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Abstract:



In this paper, the emergence of hyperchaos in a network with two very simple discrete periodic oscillators is presented. Uncoupled periodic oscillators may represent, in the crudest and simplest form, periodic oscillators in nature, for example fireflies, crickets, menstrual cycles of women, among others. Nevertheless, the emergence of hyperchaos in this kind of real-life network has not been proven. In particular, we focus this study on the emergence of hyperchaotic dynamics, considering that these can be mainly used in engineering applications such as cryptography, secure communications, biometric systems, telemedicine, among others. In order to corroborate that the emerging dynamics are hyperchaotic, some chaos and hyperchaos verification tests are conducted. In addition, the presented hyperchaotic coupled system synchronizes, based on the proposed coupling scheme.
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1. Introduction


The emergence of chaos by coupling two or more systems is a widely-observed phenomenon that has attracted the attention of the scientific community for decades. Particularly, two procedures for the emergence of chaos or hyperchaos by coupling two or more systems have been studied. In the first instance, we have the case of coupled chaotic oscillators in the periodic regime; see for example [1,2,3]. The second case is by means of the coupling of non-chaotic oscillators [4,5].



In the current literature, the majority of the research works concerning the emergence of chaos in networks consider uncoupled chaotic nodes in the periodic regimen, that is chaotic nodes with parameter values in non-chaotic regions. Then, these nodes are coupled by using different network topologies. As a result, all nodes may be able to transit to a chaos state; see, e.g., [6,7,8]. In addition, to our knowledge, relative to the emergence of chaos and hyperchaos in networks, previous works consider rings of three or more unidirectionally-coupled oscillators; see, e.g., [9,10].



On the other hand, the synchronization of complex networks has received great interest in different fields of science and technology, in particular, synchronization of complex dynamical networks with chaotic systems as nodes; see, e.g., [11,12,13,14]. Interaction among coupled nodes within a complex network plays an important role in the emerging dynamics of networks, for example synchronization or emergence of chaos [6].



At present, special attention is paid to the study of complex networks in nature and the phenomena arising in them [15,16,17]. The study of complex networks’ synchronization is of great interest in the scientific community, with similar behaviors present in natural networks, for example communities of fireflies, crickets, menstrual cycles of women, among others.



Recently, we have studied the coupling of periodic oscillators, as a very simple model of fireflies on nearest-neighbor, star and small-world topologies [18]. This allows understanding some important aspects of behavior, interaction, coupling and synchronization of simple models that can represent living organisms with common goals and collective behavior.



The case of hyperchaos emergence with coupled non-chaotic oscillators is presented in this paper, where the entropy–that describes the dispersal of a system’s energy and is an indication of the disorder of a physical system [19,20,21], appear with the coupling of the simple periodic oscillators, i.e., high entropy is obtained from a coupling of systems with very low entropy. In addition, we present the peculiarity that along with the emergence of hyperchaos, with particular configuration and parameters, we achieve hyperchaotic synchronization (in-phase or anti-phase) of discrete periodic oscillators that is based on the complex systems theory.



The main contribution of this paper is the emergence of chaos or hyperchaos making a coupling of only two very simple periodic discrete systems, which in the crudest and simplest form can represent real-life periodic oscillators, like the ones mentioned above, that in isolation in no way generate chaos or hyperchaos, i.e., structurally non-chaotic. These emergent hyperchaotic dynamics can be mainly used in information theory [22], in engineering applications such as cryptography, secure communications, biometric systems, telemedicine, among others; see, e.g., [23,24,25]. Given the simplicity and discrete nature of the proposed simple network, it may be attractive for digital implementations by using embedded systems such as Field Programmable Gate Arrays (FPGAs), Digital Signals Processors (DSPs) or microcontrollers; see, e.g., [26].



This paper is organized as follows. In Section 2, some basic concepts on the synchronization of complex dynamical systems are presented. In Section 3, the emergence of hyperchaos in a simple network from the interaction of only two discrete periodic oscillators that are bidirectionally coupled is studied. In Section 4, some tests that confirm hyperchaos emergence are presented. In Section 5, we show the synchronization of two bidirectionally-coupled hyperchaotic nodes. Finally, in Section 6, some conclusions are presented.




