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Abstract: The periodical transient impulses caused by localized faults are sensitive and important
characteristic information for rotating machinery fault diagnosis. However, it is very difficult to
accurately extract transient impulses at the incipient fault stage because the fault impulse features
are rather weak and always corrupted by heavy background noise. In this paper, a new transient
impulse extraction methodology is proposed based on impulse-step dictionary and re-weighted
minimizing nonconvex penalty Lq regular (R-WMNPLq, q = 0.5) for the incipient fault diagnosis of
rolling bearings. Prior to the sparse representation, the original vibration signal is preprocessed by
the variational mode decomposition (VMD) technique. Due to the physical mechanism of periodic
double impacts, including step-like and impulse-like impacts, an impulse-step impact dictionary
atom could be designed to match the natural waveform structure of vibration signals. On the other
hand, the traditional sparse reconstruction approaches such as orthogonal matching pursuit (OMP),
L1-norm regularization treat all vibration signal values equally and thus ignore the fact that the
vibration peak value may have more useful information about periodical transient impulses and
should be preserved at a larger weight value. Therefore, penalty and smoothing parameters are
introduced on the reconstructed model to guarantee the reasonable distribution consistence of peak
vibration values. Lastly, the proposed technique is applied to accelerated lifetime testing of rolling
bearings, where it achieves a more noticeable and higher diagnostic accuracy compared with OMP,
L1-norm regularization and traditional spectral Kurtogram (SK) method.

Keywords: incipient fault diagnosis; re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq);
impulse-step impact dictionary; variational mode decomposition (VMD); rolling bearing

1. Introduction

Rolling bearings are extensively used as critical elements in the transmission systems of rotating
machinery, and unexpected faults may cause severe mechanical failures and great economic losses
or even personal casualties. Therefore, the incipient fault diagnosis (IFD) and health management of
rolling bearings are becoming more and more crucial in engineering applications [1–3].

Over the past decades, feature extraction techniques were applied to extract the transient
characteristics from the original vibration signal, which can indicate the fault location and fault
type of rolling bearings. However, fault feature extraction usually suffers from two challenges when
the defects occur at the early stage: (1) at the early stage of fault degradation, fault-related components
perform incompletely and incipient faults are quite different from obvious failure states, and in
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practical applications, it seems the normal operating stage is generally considered; (2) the useful weak
fault impulse transient characteristics are often submerged in heavy-level background noise and other
irrelevant components, which makes the fault diagnosis more difficult. Therefore, the major concern in
bearing fault feature extraction is to determine which signal processing tools and algorithms to use to
distinguish and diagnose early stage fault characteristics. Up to now, various fault diagnosis techniques
have been proposed attempting to address the above challenges, such as wavelet/wavelet-packet
transform [4], local mean decomposition (LMD) and its extension [5], minimum entropy deconvolution
(MED) and its extension [6,7] and artificial intelligence (AI) algorithms such as artificial neural
network (ANN) and fuzzy algorithm [8–10], Hilbert envelope spectrum [11], energy and entropy
methods [12–14], higher order statistical techniques [15–18], to mention just a few. Unfortunately,
some potential drawbacks and severe shortcomings related to the common techniques still remained
unresolved. For example, an adaptive decomposition problem exists in the wavelet/wavelet-packet
and LMD methods, sample training and fault severity quantitative analysis issues exist in the ANN and
fuzzy algorithm, energy and entropy methods are complex and time-consuming, etc. As a consequence,
if a weak fault exists, then the acquired vibration signals are rather complex, and these shortcomings
may hinder the effectiveness of traditional methods.

Compared to traditional fault feature extraction approaches, sparse representation (SR) as a new
signal processing method whereby a given vibration signal can be sparsely represented based on a
linear combination of sparse basis or dictionary atoms. The SR has been successfully introduced on
fault detection of rotating machinery. For example, Zhu and Fan [19,20] developed an optimal Laplace
wavelet, tunable Q-factor wavelet transform, single-side Morlet wavelet basis combined with split
variable augmented Lagrangian shrinkage algorithm (SALSA) to extract impulse components and
transient features. Du [21] proposed a nuclear norm minimization that uses a weighted low-rank
sparse model for bearing fault detection. Cui [22,23] introduced composite dictionary multi-atom
matching and a matching pursuit algorithm based on an adaptive impulse dictionary for gear-box and
bearing fault diagnosis. The defect-induced impulses redundant dictionary and matching pursuit (MP)
approach was proposed by He in [24]. Zhang [25] proposed a novel method called kurtosis-based
weighted sparse model based on a convex optimization technique; this technique formulated the prior
information into a sparse regularization problem and achieved good effect in bearing fault diagnosis.
He [26] employed a local time-frequency (TF) domain sparse representation to reconstruct the native
pulse waveform structure of fault transients, and proved that the proposed method was superior to
traditional the MP and K-singular value decomposition (K-SVD) methods.

