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Abstract: Landslides are a common type of natural disaster in mountainous areas. As a result of
the comprehensive influences of geology, geomorphology and climatic conditions, the susceptibility
to landslide hazards in mountainous areas shows obvious regionalism. The evaluation of regional
landslide susceptibility can help reduce the risk to the lives of mountain residents. In this paper,
the Shannon entropy theory, a fuzzy comprehensive method and an analytic hierarchy process (AHP)
have been used to demonstrate a variable type of weighting for landslide susceptibility evaluation
modeling, combining subjective and objective weights. Further, based on a single factor sensitivity
analysis, we established a strict criterion for landslide susceptibility assessments. Eight influencing
factors have been selected for the study of Zhen’an County, Shan’xi Province: the lithology, relief
amplitude, slope, aspect, slope morphology, altitude, annual mean rainfall and distance to the river.
In order to verify the advantages of the proposed method, the landslide index, prediction accuracy P,
the R-index and the area under the curve were used in this paper. The results show that the proposed
model of landslide hazard susceptibility can help to produce more objective and accurate landslide
susceptibility maps, which not only take advantage of the information from the original data, but
also reflect an expert’s knowledge and the opinions of decision-makers.

Keywords: Shannon entropy; fuzzy comprehensive evaluation; AHP; landslide

1. Introduction

Landslides are one of the most important types of natural disasters. They are characterized by
their wide distribution, high frequency, fast movement and serious disaster-related losses. Landslide
hazards endanger the safety of human lives and property, destroying the environment and natural
resources. Generally, the damage can be much more serious in densely-populated areas. For example,
the Abe Barek landslide, which occurred around 11 a.m. on 2 May 2014 in the Ago District of
Badakhshan Province, Afghanistan, buried 86 houses and took the lives of almost 2700 people [1].
Moreover, on 29 October 2014, a major landslide occurred in Koslanda, in the district of Badulla,
burying 150 houses, killing 16 people and leaving 192 people missing. The Qin-ba mountain area is the
largest east-west mountain range in Central China. It has extremely complex terrain conditions and
various lithologies and rock structures, as well as four distinct seasons and hydrological conditions.
This region has one of the highest incidences of geological disasters in China. For example, at 0:30 a.m.
on 12 August 2015 in the town of Yanjiagou, a village of Shanyang County in China’s Shan’xi Province,
a sudden onset of landslides, with a volume of 1,500,000 m3, buried 15 dormitories and there houses
and left 64 people missing.

The production of a landslide susceptibility map (LSM) in the early period is of great significance
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to the prevention and control of geological hazards. Landslide susceptibility describes the likelihood
of a landslide occurring in an area and is controlled by local terrain conditions [2,3]. Diverse research
methods for LSM have made great progress from early qualitative descriptions to semi-quantitative
studies to recent sophisticated quantitative assessment modeling [4]. Over the past century (since
the 1990s), with the development of multidisciplinary improvements and various theoretical methods,
the LSM have placed more emphasis on regional quantitative evaluations, especially with the
application of geospatial technology, which can quickly obtain regional, large-scale landslide survey
results and collect environmental factors, as well as other information that is closely related
to the occurrence of landslide hazards, effectively promoting the research and application of
non-deterministic methods for landslide susceptibility assessments. At present, universally-applied
geological hazard assessment models include subjective inference analysis models, statistical analysis
models, deterministic models, pattern recognition models and the like. Then, different scholars
use a variety of theories to study landslide susceptibility assessments, including such techniques as
artificial neural networks [5–7], logistic regression [8–11], analytic hierarchy processes (AHP) [2,12,13],
the information value method [14–16], the certainty factor [17–19], fuzzy logic [20–22] and an index
of entropy [23–25]. These methods are mainly based on the analysis of the distributions of landslide
hazards and the relationship between the influencing factors.

Despite the effectiveness of the previously-used methods that consider complex classification
problems, these methods mostly assign unvarying weight values to the whole study area. In other
words, the currently-reported research work did not consider the difference of the main influencing
factors at different sites among the study area.