2. Complex Dynamical Networks


We consider a complex dynamical network composed of N identical nodes, linearly and diffusively coupled through the first state of each node. In this dynamical network, each node constitutes an n-dimensional discrete-time map. The state equations of this network are described by:


xi(k+1)=f(xi(k))+ui(k),i=1,2,…,N,



(1)




where xi(k)=xi1(k),xi2(k),…,xin(k)T∈Rn are the state variables of the node i, [image: there is no content] is the input signal of the node i and is defined by:


ui(k)=c∑j=1NaijΓxj(k),i=1,2,…,N,



(2)




the constant [image: there is no content] represents the coupling strength of the complex network, and [image: there is no content] is a constant 0–1 matrix linking coupled state variables; whereas, [image: there is no content] is the coupling matrix, which represents the coupling topology of the complex network. If there is a connection between node i and node j, then [image: there is no content]; otherwise, [image: there is no content] for i≠j. The diagonal elements of coupling matrix [image: there is no content] are defined as:


aii=−∑j=1,j≠iNaij=−∑j=1,j≠iNaji,i=1,2,…,N.



(3)







If the degree of node i is [image: there is no content], then [image: there is no content]



Now, suppose that the complex network (1) and (2) are connected without isolated clusters. Then, [image: there is no content] is a symmetric irreducible matrix. In this case, it can be shown that zero is an eigenvalue of [image: there is no content] with multiplicity one, and all of the other eigenvalues of [image: there is no content] are strictly negative; see [27,28].



In accordance with [28] for discrete systems, the complex dynamical network (1) and (2) are said to achieve (asymptotically) synchronization if:


x1(k)=x2(k)=,…,=xN(k),ask→∞.



(4)







The diffusive coupling condition (3) guarantees that the synchronization state is a solution, [image: there is no content], of an isolated node, that is:


[image: there is no content]



(5)




where [image: there is no content] can be an equilibrium point, a periodic orbit or, a chaotic attractor. Thus, the stability of the synchronization state,


[image: there is no content]



(6)




of the complex network (1) and (2) are determined by the dynamics of an isolated node, i.e., function f and solution [image: there is no content], the coupling strength c, the inner linking matrix [image: there is no content] and the coupling matrix [image: there is no content].




3. Emergence of Hyperchaos with Coupled Periodic Oscillators


This section describes the state equations for networks with bidirectionally-coupled periodic oscillators like nodes.



3.1. Uncoupled Periodic Oscillators


Dynamical networks with discrete periodic oscillators are constructed, which in a simple way, may represent organisms interacting with each other, for example fireflies [18]. Figure 1 illustrates a simple network with two bidirectionally-coupled discrete periodic nodes.


Figure 1. Simple network with two bidirectionally-coupled periodic nodes.



[image: Entropy 19 00413 g001]






State equations for this dynamical network are given as follows. The first node [image: there is no content] is described by:


[image: there is no content]



(7)




with input signal:


[image: there is no content]



(8)




the second node [image: there is no content] is given by:


[image: there is no content]



(9)




with input signal:


[image: there is no content]



(10)




and the time step is given by:


[image: there is no content]



(11)







Note that in the network with two coupled periodic discrete nodes (7)–(11), the parameters [image: there is no content] and b are introduced, with the purpose to control the interaction between the periodic oscillators. Therefore, the appropriate choice of these parameter values determines whether the emerging collective dynamics in the network are periodic, chaotic or hyperchaotic. Let us consider the following particular parameter values [image: there is no content] and [image: there is no content] and initial conditions: [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. If coupling strength [image: there is no content], then [image: there is no content] and [image: there is no content] are uncoupled nodes, i.e., [image: there is no content]; node [image: there is no content] corresponds to a simple periodic oscillator at 2 Hz, and node [image: there is no content] corresponds to a simple periodic oscillator at 5 Hz. Figure 2 shows state trajectories and error dynamics [image: there is no content] (with discrete nodes, the default interpolation of MATLAB R2014a is used, in order to better appreciate the temporary graphics); while Figure 3 exhibits the phase portrait for isolated periodic oscillators (7)–(11).


Figure 2. Temporal dynamics of states (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content], with [image: there is no content].



