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What makes a system “complex”? Is it merely the number of components it integrates, a nonlinear
nature of the dependencies and feedbacks among its parts, or an unpredictable behavior it exhibits
over time? The term “complexity” was initially applied generically to express the lack of predictability,
reflecting on the self-organization of a synergistic macroscopic behavior out of interactions between
the constituent microscopic parts, and the emergence of global patterns. Without a doubt, by now the
concept has acquired a fairly definitive meaning, describing a distinct field of research and education
and a new approach to science and engineering. There are abundant examples showing that the
enterprise of Complex Systems, having achieved a substantial level of maturity, reaches back into
our everyday lives, revealing patterns of complexity that should be considered without employing a
reductionist logic [1].

Similarly, the idea of criticality was originally motivated by studies of various crises and disruptive
events, as well as sensitivities to initial conditions, but over time has developed into a precise field:
critical dynamics. Research into critical dynamics is typically focused on the behavior of dynamical
spatiotemporal systems during phase transitions where scale invariance prevails and symmetries break.
Crucially, such behavior can be understood in terms of the control and order parameters. For instance,
a second-order phase transition in a ferromagnetic system, separating two qualitatively different
behaviors, can be reached by controlling the temperature parameter: the “disordered” and isotropic
(symmetric) high-temperature phase is characterized by the absence of net magnetization, while the
“ordered” and anisotropic (less symmetric) low-temperature phase can be described by an order
parameter, the net magnetization vector defining a preferred direction in space. Critical phenomena
have become associated with the physics of critical points, such as fractal behavior, the divergence
of the correlation length, power-law divergences (e.g., the divergence of the magnetic susceptibility
in the ferromagnetic phase transition), universality of relevant critical exponents, and so on. Now,
these precise theoretical notions begin to reconnect with their motivating applied studies of crisis
modeling, forecasting, and response. There is a growing awareness that complexity is strongly related
to criticality, and many examples of self-organizing complex systems can be found in applications
managing complexity specifically at critical regimes.

A similar loop originating in practical studies, maturing to an exact science with precise but
narrow definitions, and then reaching back to applied scenarios, can be seen in the realm of distributed
computation. These days, complex systems can be viewed as distributed information-processing
systems, in the domains ranging from systems biology and artificial life to computational neuroscience,
digital circuitry, and transport networks [2]. Consciousness emerging from neuronal activity and
interactions, cell behavior resultant from gene regulatory networks, and flocking and swarming
behaviors are all examples of global system behavior emerging as a result of the local interactions of
the individuals (neurons, genes, animals). Can these interactions be seen as a generic computational
process? This question shapes the third component of our Special Issue, linking computation to
complexity and criticality.

Entropy 2017, 19, 403; doi:10.3390/e19080403 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e19080403
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 403 2 of 4

The issue begins with three papers which deal with the foundational aspects of information
processing in complex systems [3–5]. The study of Allen et al. [3] describes two quantitative indices
that summarize the structure of a complex system: (i) its complexity profile, based on the multivariate
mutual information at a given scale or higher, and (ii) the marginal utility of information, characterizing
the extent to which a system can be described using limited amounts of information. Information
is understood to have a scale equal to the multiplicity (or redundancy) at which it arises, and so the
analysis shows how these indices capture the multi-scale structure of complex systems. The work
of Chicharro and Panzeri [4] also deals with the redundant aspects of information: it extends the
framework of mutual information decomposition, based on the construction of information gain
lattices, separating the information into the unique, redundant, and synergy components. In doing so,
the work proposes a new construction of information gain and loss lattices. The framework developed
by Biehl et al. [5] presents a novel formal analysis of the specific and complete local integration of
entities within distributed dynamical systems (e.g., Bayesian networks), and puts it in the context
of measures of complexity and information integration, as well as multi-information. The analysis
presented in this paper goes to the core of complexity phenomenon, seen through the lens of synergistic
integrative organization, viewing entities as patterns occurring within a spatiotemporal trajectory.

A cross-disciplinary connection between information-theoretic and game-theoretic aspects of
complexity and computation is explored in the study of Harré [6], which focuses on the mutual
information between previous game states and an agent’s next action. This reveals a novel
connection between the computational principles of logic gates, the structure of games, and the
agents’ decision strategies.

Nonlinear dynamics and inherent feedbacks typical in complex systems are considered in the next
investigation by Zhang et al. [7], which addresses the problem of achieving and maintaining consensus
in second-order multi-agent systems. This problem is pertinent to several scenarios, such as distributed
control in networks of mass-spring systems, synchronization of coupled harmonic oscillators, and
stability analysis of power systems. The study produces an adaptive consensus protocol for the
problem’s variant with an exogenous disturbance generated by an unknown exogenous system.