In this paper, to improve the previous methods for landslide susceptibility assessment and
derive more reasonable evaluation results, a method for LSM is proposed that combines subjective
and objective weights. Therefore, the weights obtained from the entropy method and AHP are
combined with the fuzzy comprehensive method before being applied to landslide susceptibility
zoning evaluation, especially with the introduction of the Shannon entropy algorithm, which can
highly enhance the objectivity of statistical data from the field investigation. This method has been
used in development strategy research [26], website usability evaluations [27], comprehensive project
decisions [28], as well as quantitative evaluation on the characteristics of activated sludge granules and
flocs [29]. However, differing very much from previous studies, in our research, the fuzzy evaluation
matrices R decide the objective weights with the entropy method so that the final comprehensive
weights change along with the evaluation units, such that the proposed methodology is a variable
comprehensive weight model for LSM. Specifically, this study will assist in performing a more accurate
and reasonable LSM and reducing the loss of landslide disasters.

In summary, the following contributions have been made in this paper:

1. The subjective and objective weights are combined such that the information from the original
statistical data is used, and meanwhile, the knowledge of experts and the opinions of decision-makers
(DMs) are also reflected.

2. The comprehensive weight used in this paper is variable with respect to the changes of the
evaluated units. However, in previously-published research, each an evaluation factor was given
a single weight for the whole region.

This paper is organized as follows. Section 2 introduces the principle and procedure of the
proposed entropy-FAHP method which combined the entropy algorithm and AHP-fuzzy (FAHP)
method. Section 3 selects Zhen’an County of Shan’xi Province as the study area for the application
of the proposed method for LSM. Section 4 shows the results of landslide susceptibility assessment.
Section 5 discusses the evaluation, comparison and validation of the LSM methods. Section 6 draws
some conclusions.
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2. Proposed Method

Any evaluation method will be affected by subjective factors, so the objectivity of an evaluation
cannot be fully established. There are many ways to determine weights, such as the analytic hierarchy
process (AHP), principal component analysis [30,31], entropy weighting [32,33], TOPSIS [34] and
coefficients of variation [35]. Among all of these methods, the most widely used one that determines
the subjective weight is AHP. This kind of weighting is reasonable, but it cannot overcome the
subjective arbitrariness. Objective weights are usually determined by the Shannon entropy method.
Entropy weights may have an objective result when fully exploiting the information contained in the
original data, but can also cause large false positives (i.e., showing very few pixels with a very high
susceptible class) [33], and it cannot reflect the knowledge and practical experience of experts and
the opinions of DMs. In addition, a combination of subjective and objective weights can make the
evaluation results more comprehensive and reasonable (Figure 1).

Figure 1. The flowchart of the proposed method.

To depict the proposed method, it is best to consider a four-step procedure: in Step 1, select
an appropriate side length, and divide the region into grid units. After establishing a strict fuzzy
comprehensive evaluation index system, the attributes of each unit are extracted in an ARCGIS
(version 10.3, Esri Co. Ltd.) environment. After that, we import the data collected above into MATLAB
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(version 2014a, MathWorks Co. Ltd.) and construct a fuzzy judgment matrix. Accordingly, in Step 2,
AHP is used to quantify the influences of n factors on the target u (subjective weight). In Step 3,
the entropy method is used to calculate the entropy weights (objective weights) with a fuzzy judgment
matrix as a research object in the MATLAB (version 2014a, MathWorks Co. Ltd.) environment.
Finally, in Step 4, the comprehensive weights are calculated from the subjective and objective weights.
Then, according to the principle of maximum membership degree, the results of the evaluated units
are determined.

2.1. Building a Fuzzy Matrix

The fuzzy comprehensive evaluation method is a quantitative evaluation method proposed by
Zadeh [36]. That is, the method makes a general evaluation of processes or objects subjected to
a variety of factors [33,37]. First of all, supposing there are n evaluation ratings and m evaluation
factors, the evaluation rating domain U can be expressed as U = (u1, u2, · · · , un), the evaluation factor
domain V can be expressed as V = (V1, V2, · · · , Vm). Furthermore, the critical point to its success lies in
correctly prescribing the domain of the fuzzy evaluation and constructing a reasonable fuzzy evaluation
matrix. Then, according to the fuzzy relation between the comment set (i.e., evaluation rating) and the
evaluation factor, the fuzzy evaluation matrix R is established (Equation (1)).

R =

V1

V2
...