[image: Entropy 19 00413 g002]





Figure 3. Phase portrait [image: there is no content] versus [image: there is no content] with [image: there is no content].



[image: Entropy 19 00413 g003]






It can be seen that oscillators [image: there is no content] and [image: there is no content] have periodical behavior when they are uncoupled, and under this scenario, the oscillators do not generate chaos. Figure 4 shows the corresponding limit cycle attractors for the periodic nodes [image: there is no content] and [image: there is no content]. These limit cycle attractors are obtained by delaying one sample. This was made in order to obtain attractors given that [image: there is no content] and [image: there is no content] are constants.


Figure 4. Limit cycle attractors generated by uncoupled periodic nodes [image: there is no content] and [image: there is no content]: (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content].



[image: Entropy 19 00413 g004]







3.2. Emerging Hyperchaos with Two Coupled Periodic Oscillators


On the other hand, if we use a coupling strength [image: there is no content] in Equations (7)–(11), the emerging collective behavior in the network due to the interaction of periodic oscillators is hyperchaotic (this statement will be verified in a later section). Figure 5 shows state trajectories of [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and error dynamics [image: there is no content]. Figure 6 illustrates the hyperchaotic attractors [image: there is no content] versus [image: there is no content] and [image: there is no content] versus [image: there is no content]; whereas, Figure 7 shows phase portraits [image: there is no content] versus [image: there is no content] and [image: there is no content] versus [image: there is no content].


Figure 5. Time evolution for bidirectional coupling; [image: there is no content], [image: there is no content] and [image: there is no content]: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content] and (e) [image: there is no content].



[image: Entropy 19 00413 g005]





Figure 6. Hyperchaotic attractors generated by coupled nodes [image: there is no content] and [image: there is no content]: (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content].



[image: Entropy 19 00413 g006]





Figure 7. Phase portraits for coupled nodes [image: there is no content] and [image: there is no content]: (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content].



[image: Entropy 19 00413 g007]






From Equations (7)–(11), we can see that the parameter b directly affects the states [image: there is no content] and [image: there is no content], so if we change this parameter value, we can select a value of b in order to have different behavior in states [image: there is no content] and [image: there is no content]. Figure 8a shows the bifurcation diagram for (7)–(11) of [image: there is no content] with respect to parameter b, with [image: there is no content], [image: there is no content], where the amplitude of [image: there is no content] varies depending on the value of b; while Figure 8b depicts the bifurcation diagram for state [image: there is no content] with respect to parameter b. From Figure 8, we can establish that [image: there is no content] is a sufficient condition to ensure the emergence of hyperchaos in the simple network of two coupled periodic oscillators (7)–(11). Interestingly, a peculiar behavior (like tug of war) at [image: there is no content] is observed; as an illustrative example, this behavior is shown in Figure 9 and Figure 10, where we can see that [image: there is no content] but [image: there is no content] (the same result for states [image: there is no content] and [image: there is no content] is observed). Figure 11 shows the bifurcation diagram for parameter c, where we can see that the amplitude of [image: there is no content] remains constant with the exception of values of c approaching zero; on the other hand, the amplitude of [image: there is no content] increases as c tends to [image: there is no content].


Figure 8. Bifurcation diagram of b with [image: there is no content], [image: there is no content], (a) [image: there is no content] and (b) [image: there is no content].



[image: Entropy 19 00413 g008]





Figure 9. A peculiar collective behavior at [image: there is no content] for (a) [image: there is no content], [image: there is no content] and (b) [image: there is no content], [image: there is no content] (note that one iteration of the transient is suppressed).



[image: Entropy 19 00413 g009]





Figure 10. A peculiar collective behavior at [image: there is no content] for (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content] (note that one iteration of the transient is suppressed).



[image: Entropy 19 00413 g010]





Figure 11. Bifurcation diagram of c with [image: there is no content], [image: there is no content], (a) [image: there is no content] and (b) [image: there is no content].



[image: Entropy 19 00413 g011]






For the case in which nodes [image: there is no content] and [image: there is no content] are unidirectionally coupled, i.e., taking (7)–(11) with [image: there is no content], master node [image: there is no content] does not exhibit hyperchaotic dynamics. In the slave node [image: there is no content], which is influenced by the master node [image: there is no content], hyperchaotic dynamics occur; see Figure 12. The value of k now is 2500 in order to appreciate a wide range of time evolution.


