to that of Theorem 1, the only difference being in
the way the codeword x2( ˆ̂w(b)

0 , w(b)
2 , w(b)

3 ) is generated. Here, the second encoder generates the

codeword x2( ˆ̂w(b)
0 , w(b)

2 , w(b)
3 ) by drawing its components i.i.d. conditionally on the quintuple(

v(w(b)
0 ), l(w(b)

3a ), u(b), x(b)3 , x(b)1
)
, where the conditional law is induced by (11).

Appendix C

Proof of Theorem 3—Strictly Causal MA-CZIC Outer Bound. Consider an (2nR1 , 2nR2 , 2nR3 , n) code
with average block error probability P(n)

e = nεn, and a probability distribution onW1 ×W2 ×W3 ×
X1 ×X2 ×X3 ×Y ×Z given by

pW1W2W3Xn
1 Xn

2 Xn
3 Yn Zn = pW1 pW2 pW3 1{Xn

1= f1(W1)}1{Xn
3= f3(W3)} ·

n

∏
i=1

pX2i |W2W3Xi−1
1

pYi |X1i X2i X3i
pZi |X3i

. (A17)

For i ∈ {1, 2, ..., n}, let Vi, Li and Ui be the random variables defined by

Vi , Xi−1
1 , Li , (Yi−1, Zn

i+1), Ui , W2. (A18)

and let U be the random variable defined by further defining Q to be an auxiliary (time-sharing)
random variable that is distributed uniformly on the set {1, 2, ..., n}, and let

V , (VQ, Q), X1 , X1Q, L , (LQ, Q),

X3 , X3Q, Y , YQ, Z , ZQ, U , UQ. (A19)
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We start with an upper bound on R1

nR1 = H(W1|W2)

= I(W1; Yn|W2) + H(W1|W2Yn)

≤ I(W1; Yn|W2) + nεn

(a)
= I(Xn

1 ; Yn|W2) + nεn

=
n

∑
i=1

I(X1i; Yn|W2Xi−1
1 ) + nεn

≤
n

∑
i=1

H(X1i|Xi−1
1 ) + nεn

=
n

∑
i=1

H(X1i|Vi) + nεn

= H(X1Q|VQQ) + nεn

= H(X1|V) + nεn, (A20)

where (a) follows from the encoding relation in (2).
Next, consider R3

nR3 = H(W3)

= I(W3; Zn) + H(W3|Zn)

≤ I(W3; Zn) + nεn

= H(Zn)− H(Zn|W3) + nεn

(b)
≤ H(Zn)− H(Zn|W3Xn

3 ) + nεn

(c)
= H(Zn)− H(Zn|Xn

3 ) + nεn

(d)
= H(Zn)−

n

∑
i=1

H(Zi|X3i) + nεn, (A21)

where (b) follows from the fact that conditioning decreases entropy, (c) follows from the Markov chain
W3 − Xn

3 − Zn and (d) follows since the channel PZ|X3
is memoryless.

Using the Csiszár-Körner’s identity ([43], Lemma 7) we obtain

H(Yn)− H(Zn) =
n

∑
i=1

[H(Yi|Yi−1Zn
i+1)

− H(Zi|Yi−1Zn
i+1)]

=
n

∑
i=1

[H(Yi|Li)− H(Zi|Li)], (A22)

where the last equality follows from (A18). Substituting (A19) into (A22) we get

1
n
(H(Yn)− H(Zn)) = H(Y|L)− H(Z|L). (A23)

Notice that (A23) implies that there exists a number γ where

γ =
1
n

H(Yn)− H(Y|L) = 1
n

H(Zn)− H(Z|L) (A24)
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0 ≤ γ ≤ min{I(L; Y), I(L; Z)} (A25)

where the right inequality of (A25) follows since H(Yn) ≤ nH(Y) and H(Zn) ≤ nH(Z), and the left
inequality follows since

H(Yn) =
n

∑
i=1

H(Yi|Yi−1) ≥
n

∑
i=1

H(Yi|Yi−1Zn
i+1) = nH(Y|L). (A26)

Following from (A21) we have

R3 ≤
1
n

H(Zn)− 1
n

n

∑
i=1

H(Zi|X3i) + εn

(e)
= H(Z|L) + γ− H(Z|X3Q) + εn

( f )
= H(Z|L) + γ− H(Z|X3) + εn

≤ H(Z|L)− H(Z|X3) + min{I(L; Y), I(L; Z)}+ εn

(g)
= H(Z|L)− H(Z|X3L) + min{I(L; Y), I(L; Z)}+ εn

= I(X3; Z|L) + min{I(L; Y), I(L; Z)}+ εn, (A27)

where (e) follows from (A24) and the definitions of random variables in (A19); ( f ) follows since the
channel PZ|X3

is memoryless, and (g) follows from the Markov chain L− X3 − Z.
Next, consider R2

