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Abstract: Networks of stochastic spiking neurons are interesting models in the area of theoretical
neuroscience, presenting both continuous and discontinuous phase transitions. Here, we study
fully-connected networks analytically, numerically and by computational simulations. The neurons
have dynamic gains that enable the network to converge to a stationary slightly supercritical state
(self-organized supercriticality (SOSC)) in the presence of the continuous transition. We show that
SOSC, which presents power laws for neuronal avalanches plus some large events, is robust as
a function of the main parameter of the neuronal gain dynamics. We discuss the possible applications
of the idea of SOSC to biological phenomena like epilepsy and Dragon-king avalanches. We also find
that neuronal gains can produce collective oscillations that coexist with neuronal avalanches.

Keywords: self-organized criticality; neuronal avalanche; stochastic neuron; spiking neuron; neuron
models; neuronal networks; power law; supercriticality

1. Introduction

Neuronal network models are extended dynamical systems that may present different collective
behaviors or phases characterized by order parameters. The separation regions between phases can be
described as bifurcations in the order parameters or phase transitions. In several models of neuronal
activity, the relevant phase change is a continuous transition from an absorbing silent state to an active
state [1–3]. In such a continuous transition, we have a critical point (in general, a critical surface)
where concepts of universality classes and critical exponents (among others) are valid. At criticality,
we observe avalanches of activity described by power laws for their size and duration. Furthermore,
the avalanche profile shows fractal scaling. Since the landmark findings of Beggs and Plenz in 2003 [2],
these behaviors have been reported also in biological networks; see the reviews [4–7].

The motivation for the idea that criticality is important to understand neuronal activity is not only
empirical. Several works have shown that there are advantages for a network to operate at the critical
state [3,8–10]. However, it is not clear how biological networks tune themselves to the critical region.

An important idea discussed in several papers is that, since criticality depends on the strength
of the synapses (links) between the neurons, a homeostatic mechanism for dynamic synapses
tunes the network toward the critical region. There are two main paradigms: self-organization
of Hebbian synapses [11–16] and self-organization of dynamic synapses [17–21] following Tsodyks and
Markran [22,23]. With these synaptic mechanisms, it is possible to achieve, or at least to approximate,
a self-organized critical (SOC) state.
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With a different approach, we have shown recently that dynamic neuronal gains, biophysically
linked to firing-dependent excitability of the axonal initial segment (AIS) [24–27], can also lead
to self-organized criticality [28]. This new mechanism is simpler than dynamic synapses because,
for biological networks with N neurons, we have of the order of 104N synapses [29], and thus 104N
dynamic equations, but only N equations for the neuronal gains.

It has also been observed in Brochini et al. [28] that, for achieving exact SOC, all papers in the
literature used a time scale τ for synaptic recovery proportional to N, with N → ∞. The use of this
non-local information (N), and a diverging recovery time τ, is not plausible biologically. A similar
time scale τ is present in the neuronal gain recovery. When we use a biological range for τ that does
not scale with N, we observe that the network turns out (slightly) supercritical, a phenomenon that we
called self-organized supercriticality (SOSC). That is, both dynamic synapses and dynamic gains with
fixed τ, which seems to be the reasonable biological assumption, present SOSC instead of SOC.

Here, we report for the first time an extensive study of the neuronal gain mechanism and
SOSC. First, we present new mean-field results for phase transitions in a fully-connected model
of integrate-and-fire stochastic neurons with fixed gains. We find both continuous and discontinuous
phase transitions. Then, we introduce a simplified gain dynamics depending only on the τ parameter,
which also has a simple mean-field solution in the case of the continuous transition and presents
SOSC. We compare this solution with extensive simulations for different system sizes N and values
for τ. Surprisingly, we found collective oscillations produced by the gain dynamics that coexist with
neuronal avalanches.

2. The Model

We consider a fully-connected network composed of i = 1, . . . , N discrete-time stochastic
neurons [28,30–33]. The synapses transmit signals from some presynaptic neuron j to a postsynaptic
neuron i with synaptic strength Wij. The Boolean variable Xi[t] ∈ {0, 1} denotes whether neuron i fired
between t and t + 1, and Vi[t] corresponds to its membrane potential at time t. Firing Xi[t + 1] = 1
occurs with probability Φ(Vi[t]), which is called the firing function [32–37].