Vm


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn

 =
(
rij
)

m×n , i = 1, 2, · · · , m; j = 1, 2, · · · , n (1)

2.2. Determining the Subjective Weight Using AHP

AHP was originally proposed by Saaty [38] , which is a simple, flexible and practical multi-criteria
decision-making method for qualitative analysis. First of all, AHP method is used to decompose a
problem into a ladder-shaped and ordered structural model. The importance weights ωi of every
evaluation factor Vi on the target u are different. As the following matrix (Equation (2)) shows,
according to the DM’s judgment of the objects’ real characteristics, we compare the influences of m
factors on the target u according to the degree of their impact. Then, the relative importance of each
factor is quantitatively described. Finally, the weights of the relative importance of all of the factors are
calculated [37].

A =


ω1/ω1 ω1/ω2 · · · ω1/ωm

ω2/ω1 ω2/ω2 · · · ω2/ωm
...

...
. . .

...
ωm/ω1 ωm/ω2 · · · ωm/ωm

 (2)

A is the judgment matrix. If A satisfies the consistency judgment condition, we can find the weight
values ω = ω1, ω2, · · · , ωm, calculated with the equation Aω = λω. In addition, we can then
normalize ω. The result is the weight of the evaluation factors V1, V2, · · · , Vm of the target u.

2.3. Determining the Objective Weights Using Entropy

The information entropy, introduced by Shannon [39], describes the uncertainty, the degree of
disorder and the measurement of the disorder of a system. In the case of certain evaluation factors,
the entropy weight represents the relative intensity coefficient in the competitive sense. The smaller
the entropy of an evaluation factor, the greater the amount of information provided by that factor
and the greater the role it plays in a comprehensive evaluation; thus, it has a higher weight [29,33,37].
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The fuzzy evaluation matrix R (Equation (1)) is used as the research object. Meanwhile, H(I) is the
entropy of the i-th evaluation factors in the domain of the evaluating factors, as shown in Equation (3):

H(I) = − 1
ln(n)

n

∑
j=1

rijln(rij), i = 1, 2, · · · , m; j = 1, 2, · · · , n (3)

where n is the number of evaluation ratings; rij is satisfied such that ∑n
j=1 rij = 1. We stipulate that

H(I) = 0 when rij = 0. The entropy weight of the i-th evaluation factor is stated as Equation (4).

Bi =
1− H(I)

∑m
i=1(1− H(I))

, i = 1, 2, · · · , m (4)

where m is the number of evaluation factors. Similarly, the entropy weight of each evaluation factor
can be obtained as B = b1, b2, · · · , bm.

2.4. Calculating the Comprehensive Weight

Suppose that there is an evaluation factor domain V = V1, V2, · · · , Vm. The weights calculated by
the AHP method and entropy weight method are ω = ω1, ω2, · · · , ωm and B = b1, b2, · · · , bm, respectively.
Then, the comprehensive weight of the m evaluation factor can be expressed as Equation (5).

Wi =
ωiBi

∑m
i=1 ωiBi

; i = 1, 2, · · · , m (5)

The final membership matrix A is synthesized by combining the weight W with the fuzzy matrix
R, which can be expressed as Equation (6). In addition, according to the principle of the maximum
membership degree, the results of the evaluated units are determined.

A = W × R

=
[
W1 W2 · · · Wm

]


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
. . .

...
rm1 rm2 · · · rmn


=
[
a1 a2 · · · an

]
(6)

3. Brief Introduction to the Study Region

Zhen’an County is located in the southern part of the Qinling Mountains, 98 kilometers away
from Xi’an city in Shan’xi Province and 178 kilometers away from Shangluo city, which is bounded
by 108◦34′35′′ E–109◦36′51′′ E and 33◦08′44′′ N–33◦48′57′′ N, with an area of 3453 square kilometers
(Figure 2). In the study area, flat land resources are scarce and the terrain has three hills, two valleys
and a river. The whole terrain tilts from northwest to southeast. Zhen’an County has a maximum
elevation of 2601.6 meters above sea level (m.a.s.l) and a minimum altitude of 344 m.a.s.l. The elevation
difference is approximately 2257.6 m, leading to abrupt changes in precipitation, gradually decreasing
from west to east (Figure 3g). During the year, the distribution of precipitation is also very uneven.
It is the greatest from June to August, followed by that from September to November; the precipitation
from June to October accounted for 68.7% of the annual precipitation.