R2 =
1
n

H(W2|W1)

≤ 1
n

I(W2; Yn|W1) + εn

=
1
n

H(Yn|W1)−
1
n

H(Yn|W1W2) + εn. (A28)

By conditioning (A22) on W1 we get

H(Yn|W1)− H(Zn|W1) =
n

∑
i=1

[H(Yi|Yi−1Zn
i+1W1)− H(Zi|Yi−1Zn

i+1W1)]

(h)
=

n

∑
i=1

[H(Yi|Yi−1Zn
i+1W1X1iXi−1

1 )− H(Zi|Yi−1Zn
i+1W1Xi−1

1 )]

(i)
=

n

∑
i=1

[H(Yi|Yi−1Zn
i+1X1iXi−1

1 )− H(Zi|Yi−1Zn
i+1Xi−1

1 )]

=
n

∑
i=1

[H(Yi|LiX1iVi)− H(Zi|LiVi)], (A29)

and hence
1
n

H(Yn|W1) =
1
n

n

∑
i=1

[H(Yi|LiX1iVi)− H(Zi|LiVi)] +
1
n

H(Zn|W1), (A30)

where (h) follows from the encoding relation in (2) and (i) follows since W1 − (X1i, Xi−1
1 , Yi−1)− Yi

and W1 − (Xi−1
1 , Yi−1, Zn

i+1)− Zi are Markov chains.
In the same manner, conditioning (A22) on (W1, W2) yields
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1
n

H(Yn|W1W2) =
1
n

n

∑
i=1

[H(Yi|LiX1iViW2)− H(Zi|LiViW2)] +
1
n

H(Zn|W1W2). (A31)

Substituting (A30) and (A31) into (A28) we get

R2 ≤
1
n

n

∑
i=1

[H(Yi|LiX1iVi)− H(Zi|LiVi)] +
1
n

H(Zn|W1)−
1
n

H(Zn|W1W2)

− 1
n

n

∑
i=1

[H(Yi|LiX1iViW2)− H(Zi|LiViW2)] + εn

(j)
=

1
n

n

∑
i=1

[H(Yi|LiX1iVi)− H(Zi|LiVi)]−
1
n

n

∑
i=1

[H(Yi|LiX1iViW2)− H(Zi|LiViW2)] + εn

(k)
= H(YQ|LQX1QVQQ)− H(ZQ|LQVQQ)− H(YQ|LQX1QVQUQQ) + H(ZQ|LQVQUQQ) + εn

= I(UQ; YQ|VQX1QLQQ)− I(UQ; ZQ|VQLQQ) + εn

(l)
= I(U; Y|LX1V)− I(U; Z|LV) + εn, (A32)

where (j) follows since Zn is independent of (W1, W2) and therefore H(Zn|W1) = H(Zn|W1W2) =

H(Zn), (k) follows from the definitions of random variables in (A19), and (l) follows since the channel
PY|X1X2X3

PZ|X3
is memoryless.

Finally, we consider the sum-rate R1 + R2

R1 + R2 =
1
n

H(W1W2)

≤ 1
n

I(W1W2; Yn) + εn

=
1
n

H(Yn)− 1
n

H(Yn|W1W2) + εn

(m)
=

1
n

n

∑
i=1

[H(Yi|Li)− H(Zi|Li)] + εn +
1
n

H(Zn)− 1
n

H(Zn|W1W2)

− 1
n

n

∑
i=1

[H(Yi|LiX1iViW2)− H(Zi|LiViW2)]

(n)
=

1
n

n

∑
i=1

[H(Yi|Li)− H(Zi|Li)] + εn −
1
n

n

∑
i=1

[H(Yi|LiX1iViW2)− H(Zi|LiViW2)]

(o)
= H(YQ|LQQ)− H(ZQ|LQQ) + εn − H(YQ|LQX1QVQUQQ) + H(ZQ|LQVQUQQ)

= I(VQUQX1Q; YQ|LQQ)− I(VQUQ; ZQ|LQQ) + εn

(p)
= I(VUX1; Y|L)− I(VU; Z|L) + εn, (A33)

where (m) follows from (A22) and (A31), (n) follows since Zn is independent of W1 and W2 and
therefore H(Zn|W1) = H(Zn|W1W2) = H(Zn), (o) follows from the definitions of random variables
in (A19), and (p) follows since the channel PY|X1X2X3

PZ|X3
is memoryless.