If a presynaptic neuron j fires at discrete time t, then Xj[t] = 1. This event increments by Wij the
potential of every postsynaptic neuron i that has not fired at time t. The potential of a non-firing neuron
may also integrate an external stimulus Ii[t]. Apart from these increments, the potential of a non-firing
neuron decays at each time step towards zero by a factor µ ∈ [0, 1], which models the effect of a
current leakage.

The neuron membrane potentials evolve as:

Vi[t + 1] =


0 if Xi[t] = 1,

µVi[t] + Ii[t] +
1
N

N

∑
j=1

WijXj[t] if Xi[t] = 0. (1)

This is a special case of the general model from [32] with the filter function g(t− ts) = µt−ts ,
where ts is the time of the last firing of neuron i [28]. In contrast to standard integrate-and-fire (IF)
neurons, the firing is not deterministic above a threshold, but stochastic. We also have Xi[t + 1] = 0 if
Xi[t] = 1 (refractory period of one time step).

The firing function 0 ≤ Φ(V) ≤ 1 is sigmoidal, that is monotonically increasing. We also assume
that Φ(V) is zero up to some threshold potential VT . If Φ is the shifted Heaviside step function
Φ(V) = Θ(V − VT), we have a deterministic discrete-time leaky integrate-and-fire (LIF) neuron.
Any other choice for Φ(V) gives a stochastic neuron.



Entropy 2017, 19, 399 3 of 16

In Brochini et al. [28], we have studied a linear saturating function with neuronal gain Γ similar
to that used in [33]. Here, we study the so-called rational function that does not have a saturating
potential; see Figure 1a:

Φ(V) =
Γ(V −VT)

1 + Γ(V −VT)
Θ(V −VT) . (2)

Notice that we recover the deterministic LIF model Φ(V) = Θ(V −VT) when Γ → ∞. The use
of the rational instead of the linear saturating function is convenient and gives some theoretical
advantages, for example to avoid the anomalous cycles-two observed in [28].
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Figure 1. Firing densities and phase diagram for VT = 0, I = 0. (a) Examples of the rational firing
function Φ(V) for Γ = 1, VT = 0.0 and Γ = 1, VT = 0.5. (b) Firing density ρ(ΓW) for µ = 0.0, 0.5, 0.9.
The absorbing state ρ0 = 0 looses stability after ΓW > ΓCWC = 1− µ. (c) Comparison, near the critical
region, between order parameter ρ obtained numerically from Equation (8) (points) and from the
analytic approximation Equation (9) (lines).

3. Mean-Field Calculations

The network’s activity is measured by the fraction ρ[t] of firing neurons (or density of active sites):

ρ[t] =
1
N

N

∑
j=1

Xj[t] . (3)
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The density of active neurons ρ[t] can be computed from the probability density p[t](V)

of potentials at time t:

ρ[t] =
∫ ∞

−∞
Φ(V)p[t](V) dV , (4)

where p[t](V) dV is the fraction of neurons with potential in the range [V, V + dV] at time t.
Neurons that fire between t and t+ 1 have their potential reset to zero. They contribute to p[t + 1](V)

a Dirac impulse at potential V = 0, with amplitude ρ[t] given by Equation (4). The potentials of all
neurons also evolve according to Equation (1). This process modifies p[t](V) also for V 6= 0.

In the mean-field limit, we assume that the synaptic weights Wij follow a distribution with average
W =

〈
Wij
〉

and finite variance. By disregarding correlations, the term in Equation (1) corresponding to
the sum of all presynaptic inputs simplifies to Wρ[t].

If the external input is constant, Ii[t] = I, a stationary state is achieved, which depends only on
the average synaptic weight W, the leakage parameter µ and the parameters that define the function
Φ(V), that is Γ and VT . In Brochini et al. [28], it is shown that the stationary p(V) is composed of delta
peaks with height ηk situated at voltages Uk given by:

U0 = 0 , (5)

Uk = µUk−1 + I + Wρ , (6)

ηk = (1−Φ(Uk−1)) ηk−1 , (7)

ρ = η0 =
∞

∑
k=0

Φ(Uk)ηk , (8)

for all k ≥ 1. Here, Uk corresponds to the potential value of the population of neurons that have
firing age k. The firing age is the amount of time steps since the neuron fired for the last time.
The normalization condition ∑∞

k=0 ηk = 1 must be included explicitly. Equations (6)–(8) can be solved
numerically for any firing function Φ, so this result is very general.