According to the statistical data from the field investigation, Zhen’an County has had 286 landslide
disasters, with characteristically wide distributions, high frequencies, besides intensive development
of the local areas. Furthermore, the landslide disasters in Zhen’an County have also destroyed roads
and buildings, troubling economic activity, such that the total economic losses due to landslides was
approximated at US $30 million between 2001 and 2013.
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Figure 2. Location of study area in Shan’xi Province of China.

Figure 3. Cont.
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Figure 3. Eight applied evaluation factors used in the landslide susceptibility map (LSM) of Zhen’an
County involving: (a) lithology; (b) relief amplitude; (c) slope; (d) aspect; (e) slope morphology;
(f) altitude; (g) annual mean rainfall; (h) distance to River.

4. Results

4.1. Landslide Influencing Data Layers

In this study, eight evaluation factors were selected according to the specific characteristics of the
regional landslide disasters, the single factor sensitivity analysis (Table 1) and the results of previous
studies (Table 2 and Figure 2).

The study region uses the influencing factors as described in Table 2 to get the LSMs. The lithology
factors (Figure 3a) are obtained from the Geologic Map of Zhen’an County (1:200,000). The distance
to the river factor (Figure 3h) is calculated by a multiple ring buffer using the data extracted from
the Geologic Map of Zhen’an County (1:200,000). In addition, the relief amplitude (Figure 3b), slope
(Figure 3c), aspect (Figure 3d), slope morphology (Figure 3e) and altitude (Figure 3f) data are analyzed
and extracted from the ASTER-GDEM data (Advanced Spaceborne Thermal Emission and Reflection
Radiometer Global Digital Elevation Model). The annual mean rainfall is calculated by kriging
interpolation in an ARCGIS (version 10.3, Esri Co. Ltd.) environment based on the most recent
20 years’ precipitation data from the China Meteorological Administration (Figure 3g).

Table 1. The sensitivity calculation of evaluation factors.

Evaluation Factors Categories
Area
(km2)

Landslide
Count

Comprehensive
Influencing Factor Assignment Intermediate

Value

Lithology

Hard thick layer carbonate rocks 1006.15 57 0.248 3 S1 0.098
Hard and dense intrusive rocks 212.5 2 0.011 1 S2 0.272
Loose clastic sediments 55.6 19 0.036 2 S3 0.445
Relatively hard clastic rocks
and shallow metamorphic rocks 2178.75 208 0.705 4 S4 0.619

Relief
0–100 m 1593.5 164 0.548 4 S1 0.079

Amplitude
101–200 m 1776.25 102 0.374 3 S2 0.213
201–300 m 77 15 0.065 2 S3 0.374
>301 m 6.25 5 0.012 1 S4 0.481

Slope (◦)

0–10 116.5 21 0.004 1 S1 0.059
11–20 421.5 54 0.075 3 S2 0.168
21–30 998 88 0.339 5 S3 0.277
31–40 1253.75 85 0.441 6 S4 0.386
41–50 583.75 37 0.129 4 -
>50 79.5 1 0.011 2 -

Aspect

(Flat) 1.25 - - - S1 0.079
North 422.25 27 0.097 3 S2 0.126
Northeast 434.5 24 0.1 4 S3 0.193
East 447.75 36 0.127 5 S4 0.250
Southeast 461.5 44 0.278 8 -
South 422 43 0.147 7 -
Southwest 413.25 39 0.142 6 -
West 404.75 38 0.059 3 -
Northwest 445.75 35 0.051 1 -
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Table 1. Cont.

Evaluation Factors Categories
Area
(km2)

Landslide
Count

Comprehensive
Influencing Factor Assignment Intermediate

Value

Slope
Concave Slope 1200.25 95 0.141 1 S1 0.162

Morphology
Terrace Slope 465.5 53 0.269 2 S2 0.204
Straight Slope 510.75 53 0.281 3 S3 0.246
Convex Slope 1276.5 85 0.309 4 S4 0.288

Altitude

<500 m 38.25 1 0.002 1 S1 0.075
500–1000 m 1223 188 0.585 4 S2 0.221
1000–1500 m 1770.5 93 0.404 3 S3 0.366
1500–2000 m 421.25 4 0.009 2 S4 0.512

Annual
650–750 mm 1291 120 0.485 5 S1 0.083

Mean rainfall
750–850 mm 562 84 0.171 3 S2 0.198
850–950 mm 1064.75 63 0.271 4 S3 0.313
950–1050 mm 308.5 11 0.047 2 S4 0.428
>1050 mm 226.75 8 0.026 1 -

Distance
0–200 m 1094 127 0.391 5 S1 0.069

to river
201–400 m 898.75 85 0.229 4 S2 0.166
401–600 m 633.5 43 0.16 2 S3 0.263
600–1200 m 650.75 30 0.218 3 S4 0.360
>1200 m 176 1 0.002 1 -

Table 2. Evaluation factors, data sources and classifications.