Figure 12. Time evolution for unidirectional coupling: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content] and (e) [image: there is no content].



[image: Entropy 19 00413 g012]






Note that this study is not limited to only two coupled discrete periodic nodes; complex networks can be used to coupled more than two nodes in different topologies, such as star, nearest-neighbor, small-world, among others.



In the next section, we will carry out some tests to confirm that the emerging collective behavior in the network (7)–(11) is hyperchaos.





4. Confirmation of Collective Hyperchaotic Behavior


In order to verify whether the emerging collective behavior in a network with two coupled discrete periodic oscillators is chaotic or hyperchaotic, some well-known test are reported in this section: sensitivity to initial conditions, auto-correlation test, Gottwald–Melbourne 0–1 test (indicates if the signal is or is not chaotic), Lyapunov exponents (indicate chaos or hyperchaos) and, finally, the Kaplan–Yorke dimension. In the previous section, we can see that Figure 6 shows the first sign of a chaotic signal because the attractors do not have a definite shape or a limit cycle indicating periodic signals. One of the simplest, but essential tests for verification of hyperchaos is by simple visual inspection of time series with respect to sensitivity to initial conditions. Consider the network (7)–(11), with different initial conditions [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]. In Figure 13, we can appreciate high sensitivity to initial conditions in the network (7)–(11).


Figure 13. High sensitivity to initial conditions: (a) [image: there is no content], [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; [image: there is no content] and (d) [image: there is no content].



[image: Entropy 19 00413 g013]






Figure 14 shows the normalized auto-correlation of [image: there is no content], which exhibits a strong peak in displacement 2500, indicating that this point is the only one where the signal [image: there is no content] presents a repeating pattern, which is clearly comparable to the auto-correlation of a quasi-random signal, that is having high entropy.


Figure 14. Auto-correlation for [image: there is no content], where CA is the normalized auto-correlation coefficient.



[image: Entropy 19 00413 g014]






Figure 15 shows the 0–1 Gottwald–Melbourne test [29], where, if the value of K is approximately zero, the analyzed signal is not chaotic (K is the obtained value from the iterative process of the Gottwald–Melbourne test), while if [image: there is no content], the signal is chaotic. The mean value in the Gottwald–Melbourne test for signal [image: there is no content] and [image: there is no content] is [image: there is no content] and [image: there is no content] 0.9981, respectively, indicating that the analyzed signals are chaotic.


Figure 15. Gottwald–Melbourne test for signals [image: there is no content] and [image: there is no content].



[image: Entropy 19 00413 g015]






In addition, we obtained the Lyapunov exponents of the network (7)–(11). Figure 16 shows the Lyapunov exponents ([image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content]) for the network (7)–(11), wherein if at least one Lyapunov exponent is positive, then the network (7)–(11) is chaotic. Due to the network having two positive exponents, the collective behavior in the network (7)–(11) is hyperchaotic. Various kinds of fractal dimensions can be estimated theoretically and empirically, as the Hausdorff dimension, Minkowski–Bouligand dimension, box-counting dimension, correlation dimension, Kaplan–Yorke dimension, etc.; see [30,31,32]. The Kaplan–Yorke dimension (calculated for a time series of 350,000 iterations) for the proposed network is given by:


[image: there is no content]



(12)






Figure 16. Lyapunov exponents for the simple network (7)–(11).



[image: Entropy 19 00413 g016]






The Lyapunov exponents and Kaplan–Yorke dimension were obtained by using the algorithm reported in [31].



Finally, in order to determine the regions where the network (7)–(11) exhibits the emergence of hyperchaos, we construct a diagram as a function of parameters c and [image: there is no content] in Figure 17. The diagram indicates no chaos in the green region, transition to hyperchaos in red regions and hyperchaos in blue regions.


Figure 17. Diagram of hyperchaos emergence: no chaos (green), transition to hyperchaos (red) and hyperchaos (blue).



[image: Entropy 19 00413 g017]






We use a [image: there is no content] sweep step of c and [image: there is no content], [image: there is no content] and [image: there is no content] to obtain the hyperchaos emergence diagram of Figure 17.