4. Results

4.1. Phase Transitions for the Rational Φ(V)

In terms of non-equilibrium statistical physics, ρ is the order parameter; I is a uniform external
field; and Γ and W are the main control parameters. The activity ρ also depends on VT and µ.

4.1.1. The Case with µ > 0, I = 0, VT = 0

By using Equations (5)–(8), we obtain numerically ρ(W, Γ) for several values of µ > 0, for the case
with I = 0, VT = 0 (Figure 1b). Only the first 100 peaks (Uk, ηk) were considered, since, for the given µ

and Φ, there was no significant probability density beyond that point. The same numerical method
can be used for studying the cases I 6= 0, VT 6= 0.

We also obtained an analytic approximation (see Appendix) for small ρ:

ρ ≈
(

1
2 + µ + µ2/(1− µ)

)
Γ− ΓC

Γ
∝ ∆β

Γ , (9)

where ΓC = (1− µ)/W defines the critical line and ∆Γ = (Γ− ΓC)/Γ is the reduced control parameter.
Therefore, the critical exponent for the order parameter near criticality is β = 1, characteristic of the
mean-field directed percolation (DP) universality class [38]. We also compare Equation (9) with the
numerical results for ρ(Γ, µ) in Figure 1c.
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4.1.2. Analytic Results for µ = 0

In the case µ = 0, it is possible to do a simple mean-field analysis valid for N → ∞. This case is
illustrative because it presents all phase transitions that occur with µ > 0.

When µ = 0 and Ii[t] = I (uniform constant input), the stationary density p(V) consists of only
two Dirac peaks at potentials U0 = 0 and U1 = I + Wρ. Equation (8) simplifies to:

ρ = ρΦ(0) + (1− ρ)Φ(I + Wρ) , (10)

since η0 = ρ and η1 = 1− ρ.
By inserting the function Equation (2) in Equation (10) and remembering that Φ(0) = 0, we get:

2ΓWρ2 − (ΓW + 2Γ(VT − I)− 1)ρ + Γ(VT − I) = 0 , (11)

with solutions:

ρ± =
Γ(W + 2VT − 2I)− 1±

√
∆

4ΓW
, (12)

∆ = (Γ(W + 2VT − 2I)− 1)2 − 8Γ2W(VT − I) , (13)

4.1.3. The Case with I = 0, VT = 0: Continuous Transition

For VT = I = 0, we have:

ρ(W) =
1
2

(
W −WC

W

)β

=
1
2

(
Γ− ΓC

Γ

)β

, (14)

where the phase transition line is:
ΓC = 1/WC , (15)

and the critical exponent is β = 1. This corresponds to a standard mean-field continuous (second
order) absorbing state phase transition (Figure 2a,b with VT = I = 0).

4.1.4. The Case with I < VT : Discontinuous Transition

For I < VT , we have discontinuous (first order) phase transitions when ∆ = 0 (see Equation (13)):

(ΓCWC + 2ΓC(VT − I)− 1)2 = 8Γ2
CWC(VT − I) , (16)

which, after some algebra, leads to the phase transition lines:

ΓCWC =

(
1 +

√
2ΓC(VT − I)

)2
, (17)

ΓC =
1(√

WC −
√

2(VT − I)
)2 (18)

which have the correct limit, Equation (15), when VT → 0, I → 0. The transition discontinuity is:

ρC =

√
VT − I√
2WC

=
1
2

√
2ΓC(VT − I)

1 +
√

2ΓC(VT − I)
. (19)