Although the sparse representation has achieved successful applications in fault diagnosis of
rotating machinery, however, the following two situations still need to be further researched:

(1) When a spalling defect or pitting corrosion is induced, a series of successive impulses will be
generated during subsequent operation. However, most dictionaries and optimal wavelet-basis
constructed in the previous method only use single pulse or single impact frequencies,
e.g., the optimal Laplace wavelet, single-side Morlet wavelet basis, transient impulse atoms,
etc. Therefore there is no guarantee that the sparse-basis construction can match the natural
waveform structure of the vibration signal well.

(2) In practice, due to the fluctuation of the load and speed, and the interference of the harsh working
environment, some random variations will be generated between an impulse and its neighboring
impulses. The traditional sparse reconstruction methods such as greedy pursuit, orthogonal
matching pursuit (OMP), L1-norm regularization and iterative shrinkage algorithm ignore those
time-varying physical characteristics, which leads to a lower success rate of the transient impulse
reconstruction. On the other hand, the traditional sparse reconstruction approaches also treat all
vibration signal values equally and thus ignore the fact that the vibration peak value may have
more useful information about periodical transient impulses and should be preserved at a larger
weight value.
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In an attempt to overcome the above shortcomings and extend the universality of SR in fault
diagnosis, this paper proposes a new sparse representation algorithm called re-weighted minimizing
nonconvex penalty Lq regular (R-WMNPLq) combined with an impulse-step impact dictionary for
incipient bearing fault diagnosis, using a bearing accelerated life test diagnosis as a case study.
Prior to the sparse representation, the original vibration signal is preprocessed by the variational mode
decomposition (VMD) technique for incipient fault signal filtering. Furthermore, the impulse-step
impact dictionary atoms are constructed to match the natural waveform structure of the vibration
signals. Considering the time-varying physical characteristics of transient impulses and keeping
a reasonable distribution consistence of peak vibration values, the R-WMNPLq (q = 0.5) technique
is employed and the fault frequencies and failure location can be diagnosed accordingly. Incipient
transient feature extraction results indicate that the impulse time and the period of transients can
be detected more accurately and effectively in cases where previous approaches failed, which can
significantly improve the performance of sparse reconstruction for extracting transient impulses from
heavy noisy vibration signal.

The remainder of this paper is organized as follows: Section 2 describes the theory of the
impulse-step impact dictionary. Section 3 introduces re-weighted minimizing nonconvex penalty Lq
regular (q = 0.5) algorithm and the implementation details of this method. In Section 4, the diagnosis
results and discussion of the proposed algorithm with other previous approaches are presented.
Conclusions are made in Section 5.

2. Impulse-Step Impact Dictionary and Its Simulation

The periodic transient impulses of rolling bearings are mainly generated by the impact between
the bearing elements, inner race and outer race. For example, when there is a pitting failure with a
certain size in the outer race, the bearing element initially contacts the anterior fault edge and then
exits from the lagging fault edge, as shown in Figure 1a. Thus two impacts are generated due to entry
into and exit from the fault region. The first impact could be treated as step-like response (i.e., with
low frequency components) and the second impact could be treated as impulse-like response (i.e., with
high frequency components) [27]. This phenomenon has been proven by the practical fault data from
the bearing data center of Case Western Reserve University [28], as shown in Figure 1b. Based on the
above analysis, in this paper, a double transient impulse dictionary atom that includes step-like and
impulse-like impacts is proposed.
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Figure 1. The time-domain waveform of the fault signal for a single pitting failure. (a) The physical 
model; (b) time-domain waveform of the fault signal. 
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Figure 1. The time-domain waveform of the fault signal for a single pitting failure. (a) The physical
model; (b) Time-domain waveform of the fault signal.