Evaluation Factors Source Resolution/Scale Description Classification

Lithology
Geologic Map of
Zhen’an County 1:200,000 -

Four categories:

Hard thick layer carbonate rocks,
Hard and dense intrusive rocks,
Loose clastic sediments,
Relatively hard clastic rocks
and Shallow metamorphic rocks

Relief Amplitude ASTER-GDEM v2 30 m
Calculated from
ASTER-GDEM

Four classes: 0–100 m,

101–200 m, 201–300 m, >300 m

Slope ASTER-GDEM v2 30 m
Calculated from
ASTER-GDEM

Six classes: 0–10, 11–20, 21–30,

31–40, 41–50, >50

Aspect ASTER-GDEM v2 30 m
Calculated from
ASTER-GDEM

Eight categories: north,

northeast, east, southeast,
south, southwest, west, northwest

Slope Morphology ASTER-GDEM v2 30 m
Calculated from
ASTER-GDEM

Four categories: concave slope,

terrace slope, straight slope,
convex slope

Altitude ASTER-GDEM v2 30 m
Calculated from
ASTER-GDEM

Four classes: <500 m,

500–1000 m, 1000–1500 m,
>1500 m

Annual Mean China Meteorological 1:200,000 Kriging interpolation
Five classes: 650–750 mm,

Rainfall Administration 759–850 mm, 850–950 mm,
950–1050 mm, >1050 mm

Distance to River
Geologic Map of
Zhen’an County 1:200,000 Multiple Ring Buffer

Five classes: 0–200 m

201–400 m, 401–600 m,
600–1200 m, >1200 m

The research region is divided into 1,381,200 units in a 50 m × 50 m grid. The evaluation factor
attributes of each cell are extracted via ARCGIS (version 10.3, Esri Co. Ltd.). Then, the above data are
imported into MATLAB (version 2014a, MathWorks Co. Ltd.) for fuzzification. After all of this, fuzzy
evaluations of the R matrices of each unit are calculated in a MATLAB (version 2014a, MathWorks
Co. Ltd.) environment. In addition, the entropy weight method is then used to obtain the objective
weights of each of the unit evaluation factors.
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4.2. Single Factor Sensitivity Analysis

The susceptibility at each classification of every evaluation factor can be calculated by taking the
average of the landslide-area ratio (i.e., the area of landslides in one classification divided by that in
the whole region), the landslide-volume (i.e., the volume of landslides in one classification divided by
that in the whole region) ratio and the landslide-number ratio (i.e., the number of landslides in one
classification divided by that in the whole region). After that, Table 1 shows the regions with frequent
landslide disasters in Zhen’an County, including those areas with loose clastic sediments assemblages,
relatively hard clastic rocks and shallow metamorphic rock assemblages; slope gradients in the range
of 20–40◦; southeast and southern slope aspects; straight and convex slope morphologies; altitudes in
the range of 500–1000 m, which are called the middle mountains; annual mean rainfalls of 650–750 mm;
or distance within 200 m from the river.

4.3. Membership Degrees of Evaluation Factors

The evaluation ratings domain refers to the collection of evaluation results that may be given by the
landslide evaluation factors. In this study, the comment set is divided into four grades: U = U1, U2, U3, U4,
where U1 is low susceptibility, U2 is moderate susceptibility, U3 is high susceptibility and U4 is very
high susceptibility. Then, the membership function is used to quantitatively describe the membership
degree of the evaluation factors for the LSM, which is a key step in the fuzzy comprehensive evaluation.
The membership functions are written as Equations (7) and (8), according to the existing related
structural membership function combined with the geological environmental conditions of the study
area, using a “small and semi-trapezoidal” distribution.