In Figure 2a, we show examples of the phase transitions, which occur when the unstable point ρ−

collapses with the stable point ρ+. It is important to notice that, for any VT > 0, the unstable point
never touches the absorbing point ρ0 = 0, so the zero solution is always stable. Only for the case
VT = 0, the solution ρ0 looses stability, and ρ+ is the unique solution above the critical line ΓC = 1/WC.
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Figure 2b gives the phase diagram Γ×W for some values of VT with I = 0; see Equation (18). Finally,
we give the phase diagram for the variables ΓW versus Γ(V − I); see Figure 3 and Equation (17).
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Figure 2. Phase transitions for the µ = 0 case as a function of Γ, W and VT with I = 0: (a) The solid
lines represent the stable fixed points ρ+(W), and dashed lines represent unstable fixed points ρ−(W),
for thresholds VT = 0.0, 0.1, 0.2 and 0.5. The discontinuity ρC given by Equation (19) goes to zero
for VT → 0. (b) Phase diagram Γ×W defined by Equation (17). From top to bottom, VT = 0.0, 0.1,
0.2 and 0.5. We have ρ+ > 0 above the phase transition lines. For VT > 0, all of the transitions
are discontinuous.
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Figure 3. Phase diagram for the µ = 0 case as a function of ΓW and Γ(VT − I): The transition line,
Equation (17), is ΓCWC = (1 +

√
2Γ(VT − I))2. This line is a first order phase transition, which

terminates at the second order critical point ΓCWC = 1 with VT − I = 0.

4.2. Self-Organized Supercriticality through Dynamic Gains with µ = 0, I = 0, VT = 0

If we fine-tune the model to some point in the critical line ΓC = 1/W, we can observe perfect
neuronal avalanches with size distribution PS(s) ∝ s−3/2 and duration distribution PD(d) ∝ d−2 [28].
As expected, these are mean-field exponents fully compatible with the experimental results [2,6].

This fine-tuning, however, is not plausible biologically. What we need is some homeostatic
mechanism that makes the critical region an attractor of some self-organization dynamics. In the literature,
a well-studied mechanism is dynamic synapses Wij[t] [17–19]. For example, in discrete time [20,21]:

Wij[t + 1] = Wij[t] +
1
τ
(A−Wij[t])− uWij[t]Xj[t] , (20)
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where τ is a synaptic recovery time, A is an asymptotic value and u ∈ [0, 1] is the fraction of the
depletion of neurotransmitter vesicles when the presynaptic neuron fires.

In Brochini et al. [28], we proposed a new self-organization mechanism based on dynamic neuronal
gains Γi[t] while keeping the synapses Wij fixed [28]. The idea is to create a feedback loop based only
on the local activity Xi[t] of the neuron, reducing the gain when the neuron fires and recovering slowly
after that. The biological motivation for dynamic gains is spike frequency adaptation, a well-known
phenomenon that depends on the decrease (and recovery) of sodium ion channels’ density at the axon
initial segment (AIS) when the neuron fires [25,26].

The dynamics for the neuronal gains studied in [28] has a form similar to that used in [17,19–21]
for synapses:

Γi[t + 1] = Γi[t] +
1
τ
(A− Γi[t])− uΓi[t]Xi[t] . (21)

The advantage of neuronal gains is that now we have only N dynamical equations (notice the
term Xi[t] that refers to the activity of the postsynaptic neuron, not of the presynaptic one as in
Equation (20)). For dynamic synapses, we need to simulate N(N− 1) equations for the fully-connected
graph model and 104N for a biologically-realistic network, and this is computationally very costly for
large N.

A problem with this dynamics, however, also present in dynamic synapses, is that we have
a three-dimensional parameter space (τ ∈ [1, ∞], A ∈ [1/W, ∞], u ∈ [0, 1]) that must be fully explored
to characterize the stationary value Γ∗(τ, A, u, N). Here, we propose a new simplified dynamics with
a single free parameter, the gain recovery time τ:

Γi[t + 1] = Γi[t] +
1
τ

Γi[t]− Γi[t]Xi[t] =
(

1 +
1
τ
− Xi[t]

)
Γ[t] . (22)

The self-organization mechanism can be viewed in Figure 4. Therefore, we reduce our parametric
study to determine the curves Γ∗(1/τ, 1/N); see Figure 5a,b. The fluctuations measured by the
standard deviation SD of the Γ[t] time series, after the transient, diminish for increasing τ (Figure 5c)
and probably go to zero for τ → ∞, in accord with Campos et al. [21]. However, in contrast to this
idealized τ → ∞ limit, as discussed in [19,21], the fluctuations do not converge to zero for finite τ

in the thermodynamic limit N → ∞ (see Figure 5d). This occurs because, for low τ, the adaptation
mechanism produces oscillations of Γ[t] around the value Γ∗(τ).