It remains to show that the joint law of the auxiliary random variables satisfy (20); i.e., we wish to
show that the RVs Vi, Ui and Li as chosen in (A18) satisfy

pUkVk LkX1,kX2,kX3,k = pVk pX1,k |Vk
pX3,k pLk |VkX3,k

pUk |LkVkX3,k
pX2,k |UkVkX3,k Lk

. (A34)

From (A17) and the encoding rules (2)–(4) we may write

pW1W2W3Xk
1Xk

2Xn
3 Yk−1Zn

= pW1 pXk−1
1 |W1

pX1,k |W1Xk−1
1

pW3 pXn
3 |W3
· pZn |Xn

3
pW2 pXk

2 |W2Xk−1
1 W3

pYk−1|Xk−1
1 Xk−1

2 Xk−1
3

.
(A35)
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Since pW3 pXn
3 |W3

= pXn
3

pW3|Xn
3
, summing this joint law over w1, w3 and all possible sub-sequences

zk we obtain

pW2Xk
1Xk

2Xn
3 Yk−1Zn

k+1

= ∑
w1,w3,zk

pW1W2W3Xk
1Xk

2Xn
3 Yk−1Zn

=pXk−1
1

pX1,k |Xk−1
1

pXn
3

pZn
k+1|X

n
3,k+1
· pW2 pXk

2 |W2Xk−1
1 Xn

3
pYk−1|Xk−1

1 Xk−1
2 Xk−1

3

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pXk−1
3 |X3.k

pXn
3,k+1|X

k−1
3 X3,k

· pZn
k+1|X

n
3,k+1

pW2 pXk
2 |W2Xk−1

1 Xk−1
3 X3,kXn

3,k+1
· pYk−1|Xk−1

1 Xk−1
2 Xk−1

3
. (A36)

From the memorylessness of the channel we get

pX3,k pXk−1
3 |X3.k

pXn
3,k+1|X

k−1
3 X3,k

pZn
k+1|X

n
3,k+1

=pXk−1
3 X3,kXn

3,k+1Zn
k+1

=pX3,k pZn
k+1|X3,k

pXk−1
3 |X3.kZn

k+1
pXn

3,k+1|X
k−1
3 X3,kZn

k+1
. (A37)

From (A37), summing the joint law in (A36) over all possible sub-sequences xn
3,k+1 we obtain

pW2 Xk
1Xk

2Xk
3Yk−1Zn

k+1

= ∑
xn

3,k+1

pW2Xk
1Xk

2Xn
3 Yk−1Zn

k+1

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pZn
k+1|X3,k

pXk−1
3 |Zn

k+1X3,k
pW2 pXk

2 |W2Xk−1
1 Xk−1

3 X3,kZn
k+1

pYk−1|Xk−1
1 Xk−1

2 Xk−1
3

. (A38)

From the memoryless property of the channel we may write

pXk
2 |W2 Xk−1

1 Xk−1
3 X3,kZn

k+1
pYk−1|Xk−1

1 Xk−1
2 Xk−1

3

=pX2,k |W2Xk−1
1 Xk−1

2 Xk−1
3 X3,kZn

k+1
· pXk−1

2 |W2Xk−1
1 Xk−1

3 X3,kZn
k+1
· pYk−1|Xk−1

1 Xk−1
2 Xk−1

3 W2X3,kZn
k+1

=pX2,kYk−1|W2Xk−1
1 Xk−1

2 Xk−1
3 X3,kZn

k+1
· pXk−1

2 |W2Xk−1
1 Xk−1

3 X3,kZn
k+1

. (A39)

Summing (A38) over all possible sub-sequences (xk−1
2 , xk−1

3 ) and using (A39) we obtain

pW2 Xk
1X2,kX3,kYk−1Zn

k+1

= ∑
(xk−1

2 ,xk−1
3 )

pW2Xk
1Xk

2Xk
3Yk−1Zn

k+1

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pZn
k+1|X3,k

pW2 pX2,kYk−1|W2Xk−1
1 X3,kZn

k+1

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pZn
k+1|X3,k

pW2 pX2,k |W2Xk−1
1 X3,kYk−1Zn

k+1
pYk−1|W2Xk−1

1 X3,kZn
k+1

. (A40)