Firstly, the period time of the bearing elements entering and then exiting from the fault region can
be calculated by:
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where the lo is defect size on the outer race, d is the rolling element diameter, D0 is the diameter of
outer race, i.e., D0 = Dp + d, Dp is the pitch diameter and fr is the shaft rotation frequency, fc is the

bearing cage frequency, i.e., fc =
fr
2 (1−

d
Dp

cos α), α is the contact angle. As a matter of fact, when the
defect size lo (mm) is smaller than the rolling element diameter d, so the rolling element cannot come
into contact with the bottom of the pitting failure, the distance of the rolling element entering and then
exiting from the fault region is half of the defect size lo (mm). Thus the period time ∆t becomes:

∆t =
1
2
× ∆to =

loDp

π fr(D2
p − d2)

(2)

Similarly, when there is a pitting failure with a certain size li (mm) on the inner race, the
corresponding period time ∆ti can be expressed as follows:

∆ti =
li

πDi( fr − fc)
=

li
π(Dp − d)

× 1
fr − 1

2 fr(1− d
Dp

)
=

2liDp

π fr(D2
p − d2)

(3)

which is the same as the period time that was derived for the same defect size on the outer race,
as shown in Equation (1). We suppose the moment when the impulse-like impact response occurs
is u, thus the step-like impact response occurs is u− ∆t, consequently, the single degree of freedom
impulse-like impact (in the form of a decaying sinewave) can be defined as:

ximp = exp(
−(t− u)

τ
) sin(2π fnt) (4)

The single step-like impact can be defined as:

xstep = exp(
−(t− u− ∆t)

3τ
)× (− cos(2π

fn

6
t)) + exp(

−(t− u)
5τ

) (5)

Therefore, the impulse-step impact impulse dictionary atom can be defined as:

x = a · ximp + xstep (6)

where fn is the system natural frequency, u the time when the impulse-like impact occurs, τ is system
damping and a is the peak value ratio of the impulse-like response to the step-like response [27].

In order to generate an impulse-step impact signal representative of that obtained from the
double impact of the rolling element with the anterior and lagging fault edge, the time-domain
waveforms of impulse-step impact atom, step-impulse impact atom, impulse-step impact atom, and the
impulse-step impact signal without/with noise generated using Equation (6) are shown in Figure 2,
where the simulated bearing type was NACHI 2206GK whose detailed parameters are listed in Table 1.
The parameters of the impulse-step impact equation were set as follows: the system damping constant
τ is 0.001, peak value ratio a is 0.3, the system natural frequency fn = 10,000 Hz, the impulse-like
response happened u is 0.005, the rotor speed rotation frequency fr is 800 rpm. The time-domain
waveform of the impulse-like signal with noise is shown in Figure 2e. The signal-noise ratio (SNR) is
20 dB. It can be seen that the similarities between the measured signal and the simulated signal with
noise presented in Figure 1b is quite apparent.

Table 1. The parameters of the bearing NACHI 2206GK.

Parameter Outside Diameter
(mm)

Pitch Diameter
(mm)

Contact
Angle

Element
Number

Pitting Defect
Size

Value d0 = 7.95 Dp = 45.14 α = 0◦ 14 l0 = 1.28
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Figure 2. The time-domain waveform of (a) impulse-like impact atom; (b) step-impulse impact atom; 
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impact signal with a SNR of 20 dB. 
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Figure 2. The time-domain waveform of (a) impulse-like impact atom; (b) step-impulse impact atom;
(c) impulse-step impact atom; (d) impulse-step impact signal without noise and; (e) impulse-step
impact signal with a SNR of 20 dB.

3. Re-Weighted Minimizing Nonconvex Penalty Lq Regular Technique

3.1. Review of Sparse Representation

The basic idea of sparse representation is that a vibration signal can be represented as a linear
superposition of a few sparse atoms with residual component [29–33]. Denoting a vibration signal
y ∈ Rp, the approximating process can be represented as:

y = x + n = Dα + n = ∑
k∈Ωm

αkdk + n (7)

where x is the approximating signal, n represents residual component, D ∈ Rp×n, p << n called
redundant dictionary, which consists of n sparse atoms di ∈ Rp(i = 1, 2, · · ·, n), and αk an sparse
coefficients of the vibration signal y. As demonstrated in Equation (7), there are two issues to be solved:

(1) Designing a redundant dictionary D. The first important issue is how to construct a redundancy
dictionary D that suitable for the transient behavior of fault impulse components.