100 101 102 103 104 105 106
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

  = 40
  = 80
  = 160
  = 320

 *

t
100 101 102 103 104 105 106

0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

  = 640
  =1280
  = 2560
  = 5120

t

*

Figure 4. Self-organization with dynamic neuronal gains: Simulations of a network of N = 160,000
neurons with fixed Wij = W = 1 and VT = 0. Dynamic gains Γi[t] starts with Γi[0] uniformly
distributed in [0, Γmax = 1.0]. This defines the initial condition Γ[0] ≡ 1

N ∑N
i Γi[0] ≈ Γmax/2 = 0.5.

Self-organization of the average gain Γ[t] over time, for different τ. The horizontal dashed line marks
the value ΓC = 1/W = 1.
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Figure 5. Self-organized value Γ∗(τ, N) obtained with dynamic gains (Wij = W = 1): (a) Curves
Γ(1/τ) for several values of N. (b) Curves Γ(1/N) for several values of τ. (c) Standard deviation of the
Γ[t] time series after the transient, as a function of 1/τ. (d) Standard deviation of the Γ[t] time series
after the transient, as a function of 1/N.

We can do a mean-field analysis of Equation (22) to find the value Γ∗(τ). Denote the average gain
as Γ[t] = 〈Γi[t]〉. Averaging over the sites, we have:

Γ[t + 1] = Γ[t] +
1
τ

Γ[t]− ρ[t] Γ[t] , (23)

since ρ[t] = 〈Xi[t]〉. In the stationary state, we have Γ[t + 1] = Γ[t] = Γ∗, ρ[t] = ρ∗, so:

1
τ

Γ∗ = ρ∗ Γ∗ . (24)

A solution is Γ∗ = 0, but this is unstable; see Equation (22). Another solution is obtained by
inserting Equation (14), ρ∗ = (Γ∗ − ΓC)/(2Γ∗), in Equation (24):

Γ∗ =
ΓC

1− 2/τ
. (25)

Notice that this is valid only when Equation (14) is valid, that is, for Γ∗ ≥ 1/W. Furthermore,
Equation (25) presumes that ρ∗ is a stable fixed point, which can not be true for some interval of values
of τ; see below.
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A first order approximation leads to:

Γ∗ = ΓC

(
1 +

2
τ

)
. (26)

This mean-field calculation shows that, if τ → ∞, we obtain an exact SOC state Γ∗ → ΓC; or
for finite networks, a scaling τ = O(Na) with an exponent a > 0 would be required, as done previously
for dynamic synapses [17,19–21]. However, this scaling for τ cannot be justified biologically.

Therefore, biology requires a finite recovery time τ, which always leads to supercriticality;
see Equation (25) or (26). This supercriticality is self-organized in the sense that it is achieved
and maintained by the gain dynamics Equation (22). We call this phenomena self-organized
supercriticality (SOSC).

The deviation from criticality can be small. For example, if τ = 1000 ms (assuming one time step
equals 1 ms in the model):

Γ∗ ≈ 1.002 ΓC . (27)

Even a more conservative value τ = 100 ms gives Γ∗ ≈ 1.02 ΓC. Although not perfect SOC [5],
this result is sufficient to explain a power law with exponent 3/2 for small (s < 1000) neuronal
avalanches plus a supercritical bump (Figure 6).
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Figure 6. Avalanche statistics for the model with dynamic neuronal gains: Probability histogram for
avalanche sizes (PS(s)) with logarithmic bins for several τ with N = 160,000. Notice the self-organized
supercriticality (SOSC) phenomenon and Dragon-king avalanches for small τ.