From the encoding rules (2)–(4) it holds that pZn
k+1|X3,k

= pZn
k+1|W2Xk−1

1 X3,k
, hence we can

write (A40) as

pW2 Xk
1X2,kX3,kYk−1Zn

k+1

=pW2Xk−1
1 X1,kX2,kX3,kYk−1Zn

k+1

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pW2 · pX2,k |W2Xk−1
1 X3,kYk−1Zn

k+1
pYk−1Zn

k+1|W2Xk−1
1 X3,k

. (A41)
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From (A41) and (A18) we get

pUkVk LkX1,kX2,kX3,k = pVk pX1,k |Vk
pX3,k pUk pX2,k |UkVkX3,k Lk

pLk |UkVkX3,k
. (A42)

Using the identity

pLk |UkVkX3,k
=

pUk |LkVkX3,k
pLkVkX3,k

pUkVkX3,k

=
pUk |LkVkX3,k

pLk |VkX3,k
pVk pX3,k

pUk pVk pX3,k

=
pUk |LkVkX3,k

pLk |VkX3,k

pUk

(A43)

in (A42) we get (20), thus establishing the desired form of the probability function.

Appendix D

Outline of the proof of Theorem 4—Causal MA-CZIC Outer Bound:

The outer-bound for the causal MA-CZIC follows similarly to that of Theorem 2. Consider
an (2nR1 , 2nR2 , 2nR3 , n) code with average block error probability P(n)

e = nεn, and a probability
distribution onW1 ×W2 ×W3 ×X1 ×X2 ×X3 ×Y ×Z given by

pW1W2W3Xn
1 Xn

2 Xn
3 YnZn = pW1 pW2 pW31{Xn

1= f1(W1)}1{Xn
3= f3(W3)} ·

n

∏
i=1

pX2i |W2W3Xi
1
pYi |X1iX2iX3i

pZi |X3i
. (A44)

The inequalities for the causal cribbing case are identical to (A20), (A27), (A32) and (A33).
It remains to obtain the joint law of the random variables.

It can be seen that in this case (A41) becomes

pW2 Xk
1X2,kX3,kYk−1Zn

k+1

=pW2Xk−1
1 X1,kX2,kX3,kYk−1Zn

k+1

=pXk−1
1

pX1,k |Xk−1
1

pX3,k pW2 · pX2,.k |W2Xk−1
1 X1,kX3,kYk−1Zn

k+1
pYk−1Zn

k+1|W2Xk−1
1 X3,k

(A45)

and using (A43) we get from (A45)

pUkVk LkX1,kX2,kX3,k = pVk pX1,k |Vk
pX3,k pLk |VkX3,k

pX2,.k |VkX1,kX3,k Lk
pUk |LkVkX3,k

. (A46)

Appendix E

Proof of Theorem 5—More Capable Channel—Strictly Causal Case. Proof of the Converse Part:
For i ∈ {1, 2, ..., n}, let Vi be defined as in (A18). Define Q to be an auxiliary random variable that is
distributed uniformly on the set {1, 2, ..., n}, and let V, X1, X2, X3 be defined as in (A19).

We bound R1 as in (A20), we get

R1 ≤ H(X1|V). (A47)
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Next, consider R2

R2 =
1
n

H(W2|W1W3)

≤ 1
n

I(W2; Yn|W1W3) + εn

=
1
n

H(Yn|W1W3)−
1
n

H(Yn|W1W2W3) + εn

=
1
n

n

∑
i=1

[H(Yi|Yi−1W1W3)− H(Yi|Yi−1W1W2W3)] + εn

(a)
=

1
n

n

∑
i=1

[H(Yi|Yi−1W1Xi−1
1 X1iW3X3i)− H(Yi|Yi−1W1Xi−1

1 X1iW2X2iW3X3i)] + εn

(b)
≤ 1

n

n

∑
i=1

[H(Yi|Xi−1
1 X1iX3i)− H(Yi|Yi−1W1Xi−1

1 X1iW2X2iW3X3i)] + εn

(c)
=

1
n

n

∑
i=1

[H(Yi|Xi−1
1 X1iX3i)− H(Yi|Xi−1

1 X1iX2iX3i)] + εn

=
1
n

n

∑
i=1

I(X2i; Yi|Xi−1
1 X1iX3i) + εn

= I(X2Q; YQ|VQX1QX3QQ) + εn

= I(X2; Y|VX1X3) + εn, (A48)

where

(a) follows from the encoding relation in (2)–(4),
(b) follows since conditioning reduces entropy, and
(c) follows since (W1, W2, W3, Xi−1

1 , Yi−1)− (X1i, X2i, X3i)−Yi is a Markov chain.