U1(x) =


1, x ≤ S1

S2−x
S2−S1

, S1 < x ≤ S2

0, x > S2

U2(x) =


0, x ≤ S1, x > S3

x−S1
S2−S1

, S1 < x ≤ S2
S3−x

S3−S2
, S2 < x ≤ S3

(7)

U3(x) =


0, x ≤ S2, x > S4

x−S2
S3−S2

, S2 < x ≤ S3
S4−x
S4−S3

, S3 < x ≤ S4

U4(x) =


0, x < S3

x−S3
S4−S3

, S3 ≤ x < S4

1, x ≥ S4

(8)

S1, S2, S3 and S4 are the values of the representative grades corresponding to the low susceptibility
areas, moderate susceptibility areas, high susceptibility areas and very high susceptibility areas,
respectively (Table 1). In addition, U1(x), U2(x), U3(x) and U4(x) are the membership values of
evaluation unit x in to the low susceptibility areas, moderate susceptibility areas, high susceptibility
areas and very high susceptibility areas, respectively. The affiliation of the evaluation factors to the
grade of landslide susceptibility is calculated by the membership function, which constitutes the
fuzzy evaluation matrix R. Assuming that each evaluation factor Vi has a fuzzy evaluation matrix
R(rij) = ri1, ri2, ri3, ri4, then eight evaluation factors will have eight evaluation matrices R1, R2, · · · , R8,
which can be combined as shown in Equation (9).

R =


r11 r12 r13 r14
r21 r22 r23 r24
· · · · · · · · · · · ·
r81 r82 r83 r84

 =


R1
R2

· · ·
R8

 (9)

4.4. Comprehensive Weights of Evaluation Factors

Based on the different contributions of each of the evaluation factor to landslide occurrences,
the weighted value of each of the evaluation factors is different. First, AHP is adopted to construct the
matrix of this relationship by a pairwise comparison between the evaluation factors (Equation (2)).
Second, the evaluation factor relationship matrix is solved using MATLAB (version 2014a, MathWorks
Co. Ltd.). The maximum eigenvalue λmax of the matrix is 8.622. The consistency index (CI) of the
matrix is 0.089 and CR = CI/RI = 0.06 < 0.1, which indicates that the consistency ratio of this matrix
is acceptable. The subjective weighting values for each factor are shown in Table 3.
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Then, the objective weights (Bi = bi1, bi2, · · · , bi8, i = 1, 381, 200) are calculated from the fuzzy
evaluation matrix R by using the evaluation unit as the object (Equations (3) and (4)).

Finally, in the MATLAB (version 2014a, MathWorks Co. Ltd.) environment, the comprehensive
weight W of each cell’s eight evaluation factors is calculated (Equation (5)) across the whole study area.

Table 3. Pair-wise comparison matrix, factor weights and consistency ratio of the data layers.

Evaluation
Factors Lithology Relief

Amplitude Slope Aspect Slope
Morphology Altitude Annual Mean

Rainfall
Distance
to River

Lithology 1
Relief Amplitude 1/3 1
Slope 1/2 5 1
Aspect 1/2 3 1 1
Slope Morphology 1 3 1/3 3 1
Altitude 1/3 1 1/3 1/3 1/3 1
Annual Mean
Rainfall 2 3 2 3 2 5 1

Distance to River 2 3 3 3 3 5 3 1
Subjective Weight 0.1327 0.0429 0.1307 0.0827 0.1116 0.0378 0.1847 0.2771

Consistency Ratio: 0.06 < 0.1

4.5. Landslide Susceptibility Assessment Results

The final membership matrix A is synthesized by combining the weight W with the fuzzy matrix
R, which can be expressed as Equation (6). Then, according to the principle of maximum membership
degree, the results of the unit evaluations are determined. However, it is worth mentioning that the
difference between AHP-fuzzy and entropy-FAHP is whether the Shannon entropy algorithm is applied
in weight computing. In an ARCGIS (version 10.3, Esri Co. Ltd.) environment, the 1,381,200 results from
the above of unit evaluations are converted to landslide susceptibility raster layers (Figure 4).