By using Equation (25) in Equation (14), we also obtain:

ρ∗ =
1
τ

(28)
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showing that the network presents supercritical activity for any finite τ. This result, however, is valid
only in the infinite size limit. For finite size networks, fluctuations interrupt this constant ρ∗ = 1/τ

activity, leading the system to the absorbing state and defining the end of the avalanches.
Simulations reveal that these fixed points (Γ∗, ρ∗) correspond only to mean values around which

both Γ[t] and ρ[t] oscillate; see Figure 7a–c. These global oscillations are unexpected since the model
has been devised to produce avalanches, not oscillations. The finite size fluctuations and oscillations
drive the network to the absorbing zero state, generating the avalanches. What we see in the histogram
of Figure 6 is a combination of power law avalanches in some range plus large events (superavalanches
or Dragon-kings due to the Γ[t] oscillations).
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Figure 7. Dynamic (a) gain Γ[t] and (b) activity ρ[t] for several values of τ. (c) Γ[t] and ρ[t] for
τ = 320. In the figures, we consider only the last 500 time steps of simulation (from a time series of
five million time steps) in a system with N = 160,000. The large events (oscillations) correspond to
Dragon-king avalanches.

5. Discussion

We examined a network of stochastic spiking neurons with a rational firing function Φ that
has not been studied previously. We obtained numeric and analytic results that show the presence
of continuous and discontinuous absorbing phase transitions. Classic SOC is possible only at the
continuous transition, which means that we need to use zero firing thresholds (VT = 0). In some sense,
this is a kind of fine-tuning of the Φ function, but not the usual one where the synaptic strength W and
the neuronal gain Γ are the main control parameters.
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The presence of a well-behaved absorbing phase transition in the directed percolation class enables
the use of a homeostatic mechanism for the neuronal gains that tunes the network to the critical region.
The dynamics on the gains is biologically plausible and can be related to a decrease and recovery, due
to the neuron activity, of the firing probability at the axon initial segment (AIS) [24]. Our dynamic Γi[t]
mimics the well-known phenomenon of spike frequency adaptation [25,26] and is a one-parameter
simplification of the three-parameter dynamics studied by us in [28].

We observe that this gain dynamics is equivalent to approaching the critical line with fixed W
and variable Γ[t], that is performing vertical movements in Figure 2b. Previous literature approaches
the critical point WC by dynamic [17–21] or Hebbian [11–16] synapses. This corresponds to fixing Γ
and allowing changes in Wij[t] along the horizontal axis; see Figure 2b.

The two homeostatic strategies are similar, but we stress that we have only N equations for the
gains Γi[t] instead of N(N − 1) equations for the synapses Wij[t], so that our approach implies a huge
computational advantage. Indeed, previous literature as [14,17] reported system sizes on the range
of N = 1000–4000, to be compared to our maximal size of N = 160,000.

We found that the fixed point Γ∗ predicted by a mean-field calculation is not exactly critical,
but instead supercritical, and that the distance from criticality depends on the gain recovery time τ.
Previous claims about achieving exact SOC by using dynamic synapses are based on the erroneous
assumption that we can use a synaptic recovery time τ ∝ Na → ∞ [17,19–21]. However, if we use
a finite τ, which is not only plausible, but biologically necessary, we obtain SOSC, not SOC [21,28].
However, we found that for large, but plausible values of τ, the system is only slightly supercritical and
presents power law avalanches (plus small supercritical bumps) compatible with the biological data.

SOSC enables us to explore supercritical networks that are robust, that is the stationary state,
with or without oscillations, is achieved from any initial condition and recovers from perturbations.
Therefore, the question now is: are there self-organized supercritical (SOSC) oscillating neuronal
networks in the brain?

The first evidence would be a supercritical bump in the P(s) distributions. Indeed, we found
several papers where such bumps seem to be present; see for example the first plot in Figure 2
of Friedman et al. [39] and Figure 4 of Scott et al. [40]. It seems to us that, since the main paradigm for
neuronal avalanches is exact SOC, with pure power laws, it is possible that researchers report what is
expected and do not comment on or emphasize small supercritical bumps, even if they are present in
their published data. Therefore, we suggest that experimental researchers reevaluate their data in the
search for small supercritical bumps. The presence of supercritical bumps can also be masked by the
phenomenon of subsampling [41–43], so the analysis must be done with some care.