The next four papers [8–11] are placed in the complexity–criticality–computation overlap which is
central to our issue. The study of Erten et al. [8] continues the information-theoretic theme by applying
the information dynamics framework to studies of critical thresholds during epidemics. The approach
uses the transfer entropy as a measure of distributed communications during a network-wide contagion
seen as computation, as well as the active information storage as a measure of the corresponding
distributed memory. The results for finite-size systems identify a critical interval, rather than an exact
critical threshold. The methods described by Roli et al. [9] also detect criticality; that is, they distinguish
between different phases separated by a critical regime. The approach is centered on the relevance
index—an information-theoretic ratio relating the multi-information (or integration) measure to the
mutual information between a subsystem and the rest of the system. The reported results demonstrate
that the relevance index is consistently maximized at the critical regime. A phase transition-like
behavior is investigated in the paper by Kramer et al. [10] as well. Their work identifies qualitative
changes such as macroscopic spatiotemporal pattern formation in dynamics of Cellular Automata,
by varying the inertia—an inner resistance to changes within cells—as the control parameter. In an
ecological context, the inertia is related to an impairment and competition between species. The study
by Mayer [11] illustrates the effects of critical connectivity in echo state networks and identifies under
which conditions the recurrent connectivity is achieved. The results are contrasted with alternative
approaches considering the dynamics near the “edge of chaos”. The overall approach opens a way to
organize reservoirs of neuronal connections as recurrent filters with a memory compression feature.

The three final studies are also biologically motivated. Continuing with the topic of neuronal
connectivity, the paper by Kunert-Graf [12] attempts to identify the source of complexity in the
biological neuronal network of C. elegans, the only organism for which its “connectome” is known.
Using a suitably defined measure (once again based on information theory), the study argues that the
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somatic nervous system of C. elegans is much more complex than a random graph with the same degree
distribution. The complexity and efficiency of solutions evolved by nature is a source of inspiration
for another study, in which Kwiecień and Pasieka [13] use a computational swarm optimization
algorithm to solve a travel planning problem. The presented approach is found to outperform the
particle swarm optimization algorithm. The analysis presented by Farnsworth [14] brings the subject
of distributed information processing to “the far end of the complexity gradient”, centering the
discussion on the question of free-will in artificial agents. Not surprisingly, this thought-provoking
examination highlights the role of information in shaping the interactions and dynamics among
patterns, as well as the distribution of matter and energy in space and time. The work concludes
with the conjecture that free-will—which currently remains a property of living things—may still be
attained in synthetic robots.

The contributions to this special issue show that the overlap between complexity, criticality, and
computation provides fertile ground with both theoretical and practical dimensions. Considering
complex systems as dynamical systems performing distributed computation suggests a unifying
perspective, which reveals key thermodynamic and information-processing components, as well
as their behavior near critical regimes. These components (e.g., collective memory, long-range
communications, and synergistic modifications), together with the consequent physical fluxes [15],
can be quantified and optimized. In spirit of Guided Self-Organization [2], the resultant dynamics can
then be guided towards desired regions of the corresponding state-spaces, combining the power and
efficiency of the self-organization so abundant in nature with the accuracy and reliability of traditional
design approaches.
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13. Kwiecień, J.; Pasieka, M. Cockroach Swarm Optimization Algorithm for Travel Planning. Entropy 2017,

19, 213. [CrossRef]
14. Farnsworth, K.D. Can a Robot Have Free Will? Entropy 2017, 19, 237. [CrossRef]

http://dx.doi.org/10.3390/e19060273
http://dx.doi.org/10.3390/e19020071
http://dx.doi.org/10.3390/e19050230
http://dx.doi.org/10.3390/e19050201
http://dx.doi.org/10.3390/e18120423
http://dx.doi.org/10.3390/e19050194
http://dx.doi.org/10.3390/e19020073
http://dx.doi.org/10.3390/e19030102
http://dx.doi.org/10.3390/e19010003
http://dx.doi.org/10.3390/e19030104
http://dx.doi.org/10.3390/e19050213
http://dx.doi.org/10.3390/e19050237


Entropy 2017, 19, 403 4 of 4

15. Prokopenko, M.; Einav, I. Information thermodynamics of near-equilibrium computation. Phys. Rev. E 2015,
91, 062143. [CrossRef] [PubMed]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.91.062143
http://www.ncbi.nlm.nih.gov/pubmed/26172697
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