Figure 4. Landslide susceptibility maps: (a) LSM produced by AHP-fuzzy; (b) LSM produced by entropy-FAHP .
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5. Discussion

The accuracy of assessment models is considered a major concern in the majority of environmental
modeling applications including LSM [33]. Nevertheless, the accuracy of previously-reported LSM
methods can be easily affected by the DMs’ point of view. Moreover, with unvarying weight
values, the influence of DMs’ subjective thoughts cannot be avoided or weakened during both data
quantization and criteria weighting, even though that may not be completely appropriate for the whole
study region. Dividing the study area into mini units with a 50 m × 50 m grid, by applying a more
objective entropy algorithm, we attempted to fully extract the original information of spatial data.
Furthermore, the proposed method shows a set of independent weights of evaluation factors in every
unit, which can reduce the influence of the subjective decision of DMs. In other words, each unit has a
unique sequencing of influencing factors to get a more reliable assessment result. According to the
obtained results, the accuracy of the proposed method is improved significantly compared with the
accuracy of previous research.

5.1. Evaluation, Comparison and Precision of the LSM Methods

To evaluate the accuracy of the LSM models, this article introduces the concept of a landslide
index (Li), which is shown as Equation (10).

Li = ((Si/Ai)/(
n

∑
1

Si/Ai))× 100 (10)

where Li is the index for the danger rating in each susceptibility zone (percent). The higher the value
is, the higher the risk is [40]. Si is the landslide area in each susceptibility zone, as well as Ai is the area
of each zone. In addition, the landslide index is the percentage of sliding area in each zone relative to
the total area of that zone. Further, to compare the obtained LSMs, the parameter (P) is considered for
the precision of the predicted results, as shown in Equation (11).

p = Ks/S (11)

where Ks is the area of the sliding zone with an upper moderate susceptibility level and S is the area of
the whole landslide region.

As shown in Table 4, the entropy-FAHP model for LSM is more accurate and reasonable, and
the density of the landslides gradually increases with the level of the susceptibility zones. Meanwhile,
Li is also gradually increased. The precision of the entropy-FAHP for the LSM is 81%. Although the
AHP-fuzzy model for LSM has a similarly high precision (79%), the density of the landslides and
landslide index in the very high susceptibility zone is even less than that in the high susceptibility zone,
which is unreasonable. In addition, it is also inconsistent with the observational data. This further
demonstrates the capability of the proposed entropy-FAHP model for the prediction of landslide
susceptibility values.

Table 4. Comparison of the information obtained from crossing each of the susceptibility maps.

Susceptibility
Maps

Susceptibility
Classes

Si
(km2)

Ai
(km2)

Density of
Landslide
in Any Class

Landslide Index(Li)
in Any Class Percent

Ks
(km2)

S
(km2)

p

AHP-Fuzzy

Low 0.22 666.25 0.01 0.04 5.896 7.439 0.79
Moderate 1.33 981.75 0.05 0.17
High 3.98 965 0.15 0.51
Very high 1.91 840 0.1 0.28

Entropy-FAHP

Low 0.7 1043 0.02 0.08 6.01 7.439 0.81
Moderate 0.73 725.75 0.05 0.11
High 2.91 828.25 0.12 0.39
Very high 3.1 856 0.15 0.42
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5.2. Validation of Landslide Susceptibility Maps Using the Area under the Curve (AUC) and R-Index Methods

To evaluate the quality of the LSM, in this research, the distributions of landslides are compared
with the LSMs. Then, the cumulative percentage of the predicted susceptibility areas is taken as
the abscissa, and the cumulative percentage of the actual landslide number is taken as the ordinate
(Figure 5). Further, the area under the curve (AUC) can be used to quantitatively indicate the success
rate of the susceptibility prediction and to evaluate the fitting degree of the prediction model and
the actual landslides [4]. In addition, this paper introduces the R index (relative landslide density) to
validate the landslide susceptibility evaluation results [40,41].

R = ((ni/Ni)/ ∑(ni/Ni))× 100 (12)

where ni is the number of landslides that occurred at the sensitivity level i, as well as Ni is the number
of pixels at the same sensitivity level i.

As shown in Figure 5, the test curve is convex in shape, which can indicate favorable landslide
susceptibility assessment results. Moreover, the closer to one the AUC is, the better the susceptibility
assessment prediction result [42]. Then, the areas under the test curves are calculated to be 0.6885 and
0.634, respectively. That is, the success rate of the landslide prediction model is 68.85% when using the
entropy-FAHP model and 63.4% for the AHP-fuzzy model. In other words, these results indicate that
the proposed method (entropy-FAHP) for LSM can achieve superior prediction accuracy compared
with the unvarying weight model (AHP-fuzzy).