Supercriticality, in the form of the so-called Dragon-king avalanches [14,44,45], has been
conjectured to be at the basis of hyperexcitability in epilepsy [6,46,47]. Furthermore, networks can be
put artificially in the hyperexcitable state and show bimodal distributions PS(s) with large supercritical
bumps [48]. The SOSC phenomenon seems to be a natural explanation for such hyperexcitability.
In [48], the supercritical bumps are fitted by a supercritical branching process, but are not explained in
mechanistic terms as, in our case, due to different values of the biophysical τ recovery time.

The unexpected oscillations in Γ[t] around Γ∗ have amplitudes that depend on τ and vanish for
large τ (Figures 5d and 7a). These oscillations in Γ[t] induce oscillations in the activity ρ[t] (Figure 7b,c).
In our model, the discrete time interval ∆t is postulated as describing the width of a spike, that is
∆t ≈ 1–2 ms. From our simulation data, with these values for ∆t, we obtain frequencies f ≈ 0.5–16 Hz,
depending on the τ value.

Interestingly, this frequency range includes Delta, Theta and Alpha rhythms. The coexistence
of Theta waves and neuronal avalanches has been observed experimentally [49]. Furthermore, some
theoretical work recently discussed the coexistence of oscillations and avalanches [50].

The presence of oscillations can mean that the fixed point (Γ∗, ρ∗) is unstable below some
bifurcation point τb (even for N → ∞) or that it is stable, but has a very small negative Lyapunov
exponent, such that finite-size fluctuations drive Γ[t], ρ[t] away from equilibrium, producing excursions
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(oscillations) in the (Γ, ρ) plane. At this point, without further study, we cannot decide what
is the correct scenario. Notice that similar oscillations for W[t] were also observed for dynamic
synapses [17,19,20], although these authors have not studied in detail such phenomenon.

Finally, from a conceptual point of view, the observed subcriticality in some of our simulations
(see Figure 5b,d) is less important than supercriticality (SOSC), because it is a finite-size effect for small
N. Our largest networks have N = 160,000, which is small compared to real biological networks that
have at least one or two orders of magnitude more neurons.

Nevertheless, there is in the literature claims that subcritical states are present in certain
experimental conditions [51–53]. How can we rectify these findings? Here, we offer an answer
based on the findings of Priesemann et al. [53]. These authors found that, in order to explain in vivo
experiments with awake animals, they need three ingredients: subsampling [41], increased input
(violating the standard separation of scales of SOC models) and small subcriticality of the networks.
If we increase the inputs in our network, by a Poisson process on the variable I[t] for example,
the overall result is that the homeostatic mechanism turns our network subcritical. This occurs because
increased forced firing implies an overall depression of the gains Γi[t] in Equation (22), so that a new
equilibrium is achieved with Γ∗ < Γc.

Then, under external input like in awake animals, our adaptive networks turns out to be
subcritical and returns to criticality or supercriticality for spontaneous activity without external
input. We obtained preliminary simulation results confirming this scenario, and a comprehensive
study of the effect of external input shall be done in the next paper.

6. Materials and Methods

All numerical calculations were done by using MATLAB. Simulation codes were made in Fortran90.
In the study of neuronal avalanches, we simulate the evolution of finite networks with N neurons,

uniform synaptic strengths Wij = W (Wii = 0) and Φ(V) rational with VT = 0. The avalanche statistics
were obtained after the transient of the neuronal gains’ self-organization. A silent instant when
Xi[t] = 0 for all i defines the end of an avalanche. We start a new avalanche by forcing the firing of a
single random neuron i, setting Vi[t + 1] to a value high enough for the neuron spikes.

7. Conclusions

We have shown in this paper that dynamic neuronal gains lead naturally to self-organized
supercriticality (SOSC) and not SOC. The same occurs with dynamic synapses [21]. Therefore, we
propose that neuronal avalanches are related to SOSC instead of exact SOC. This opens an opportunity
for the reevaluation of the accumulated experimental data.

SOSC suggests that neuronal tissues could be more prone to Dragon-king avalanches [44] and
hyperexcitability than one would expect from simple power laws. This prediction of larger and
increased instability due to supercriticality may be important for studies in epilepsy [14].

Finally, the emergence of oscillations coexisting with neuronal avalanches seems to unify in a single
formalism two theoretical approaches and two different research communities: those that emphasize
critical behavior and avalanches and those that emphasize oscillations and synchronized activity.