Next, consider the sum-rate R1 + R2

R1 + R2 =
1
n

H(W1W2|W3)

≤ 1
n

I(W1W2; Yn|W3) + εn

=
1
n

H(Yn|W3)−
1
n

H(Yn|W1W2W3) + εn

=
1
n

n

∑
i=1

[H(Yi|Yi−1W3)− H(Yi|Yi−1W1W2W3)] + εn

(a)
=

1
n

n

∑
i=1

[H(Yi|Yi−1W3X3i)− H(Yi|Yi−1W1Xi−1
1 X1iW2X2iW3X3i)] + εn

(b)
≤ 1

n

n

∑
i=1

[H(Yi|X3i)− H(Yi|Yi−1W1Xi−1
1 X1iW2X2iW3X3i)] + εn

(c)
=

1
n

n

∑
i=1

[H(Yi|X3i)− H(Yi|X1iX2iX3i)] + εn

=
1
n

n

∑
i=1

I(X1iX2i; Yi|X3i) + εn

= I(X1QX2Q; YQ|X3QQ) + εn

= I(X1X2; Y|X3) + εn,

where the reasoning for steps (a)–(c) is as in (A48).
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Finally, clearly

R3 ≤ I(X3; Z). (A49)

Since in this case, the only auxiliary random variable used is V, defined the same as in (A19),
and (27) is a special case of (10), it follows that V satisfies (27).

Proof of the Direct Part: It is easy to verify that the region in (9a)–(9c) contains the region in (25a)–(25d).
To realize this, set X2 = U and L = X3. Hence in (9b), (9c) we get I(U; X3|L = X3) = 0 and
I(U; Z|L = X3) = 0 and both equations coincide with (25b), (25c). The inequality (9a) remains as it is
and (9d) becomes R3 ≤ I(X3; Z) since min{I(L; Y), I(L; Z)} = I(X3; Z) for L = X3 in the more-capable
case. Hence, since the p.m.f, in (27) is a special case of the probability mass function in (10), the region
(25a)–(25d) is achievable thus concluding the proof of Theorem 5.

Appendix F

Outline of the Proof of Theorem 7:

The achievability theorem is based on random coding scheme in addition to superposition
coding, rate-splitting, and Gel’fand-Pinsker binning. However, since there is no cribbing involved, and
Encoder 2 has full knowledge of W1, there is no need of Block–Markov coding and Backward-Decoding,
and the coding scheme becomes simpler than the one used in proving Theorem 1. In what follows,
we sketch the main elements of the encoding and decoding procedures and provide an intuitive
explanation for the proposed choices.

For a distribution PLUX1X2X3 satisfying (37), User 3 uses the same rate-splitting coding technique
as in Appendix A. It encodes one part of W3 by an inner codebook represented by L and the second
part by an outer codebook represented by X3, where the inner codebook can be decoded by both
decoders. Now, User 1 may transmits at rate R′1 = I(X1; Y|L). The cognitive user, User 2, relying on
the fact that L and X1 were decoded by the main decoder, bins U against X3, hence transmitting at rate
R′2 = I(U; Y|LX1)− I(U; X3|LX1). Now the information sent by Encoder 2 at rate R′2 may be shared
between the private message W2 and the common message W1 in such a manner that

R2 ≤ R′2
R1 + R2 ≤ R′1 + R′2

thus, establishing (36a)–(36c).

Appendix G

Outline of the proof of Theorem 8 :

Let the RVs X1, X2, X3, L, V, U, Q be defined as in (A18)–(A19) with the exception of Vi , W1.
We start by bounding R3 as in (A27), thus getting

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)}. (A50)

Next, consider R2

R2 =
1
n

H(W2|W1)

≤ 1
n

I(W2; Yn|W1) + εn

=
1
n

H(Yn|W1)−
1
n

H(Yn|W1W2) + εn.
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Using the identities (A22) and (A31) we get

R2 ≤
1
n

n

∑
i=1

[H(Yi|LiW1)− H(Zi|LiW1)] +
1
n

H(Zn|W1)−
1
n

H(Zn|W1W2)

− 1
n

n

∑
i=1

[H(Yi|LiW1W2)− H(Zi|LiW1W2)] + εn

(a)
=

1
n

n

∑
i=1

[H(Yi|LiW1)− H(Zi|LiW1)]−
1
n

n

∑
i=1

[H(Yi|LiW1W2)− H(Zi|LiW1W2)] + εn

(b)
=

1
n

n

∑
i=1

[H(Yi|LiW1X1i)− H(Yi|LiW1X1iW2)]−
1
n

n

∑
i=1

[H(Zi|LiW1)− H(Zi|LiW1W2)] + εn

=
1
n

n

∑
i=1

[I(W2; Yi|LiW1X1i)− I(W2; Zi|LiW1)] + εn

= I(W2; YQ|LQW1X1QQ)− I(W2; ZQ|LQW1Q) + εn

= I(UQ; YQ|LQVQX1QQ)− I(UQ; ZQ|LQVQQ) + εn

= I(U; Y|LVX1)− I(U; Z|LV) + εn. (A51)