(2) Recovering sparse coefficients α. Another important issue is how to design an optimization
algorithm to calculate the sparse coefficients of vibration fault signal.
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3.2. Re-Weighted Minimizing Nonconvex Penalty Lq Regular and Its Simulation Experiment

It should be noted that y = Dα + n is a highly underdetermined equation [34], for which there is
an infinite set of solutions. In the present method, using an optimization approach, the problem of
signal reconstruction by sparse representation under residual error constraints can be calculated by:

∼
α = argmin‖α‖0, subject to, ‖Dα− y‖2

2 ≤ c (8)

where c is a threshold of the residual error. Moreover, the prior knowledge of the original signal is
usually utilized to regularize the solution under residual error constraint is expressed as

∼
α = argmin‖Dα− y‖2

2 + λ · ζ(x). (9)

where λ is regularization weight and ζ(x) regularization term. From the perspective of Bayesian
estimation, the ‖Dα− y‖2

2 and ζ(x) can be viewed as the likelihood part and prior knowledge part,
respectively. Therefore, the ζ(x) prior knowledge part plays a significant role in signal reconstruction
based on sparse representation.

Usually, a fault vibration signal can also be divided into two types: the first is the periodic transient
impulse containing step-like impact and impulse-like impact, and the second is the smoothing regions
between the impulse and its neighbor impulse, as shown in Figure 2e. For the first one, the physical
structure and fault type determine the similarity between two impulses, and the influence of external
noise is relatively weak. However, in smoothing regions, due to the fluctuation of the varying load
and speed, and the interference of the harsh working environment, the influence of external noise
will play a critical role in signal reconstruction. If the noise level is strong, the information of noise in
smoothing regions is regarded as structural information in sparse coefficients. Meanwhile, the classical
optimization and regularization approaches also treat all vibration signal values equally and thus
ignore a fact that the vibration peak value may have more useful information of periodical transient
impulses, and cannot remove the false structural information contained in the sparse coefficients,
and the traditional methods may cause instability and obvious artifacts in the reconstructed signal.

To overcome the above issue, inspired by the ideas of the unconstrained low-rank matrix recovery
in Refs. [35–37] that many successful applications have implemented in the compressed sensing
field [29–33], a new re-weighted minimizing nonconvex penalty Lq (0 < q ≤ 1) regular (R-WMNPLq)
method is introduced, which is different from the ones studied in [35–37] where uniform random
matrix (URM, i.e., the entries of matrix are random variables with uniform distribution) was used.
In this work, the impulse-step impact dictionary is utilized for extracting the fault information from its
observation or noisy data. The objective function is as follows:

Lq(α, ε, λ) =
N

∑
j=1

(α2
j + ε2)

q/2
+

1
2λ
‖Dα− b‖2

2 (10)

where q is regular operator, ε(ε > 0) is smoothing parameter, λ(λ > 0) is penalty parameter and
b is measurement vector. It should be mentioned that the smoothing parameter plays a critical role
in signal reconstruction in terms of smoothing regions. The detailed update procedure is shown
in Algorithm 1.
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Algorithm 1 Re-weighted minimizing nonconvex penalty Lq regular (R-WMNPLq)

1: Input: Matrix D, measurement vector b and estimated sparsity level s;
2: Choose appropriate parameters λ(λ > 0), q (0 < q ≤ 1);
3: Initialize α(0) such that Dα(0) = b, and ε0 = 1;
4: For k = 0;
5: Solve the following linear system for α(k),

6: (
qα(k+1)[i]

(ε2
k + ‖α(k)[i]‖

2
2)

1−q/2 )1≤i≤M +
1
λ

DT(Dα(k+1) − b) = 0 (11)

7: Or

8: (DT D + diag(
qλ

(ε2
k + ‖α(k)[i]‖

2
2)

1−q/2 )1≤i≤M)α(k+1) = DTb (12)

9: When the required reconstruction precision is obtained, the coefficients α(k) will be considered as the
output value assigned to α, meanwhile end to this algorithm, otherwise execute next steps.

10: Let β be a constant, where 0 < β < 1.