The R index of the moderate susceptibility zone and that of the high susceptibility zone in the
entropy-FAHP model are smaller than those in the AHP-fuzzy model. However, in the entropy-FAHP
model, the R index of the high susceptibility zone is always greater than those of the lower zones.
This is distinctly different in AHP-fuzzy model, in which the R index of its very high susceptibility
zone is lower than that in the high susceptibility zone (Figure 6). In other words, it is not consistent
with the facts. In spite of the similarly high precision, the R index shows the difference between the two
LSM methods. Further, the conclusions could be summarized, with the combination of the subjective
weight and the objective weight, as the LSM from entropy-FAHP method is more reasonable and
objective than that from the AHP-fuzzy method.

Figure 5. Test curve of the constructed landslide susceptibility models.
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Figure 6. R-index for validating both LSM methods: AHP-fuzzy and entropy-FAHP.

5.3. Comparison to the Previous Studies

Considering the high frequency of landslides occurring in local areas of Qinba mountain, a more
accurate landslide susceptibility map is strongly demanded. The accuracy of LSM based not only on
the presence of concise and perceptible data, but also on the selection of the appropriate methodology
of data processing and modeling [33]. The method proposed in this paper has been used in the
development of strategic research [26], the usability evaluation of websites [27], and so on. This paper
introduces it as a method of combining subjective and objective weights for landslide susceptibility
evaluations. It is also used to divide the research area into evaluation units, based on the new
regionally-variable attribute, which is very different from previous research methods. The previous
methods mostly assign unvarying weight values to the whole study area, even though that may not
be completely appropriate for the whole study region. In other words, the previous research did not
consider the diversity at different sites among the study area. The model validation results seen in the
above show that it is more reasonable to use the entropy-FAHP method to obtain the LSM in the study
area of Zhen’an County.

5.4. Outlook and Future Work

While Shannon’s information entropy theory-based methods such as the one proposed in our
research have shown considerable potential in predictive landslide susceptibility, they do have their
own limitations. In other words, even though the application of the proposed methodology as
a comprehensive weighting scheme is not completely dependent on DMs’ expertise and judgment,
it is conditional on the approach of mathematical computations. We find two limitations in the use of
the entropy-FAHP model. First, the choice of the mathematical method used to combine the subjective
weight and objective weight influences the evaluation results of the regional landslide susceptibility.
Second, the choice of the membership function affects the construction of the fuzzy matrix for each
evaluation unit, which will affect the calculation of the objective weights. These problems are not only
limited to our study; therefore, we believe that further research on more effective calculation methods
is vital for developing more robust LSM methods.

In this paper, our study area is large, and this size of study area, coupled with the grid unit
scale accuracy limit, causes a large size effect, which affects the evaluation of the quantitative factors.
In future work, in order to better use the proposed methodology from this paper in different cases,
we should choose a typical landslide disaster area, from the method of combining the subjective and
objective weights, as well as the fitting of the membership function, to develop a new hybrid GIS-based
landslide susceptibility evaluation.
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6. Conclusions

In the present research, a landslide susceptibility assessment with a new Shannon’ information
entropy theory-based method was performed in Zhen’an County of the Qinba mountain area, China.
The research shows that the entropy-FAHP model, as applied to the LSM, has three merits. First, in
the process of standardizing the evaluation factors of landslides in the research area, the landslide
numbers, areas and volumes are used to set up a sample. The actual development of landslides due
to different evaluation factors in the study area is objectively statistically analyzed, and the inherent
subjectivity of a DM’s preference is weakened. Second, the LSM method proposed in this paper is a
combination of subjective and objective methods. Compared with subjective (such as the AHP-fuzzy
method) and objective weightings (such as the entropy method), the LSM method is used to extract the
information from the original data. Expert knowledge and advice from a DM can also be reflected in
this method. Finally, unlike the unvarying values for the whole study area seen in currently-reported
research work, this paper divides the research area into 1,381,200 evaluation units, and the synthetic
weights of the evaluation factors are changed with respect to the evaluation units. The results of our
research show that the combination of fuzzy matrix and entropy weighting, objective and subjective
weights can help to produce a more reliable LSM.
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