Now, consider the sum-rate R1 + R2

R1 + R2 =
1
n

H(W1W2)

≤ 1
n

I(W1W2; Yn) + εn

=
1
n

H(Yn)− 1
n

H(Yn|W1W2) + εn.

Again, using the identities (A22) and (A31) we get

R1 + R2 ≤
1
n

n

∑
i=1

[H(Yi|Li)− H(Zi|Li)] + εn +
1
n

H(Zn)− 1
n

H(Zn|W1W2)

− 1
n

n

∑
i=1

[H(Yi|LiW1W2)− H(Zi|LiW1W2)]

(a)
=

1
n

n

∑
i=1

[H(Yi|Li)− H(Zi|Li)] + εn −
1
n

n

∑
i=1

[H(Yi|LiW1W2)− H(Zi|LiW1W2)]

(b)
=

1
n

n

∑
i=1

[H(Yi|Li)− H(Yi|LiW1X1iW2)]−
1
n

n

∑
i=1

[H(Zi|Li)− H(Zi|LiW1W2)] + εn

=
1
n

n

∑
i=1

[I(W1W2X1i; Yi|Li)− I(W1W2; Zi|Li)] + εn

= I(W1W2X1Q; YQ|LQQ)− I(W1W2; ZQ|LQQ) + εn

= I(VQUQX1Q; YQ|LQQ)− I(VQUQ; ZQ|LQQ) + εn

= I(VUX1; Y|L)− I(VU; Z|L) + εn, (A52)

where (a) follows since Zn is independent of (W1, W2), (b) follows from the encoding relation in (2).
Similarly to Theorem 3, it can easily be seen that auxiliary random variables defined here satisfy (37).

Appendix H

Proof of Theorem 9—Partial Cribbing MA-CZIC Inner Bound. We introduce the following coding
scheme, based on the coding scheme of Appendix A. The difference from Appendix A is that Encoder 1
now uses rate-splitting in addition to block Markov superposition coding. Encoders 2 and 3 use
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the same coding scheme as in Appendix A. Since the analysis of the average probability of error
is very similar to that of Appendix A, for the sake of brevity we omit it as well as similar parts to
Appendix A which will not be repeated here. For a fixed distribution PV PLPX3|LPX1Y2|V PUX2|VLX3

the
coding schemes are as follows:

Encoder 3 and Decoder 3 Coding Scheme: Same as in Appendix A.

Encoder 1 Coding Scheme: We consider B Blocks, each of n symbols. A sequence of B− 1 message pairs
(W(b)

1 , W(b)
2 ) for b = 1, ..., B− 1, will be transmitted during B transmission blocks.

Encoder 1 Codebook generation: Encoder 1 splits its message W1 into two independent parts W1 =

(W1a, W1b), with rates R1a and R1b accordingly. Generate 2nR1a codewords v = (v1, ..., vn), each with
probability Pr(v) = ∏n

i=1 PV(vi). These codewords constitute the inner codebook of Transmitter 1.
Denote them as v(w0a) , where w0a ∈ {1, ..., 2nR1a}. For each codeword v(w0a) generate 2nR1a

codewords y2, each with probability Pr(y2|v(w0a)) = ∏n
i=1 PY2|V(y2,i|vi(w0a)). These codewords, {x1},

constitute the outer codebook of Transmitter 1 associated with v(w0a). Denote them as y2(w1a, w0a)

where w0a is as before, representing the index of the codeword v(w0a) in the inner codebook and
w1a ∈ {1, ..., 2nR1a} the index of the codeword y2 in the associated outer codebook. Finally, for each pair
(v(w0a), y2(w1a, w0a)), generate 2R1b codewords x1 each with probability Pr(x1|v(w0a), y2(w1a, w0a)) =

∏n
i=1 PX1|VY2

(x1,i|vi(w0a), y2i(w1a, w0a)). Denote them as x1(w1b, w1a, w0a).