Update α by formula εk+1 = min
{

εk, β · r(α(k+1))s+1

}
, where r(α) represents the rearrangement of

absolute values of r(α(k+1)) in the decreasing order, and r(α)s+1 is the (s + 1) th component value of r(α).
Note that, if εk+1 = 0, choose α(k+1) to be an approximation of sparse solution and stop this iteration.

11: Let k = k + 1, and return to step 4 to continue.
12: Output: Sparse coefficients α;
13: End

For the R-WMNPLq method, the following theorem summarizes the results for 0 < q ≤ 1, thus we
have the following theorem which can prove the above proposed algorithm:

Theorem 1. Error estimation theorem [35,36]. Suppose that xo is a sparse signal with sparsity level s which
satisfies Dxo = b. Without loss of generality, here the sparse coefficient α is substituted by vector x. The smooth
parameter εk → ε∗ with k→ ∞ . Matrix D satisfies the restricted isometry property (RIP) [30,31,33] of order
2 s with δ2s < 1, when ε∗ > 0, the sequence {x(k)} has at least one convergent subsequence. Suppose that the
limit εk = ε∗ is a local optimal solution for Equation (10), we have:

‖xε∗ − x0‖2 ≤ C1
√

λ + C2δs(xε∗)2 (13)

where δs(xε∗)2 is the approximate error of xε∗ , which satisfies δs(xε∗)2 = inf
‖y‖2,0≤s

‖xε∗ − y‖2. For the

special case, when ε∗ = 0, there must exist a convergent subsequence converging to point xo, it satisfies,

‖x0 − x∗‖2 ≤ C3
√

λ (14)

where C1, C2 and C3 are independent positive constants. To prove Theorem 1, the following two
lemmas (i.e., Lemmas 1 and 2) [35,36] are required.

Lemma 1 [35,36]. For all x, y ∈ RN and 0 < q ≤ 1, if εk ≥ εk+1 ≥ 0, it satisfies:

(ε2
k + ‖x‖

2
2)

q
2 − (ε2

k+1 + ‖y‖
2
2)

q
2 − qyT(x− y)

(ε2
k + ‖x‖

2
2)

1− q
2
≥ q‖x− y‖2

2

2(ε2
k + ‖x‖

2
2)

1− q
2

(15)

Proof. According to arithmetic-geometric mean inequality [38], i.e.:

(ε2
k + ‖x‖

2
2)

1− q
2 (ε2

k+1 + ‖y‖
2
2)

q
2 ≤ (1− q

2
)(ε2

k + ‖x‖
2
2) +

q
2
(ε2

k+1 + ‖y‖
2
2) (16)
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Then we compute:

(ε2
k + ‖x‖

2
2)

q
2 − (ε2

k+1 + ‖y‖
2
2)

q
2 − qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

=
(ε2

k+‖x‖
2
2)−(ε2

k+‖x‖
2
2)

1− q
2 (ε2

k+1+‖y‖
2
2)

q
2−qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

≥ (ε2
k+‖x‖

2
2)−(1−

q
2 )(ε

2
k+‖x‖

2
2)−

q
2 (ε

2
k+1+‖y‖

2
2)−qyT(x−y)

(ε2
k+‖x‖

2
2)

1− q
2

= q
2

ε2
k−ε2

k+1+(x−y)2

(ε2
k+‖x‖

2
2)

1− q
2
≥ q

2
(x−y)2

(ε2
k+‖x‖

2
2)

1− q
2

This completes the proof of Lemma 1.

Lemma 2 [35,36]. Let Lq(x, ε, λ) =
N
∑

j=1
[α2

j + ε2]
q/2

+ 1
2λ‖Dα− b‖2

2, if be the solution of Lq(x, ε, λ) for k =

0 ,1, 2, . . . N, then:

‖Dx(k) − Dx(k+1)‖
2
2 ≤ 2λ(Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)) (17)

Furthermore,
‖x(k+1) − x(k)‖

2
2 ≤ C4(Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)) (18)

where C4 is an independent positive constant.