In the next section, we intend to synchronize the network with two hyperchaotic nodes.




5. Hyperchaotic Network Synchronization of Two Oscillators


In this section, network synchronization with two bidirectionally-coupled hyperchaotic nodes [image: there is no content] and [image: there is no content], based on complex system theory, is presented.



Consider the single network (7)–(11) with parameter values [image: there is no content], [image: there is no content] and [image: there is no content]. Phase synchronization is achieved between the hyperchaotic nodes. As we can see in Figure 18, state trajectories and errors [image: there is no content] and [image: there is no content] are shown. Figure 19 and Figure 20 show hyperchaotic attractors and phase portraits between two oscillators respectively. We eliminated the first five iterations in order to ignore the transitory, so that the presented simulation results in Figure 19 and Figure 20 can be seen in more detail.


Figure 18. Time evolution for [image: there is no content], [image: there is no content] and [image: there is no content], (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; (e) [image: there is no content] and (f) [image: there is no content].



[image: Entropy 19 00413 g018]





Figure 19. Hyperchaotic attractors, (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content] (after five iterations).



[image: Entropy 19 00413 g019]





Figure 20. Phase portraits, (a) [image: there is no content] versus [image: there is no content] and (b) [image: there is no content] versus [image: there is no content] (after five iterations).



[image: Entropy 19 00413 g020]






A numerical calculation for the network synchronization was performed for [image: there is no content] at intervals of [image: there is no content] (with [image: there is no content], so the calculation is approximated). After removing the first 2000 iterations of each state, we review [image: there is no content] (phase synchronization) and [image: there is no content] (anti-phase synchronization). If [image: there is no content] ([image: there is no content] peak amplitude of [image: there is no content]), then we establish no hyperchaotic synchronization among nodes of the network (7)–(11). If [image: there is no content], we establish phase synchronization, and if [image: there is no content], we establish anti-phase synchronization. Figure 21 shows a hyperchaotic synchronization diagram with respect to [image: there is no content], where “0” denotes “no synchronization”, “1” denotes “phase synchronization” and “−1” denotes “anti-phase synchronization”. From the hyperchaotic synchronization diagram (see Figure 21), we can see that an intermittent synchronization occurs in transitions from no synchronization to synchronization (and vice versa) in both the phase and anti-phase cases.


Figure 21. Hyperchaotic synchronization diagram for [image: there is no content] with [image: there is no content] and [image: there is no content].



[image: Entropy 19 00413 g021]






Figure 22 and Figure 23 show the hyperchaotic synchronization diagram of c and b, respectively, obtained similarly as with [image: there is no content].


Figure 22. Hyperchaotic synchronization diagram for c with [image: there is no content] and [image: there is no content].



[image: Entropy 19 00413 g022]





Figure 23. Hyperchaotic synchronization diagram for b with [image: there is no content] and [image: there is no content].



[image: Entropy 19 00413 g023]






In Figure 24, we can appreciate the synchronization diagram of c with respect to [image: there is no content], where, if [image: there is no content], the network synchronizes for any value of [image: there is no content]. Note that, for illustrative purposes only, c takes negative values.


Figure 24. Hyperchaotic synchronization diagram for c with respect to [image: there is no content] with [image: there is no content].



[image: Entropy 19 00413 g024]







6. Conclusions


In this paper, we presented the emergence of hyperchaos in a network with two very simple discrete periodic oscillators. We emphasized that when the oscillators are isolated, there is certainly no chaos or hyperchaos generated, i.e., the oscillators are structurally non-chaotic. In addition, the presented hyperchaotic coupled system synchronizes based on the proposed coupling scheme; this was proven by creating a diagram that shows the synchronization state: in phase or anti-phase. Significantly, these emergent hyperchaotic dynamics can be mainly used in engineering applications, such as cryptography, secure communications, biometric systems, telemedicine, among others; see for example [23,24], where with the purpose of carrying out the experimental implementation, we can use microcontrollers, FPGAs or any other device [26]. In future works, we will perform a theoretical analysis to determine the conditions for the emergence of hyperchaos in networks with discrete periodic oscillators, including networks with a large number of coupled nodes. In this same direction, we will try to show the emergence of hyperchaos in some types of coupled periodic oscillators in real-life networks.
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