Encoding Scheme of Encoder 1: Given W(b)
1i = w(b)

1 ∈ {1, ..., 2nR1i}, where i ∈ {a, b}, for b = 1, 2, ..., B,

we define w(b+1)
0a = w(b)

1a for b = 1, 2, ..., B− 1.
In block 1 Encoder 1 sends

x(1)1 = x1(w
(1)
1b , w(1)

1a , 1),

in block b = 2, 3, ..., B− 1 Encoder 1 sends

x(b)1 = x1(w
(b)
1b , w(b)

1a , w(b)
0a )

and in block B Encoder 1 sends
x(B)

1 = x1(1, 1, w(B)
0a )

Encoder 2 Coding Scheme: Same as in Appendix A, where the index w0 is now replaced with w0a, and x1,
unknown at Encoder 2, is replaced with y2.

Decoding at the primary receiver (g1): After receiving B blocks the decoder uses backward decoding
starting from decoding block B moving on downward to block 1. In block B the receiver looks for
ŵ(B)

0a = ŵ(B−1)
1a such that

(
v(ŵ(B−1)

1a ), y2(1, ŵ(B−1)
1a ), x1(1, 1, ŵ(B−1)

1a ),u(ŵ(B−1)
1a , 1, w(B)

3a , t), l(w(B)
3a ), y(B)) ∈ Aε(V, Y2, X1, U, L, Y)

for some w(B)
3a , where t = t(ŵ(B−1)

1 , 1, w(b)
3 ).

In block b = 1, 2, ..., B− 1, assuming that a decoding was done backward down to (and including)
block b + 1, the receiver decoded ŵ(B−1)

1a , (ŵ(B−1)
2 , ŵ(B−2)

1b , ŵ(B−2)
1a ), ... , (ŵ(b+1)

2 , ŵ(b+1)
1b , ŵ(b)

1a ). Then,

to decode block b, the receiver looks for (ŵ(b)
2 , ŵ(b)

1b , ŵ(b−1)
1a ) such that

(
v(ŵ(b−1)

1a ), y2(ŵ
(b)
1a , ŵ(b−1)

1a ), x1(ŵ
(b)
1b , ŵ(b)

1a , ŵ(b−1)
1a ), u(ŵ(b−1)

1a , ŵ(b)
2 , w(b)

3a , t), l(w(b)
3a ), y(b))

∈ Aε(V, Y2, X1, U, L, Y) (A53)

for some w(b)
3a , where t = t(ŵ(b−1)

1a , ŵ(b)
2 , w(b)

3 ).
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Decoding at Encoder 2: To obtain cooperation, after block b = 1, 2, ..., B− 1, Encoder 2 chooses w̃(b)
1a

such that (
v(w̃(b)

0a ), y2(w̃
(b)
1a , w̃(b)

0a ), y(b)
2
)
∈ Aε(V, Y2, Y2)

where w̃0a
(b) = w̃(b−1)

1a was determined at the end of block b− 1 and w̃(1)
0a = 1.

At each of the decoders, if a decoding step either fails to recover a unique index (or index pair)
which satisfies the decoding rule, or there is more than one index (or index pair), then an index
(or index pair) is chosen at random among the indices which satisfies the decoding rule.

Appendix I

Proof of Theorem 11—Partial Cribbing MA-CZIC Outer Bound. Let the RVs X1, X2, X3, L, U, Q be
defined as in (A18)–(A19). In addition define Vi and Ti to be

Vi , Yi−1
2 , Ti , Xi−1

1 (A54)

accordingly, define V, T, Y2 as follows

V , (VQ, Q), Y2 , (Y2Q, Q), T , (TQ, Q). (A55)

We start with an upper bound on R1

nR1 = H(W1|W2)

(a)
= H(W1Yn

2 |W2)