Proof. We first compute the following formula:

Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)

=
N
∑

j=1
(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
−

N
∑

j=1
(ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
+ 1

2λ (‖Dx(k) − b‖2
2 − ‖Dx(k+1) − b‖2

2)

=
N
∑

j=1
(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
− (ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
+ 1

2λ‖Dx(k) − Dx(k+1)‖2
2

+ 1
λ (Dx(k+1) − b)

T
(Dx(k) − Dx(k+1))

(19)

According to Equation (11), we have:

1
λ
(Dx(k+1) − b)

T
(Dx(k) − Dx(k+1)) = −

N

∑
j=1

qx(k+1)
j (x(k)j − x(k+!)

j )

(ε2
k +

∣∣∣x(k)j

∣∣∣2)1− q
2

(20)

Using Lemma 1, i.e., Equation (15), and substituting Equation (20) to Equation (19), we have:

Lq(x(k), εk, λ)− Lq(x(k+1), εk+1, λ)

=
N
∑

j=1
{(ε2

k +
∣∣∣x(k)j

∣∣∣2) q
2
− (ε2

k+1 +
∣∣∣x(k+1)

j

∣∣∣2) q
2
−

qx(k+1)
j (x(k)j −x(k+!)

j )

(ε2
k+
∣∣∣x(k)j

∣∣∣2)1− q
2
}+ 1

2λ‖Dx(k) − Dx(k+1)‖2
2

≥ 1
2λ‖Dx(k) − Dx(k+1)‖2

2 +
N
∑

j=1
(x(k)j − x(k+1)

j )
2 q

2(ε2
k+
∣∣∣x(k)j

∣∣∣2)1− q
2

(21)

From the result of Equation (21), Equation (17) can be calculated immediately. It should be noted
from Equation (17) that the Lq(x(k), εk, λ) is monotonically decreasing sequence, hence:

‖x(k)‖
q
q ≤ ‖x(k)‖

q
q,εk
≤ Lq(x(k), εk, λ) ≤ Lq(x(0), ε0, λ) = ‖x(0)‖

q
q,ε0

(22)



Entropy 2017, 19, 421 9 of 20

for all k ≥ 1 and 1 ≤ i ≤ n, there exists a positive number β which satisfies ‖x(k)‖∞ ≤ β, hence:

q

2(ε2
k +

∣∣∣x(k)j

∣∣∣2)1− q
2
≥ q

2(ε2
0 + β2)

1− q
2

(23)

Let 1
C4

= q

2(ε2
0+β2)

1− q
2

, and thus Lemma 2 is proved conclusively.

Herein, combining the above inequalities in Lemmas 1 and 2, Theorem 1 can be proved ultimately.
For simplicity, the detailed proof process was derived and presented in the Appendix A. In the next
section, the choice of regular operator q will be discussed in detail via a simulation experiment.

For the choice of q (0 < q ≤ 1), we assume q varying among a data scope {0.1, 0.5, 0.7, 1}. Firstly,
the dictionary D was generated by a rand-function rand (64, 256), and the test signal has t non-zeros
narrow-pulse that subject to the standard Gaussian distribution (SGD), the locations of non-zeros were
generated randomly, and the number t varying among {8, 10, 12, . . . , 32}. The penalty parameter
λ = 10−6 is small enough which satisfies Dx = Dx0. Taking the R-WMNPLq algorithm iterative
1000 times, if the recovery error (RE) satisfy RE = ‖xr − x0‖2/‖x0‖2 ≤ 10−3, the algorithm iteration
is stopped, where xr stands for non-zeros narrow-pulse. Figure 3a shows the random signal with
32 non-zero pulses and Figure 3b shows the recovery success rate (RSR) curves with different regular
operator q. From Figure 3b, it can be seen that q = 0.1, q = 0.5 performed better than q = 0.7 and much
better than q = 1. Moreover, the RSR curve with q = 0.5 is slightly higher than q = 0.1. Therefore, in this
paper, regular operator q = 0.5 was chosen as the optimal operator.
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Figure 3. Comparison results of recoverability with different q. (a) Random signal with 32 non-zero
pulses; (b) Comparison results of RSR with different q.