In a future work, we intend to study with more care the mechanism that generates these
oscillations and how to relate them to EEG data. In order to simulate more biological networks,
we also intend to study the cases VT > 0, I > 0 and µ > 0.
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Appendix A. Phase Transition for µ > 0, VT = 0

We want to derive the critical point for the leakage case µ > 0 and also to obtain approximate
curves for the activity ρ near the critical region. We start from the exact formulas (supposing Φ(0) = 0):

ρ =
∞

∑
k=1

ηkΦ(Uk) , (A1)

ηk = ηk−1 (1−Φ(Uk−1)) , (A2)

U0 = 0 , (A3)

Uk = µUk−1 + Wρ , (A4)

= Wρ
k−1

∑
j=0

µj = Wρ
1− µk

1− µ
, (A5)

then, we use the recurrence relations Equations (A2) and (A4) into Equation (A1):

ρ =
∞

∑
k=1

ηk−1 (1−Φ(Uk−1))Φ(µUk−1 + Wρ) . (A6)

We notice that, due to Equation (A4), all terms Uk are small in the critical region where ρ → 0.
So, we approximate the rational Φ(U) function for small U:

Φ(Uk) =
ΓUk

1 + ΓUk
≈ ΓUk − Γ2U2

k . (A7)

Inserting in Equation (A6), and using Equation (A4) we get:

ρ =
∞

∑
k=1

ηk−1(1− ΓUk + Γ2U2
k )(ΓµUk−1 + ΓWρ− Γ2(µUk−1 + Wρ)2) . (A8)

Since each Uk is proportional to ρ, from now we conserve only terms proportional to ρ and ρ2.
After recombining the terms up to order V2

k−1 according to Equation (A7), we obtain:

ρ ≈ ΓWρ(1− ΓWρ)
∞

∑
k=1

ηk−1 + (µ− 2ΓµWρ− ΓWρ + Γ2W2ρ2)
∞

∑
k=1

ηk−1φ(Uk−1)

− µ2Γ
∞

∑
k=1

ηk−1φ(Uk−1)Uk−1 .

Notice that ∑∞
k=1 ηk−1 = ∑∞

k=0 ηk = 1 by normalization. Using this fact and also Equation (A1)
(using Φ(U0) = 0), after some rearrangement we obtain:

ρ ≈ ρ(ΓW + µ) + ρ2(−Γ2W2 − 2ΓWµ− ΓW)− µ2Γ
∞

∑
k=1

ηk−1φ(Uk−1)Uk−1 . (A9)
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With respect to the last term, we use Equations (A1) and (A5) to obtain

µ2Γ
∞

∑
k=1

ηk−1φ(Uk−1)Uk−1 = µ2Γ
∞

∑
k=1

ηk−1φ(Uk−1)(Wρ
1− µk

1− µ
)

=
µ2ΓWρ

1− µ

(
ρ−

∞

∑
k=1

ηk−1φ(Uk−1)µ
k

)

≈ µ2ΓWρ2

1− µ
,

which is valid for µ < 1. Here, the sum ρ ∑∞
k=1 ηk−1φ(Uk−1)µ

k is composed of terms in ρ3 than can be
dismissed. Using this approximation in Equation (A9) we obtain two solutions. One is the absorbing
state ρ = 0. The other solution is

ρ ≈ 1
1 + ΓW + 2µ + µ2/(1− µ)

Γ− Γc

Γ
, (A10)

where we considered Γc = (1−µ)/W. Moreover, in the critical region we can approximate ΓW ≈ 1−µ,
leading to:

ρ ≈ 1
2 + µ + µ2/(1− µ)

Γ− Γc

Γ
. (A11)

We compare this analytical approximation with numerical solutions for ρ(ΓW, µ) near the critical
point, see Figure 1c.

A similar calculation for the monomial function Φ(V) = ΓVΘ(V)Θ(ΓV − 1) + Θ(1− ΓV) gives:

ρ ≈ (1− µ)
Γ− Γc

Γ
. (A12)

with the same critical line ΓC = (1 − µ)/W. The monomial function with µ > 0 was studied
numerically in Brochini et al. [28] but this analytic proof for ΓC is new.
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