= H(Yn
2 |W2) + H(W1|Yn

2 W2)

= H(Yn
2 |W2) + I(W1; Yn|Yn

2 W2) + nεn

= H(Yn
2 |W2) + H(Yn|Yn

2 W2) + H(Yn|Yn
2 W1W2) + nεn

=
n

∑
i=1

H(Y2i|Yi−1
2 W2) + H(Yn|Yn

2 W2) + H(Yn|Yn
2 W1W2) + nεn

(b)
=

n

∑
i=1

[H(Y2i|Yi−1
2 W2) + H(Yi|Yn

2 W2Li)− H(Zi|Yn
2 W2Li) + H(Yi|Yn

2 W1W2Li)− H(Zi|Yn
2 W1W2Li)]

+ H(Zn|W2Yn
2 )− H(Zn|W1W2Yn

2 ) + nεn

(c)
=

n

∑
i=1

[H(Y2i|Yi−1
2 ) + H(Yi|Yn

2 W2Li)− H(Zi|Yn
2 W2Li) + H(Yi|Yn

2 W1W2Li)− H(Zi|Yn
2 W1W2Li)] + nεn

=
n

∑
i=1

[H(Y2i|Yi−1
2 ) + I(W1; Yi|Yn

2 W2Li)− I(W1; Zi|Yn
2 W2Li)] + nεn

(d)
=

n

∑
i=1

[H(Y2i|Yi−1
2 ) + I(X1i; Yi|Yi−1

2 Y2iW2Li)− I(Xi−1
1 ; Zi|Yi−1

2 W2Li)] + nεn

≤
n

∑
i=1

[H(Y2i|Yi−1
2 ) + I(X1i; Yi|Yi−1

2 Y2iW2Li)] + nεn. (A56)

where (a) follows from the encoding relation and the fact that Y2 is a deterministic function of X1.
Step (b) follows from the identity (A22). Step (c) follows from the fact that conditioning decreases
entropy and that Zn is independent of the triplet (W1, W2, Yn

2 ). Step (d) follows from the Markov
chains W1 − (X1i, Yi−1

2 , Yi
2, W2, Li)−Yi and W1 − (Xi−1

1 , Yi−1
2 , W2, Li)− Zi.

Next, we bound R3 as in Appendix C. We get

R3 ≤ I(X3; Z|L) + min{I(L; Y), I(L; Z)}+ εn. (A57)



Entropy 2017, 19, 378 31 of 33

We continue to bound R2 as in Appendix C. It is easy to see that the bound for the MA-CZIC with
full strictly-causal cribbing must also bound the MA-CZIC with partial cribbing. Hence, we get

R2 ≤
1
n

n

∑
i=1

[I(W2; Yi|LiX1iXi−1
1 )− I(W2; Zi|LiXi−1

1 )] + εn. (A58)

Finally, we consider the sum-rate R1 + R2. As in Appendix C, the bound for the MA-CZIC with
full strictly-causal cribbing must also bound the MA-CZIC with partial cribbing. we get

R1 + R2 ≤
1
n

n

∑
i=1

[I(X1iXi−1
1 W2; Yi|Li)− I(Xi−1

1 W2; Zi|Li)] + εn. (A59)

A second bound on the sum-rate is obtained as follows

n(R1 + R2)

= H(W1W2)

(e)
= H(W1W2Yn

2 )

= H(Yn
2 ) + H(W1W2|Yn

2 )

= H(Yn
2 ) + I(W1W2; Yn|Yn

2 ) + nεn

= H(Yn
2 ) + H(Yn|Yn

2 ) + H(Yn|Yn
2 W1W2) + nεn

=
n

∑
i=1

H(Y2i|Yi−1
2 ) + H(Yn|Yn

2 ) + H(Yn|Yn
2 W1W2) + nεn

( f )
=

n

∑
i=1

[H(Y2i|Yi−1
2 ) + H(Yi|Yn

2 Li)− H(Zi|Yn
2 Li) + H(Yi|Yn

2 W1W2Li)− H(Zi|Yn
2 W1W2Li)]

+ H(Zn|Yn
2 )− H(Zn|W1W2Yn

2 ) + nεn

(g)
=

n

∑
i=1

[H(Y2i|Yi−1
2 ) + H(Yi|Yn

2 Li)− H(Zi|Yn
2 Li) + H(Yi|Yn

2 W1W2Li)− H(Zi|Yn
2 W1W2Li)] + nεn

=
n

∑
i=1

[H(Y2i|Yi−1
2 ) + I(W1W2; Yi|Yn

2 Li)− I(W1W2; Zi|Yn
2 Li)] + nεn

(h)
=

n

∑
i=1

[H(Y2i|Yi−1
2 ) + I(X1iXi−1

1 W2; Yi|Yi−1
2 Yi

2Li)− I(Xi−1
1 W2; Zi|Yi−1

2 Li)] + nεn, (A60)

where (e) follows from the encoding relation and the fact that Y2 is a deterministic function of X1.
Step ( f ) follows from the identity (A22). Step (g) follows from the fact that Zn is independent of the
triplet (W1, W2, Yn

2 ). Step (h) follows from the fact that conditioning reduces entropy and from the
Markov chains

W1 − (X1i, Xi−1
1 , W2, Yi−1

2 , Yi
2, Li)−Yi

W1 − (Xi−1
1 , W2, Yi−1

2 , Li)− Zi

Now, similarly to Appendix C, we use (A56)–(A60) and the time-sharing RV Q to derive the
outer bound.
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