4. Experimental Evaluation

The experimental setup of our roller bearing accelerated life test is shown in Figure 4. Bearing
accelerated vibration signals were generated by an Intelligent Maintenance System (IMS) [39,40].
The sampling rate is 20 kHz. The authors analyzed the vibration acceleration data from bearing 1
that the accelerated life test was carried out successively for 8 days (from 12 February 2004 10:32:39
to 19 February 2004 06:22:39, from normal to severe fault, i.e., 9840 min). Meanwhile, four Rexnord
ZA-2115 bearings (pitch diameter is 71.501 mm, roller diameter 8.4074 mm, roller number 16 and
contact angle 15.17 deg) were detected using acceleration sensors and thermocouples. Therefore,
by calculating, the fault characteristic frequency of bearing 1# outer race is 236.4 Hz.
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Figure 5. The vibration raw signal and the Kurtosis curve of the whole life-cycle of bearing 1. (a) The 
vibration raw signal of the whole life-cycle of bearing 1; (b) The Kurtosis curve of the wholse life-cycle 
of bearing 1. 
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Figure 4. Experimental setup of roller bearing accelerated life test [39,40]. (a) Experimental platform;
(b) Schematic diagram of experimental platform.

In order to avoid propagation of damages to the whole experimental platform and for security
reasons, the accelerated life test was stopped when the vibration amplitude of the vibration raw signal
surpassed 5 m/s−2. Figure 5a shows the vibration raw signal of the whole life-cycle of bearing 1.
Figure 5b shows the Kurtosis curve over the whole life-cycle of bearing 1 and indicates that there is
a long time with normal operation in whole life-cycle, but the period of fault from incipient stage to
severe stage is relatively short. As shown in Figure 5, there is an obvious transient feature at point 647
in the incipient fault. However, due to the interference of harsh working environment and background
noises, the engineer cannot sure whether the fault is happened before point 647 or not. Hence, to verify
the effectiveness of the proposed method for bearing incipient fault diagnosis, the experimental data
at point 535 was chosen which has no obviously wave phenomenon in whole life-cycle.
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Figure 5. The vibration raw signal and the Kurtosis curve of the whole life-cycle of bearing 1.
(a) The vibration raw signal of the whole life-cycle of bearing 1; (b) The Kurtosis curve of the wholse
life-cycle of bearing 1.
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Figure 6a–d show the original signal at point 535 (1024 sampling points were chosen, i.e., about
0.05 s), the time-frequency distribution a with short-time Fourier transform (STFT), the amplitude
spectrum and Hilbert envelope spectrum of original vibration signal, respectively. From Figure 6a,
the periodical impulses are submerged in heavy noise and fault type cannot be determined yet.
From Figure 6d, although the spectrum peak at 240 Hz and its harmonic frequencies which consists
with the outer-race fault frequency can be detected without de-nosing, however, the spectrum peak
masked by heavy background noise and features are not be evident enough to detect fault.

1 
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Figure 6. Original vibration signal and its time-frequency analysis. (a) Original vibration signal;
(b) Time-frequency distribution of original vibration signal; (c) Amplitude spectrum of the original
vibration signal; (d) Hilbert envelope spectrum of original vibration signal.

Considering the complexity of bearing vibration signals with different frequencies and the
repetition behavior of fault patterns, the variational mode decomposition (VMD) [41–43] method
was used to preprocess the original signal.
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Figure 7a,b show the amplitude spectrum of each IMF mode with K = 20 and K = 21, respectively.
We can obviously observe that the amplitude spectrum structures were displayed more clearly when
the modal number is 20, however, the modal duplication phenomenon starts to appear when the
modal number reaches 21, which demonstrates that the model number K = 20 is better than K = 21.
Figure 8 shows 20 intrinsic mode functions (IMF) models of original vibration signal decomposed by
VMD method, which can be help to distinguish the periodic impulse from the mixed noisy signal.
Here, the kurtosis of the 19th IMF is the maximum, which means the transient impulses feature may
be contained in 19th IMF model based on criterion of maximum kurtosis [43].
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Figure 7. The comparison of amplitude spectrum of the IMF modes. (a) The amplitude spectrum of
IMF modes with K = 20 and α = 2000; (b) The amplitude spectrum of IMF modes with K = 21 and
α = 2000.
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Figure 8. The 20-IMF components of original signal decomposed by VMD method. (a) IMF1-IMF10;
(b) IMF11-IMF20.

Furthermore, the proposed R-WMNPLq (q = 0.5) algorithm was employed on the 19th IMF model
and its related parameters are illustrated in Table 2. The reconstructed periodic impulses signal,
the time-frequency distribution with short-time Fourier transform (STFT) and the Hilbert envelope
spectrum of the reconstructed periodic impulses signal are depicted in Figure 9a–c respectively. It can
be observed that the proposed R-WMNPLq (q = 0.5) algorithm combined with the impulse-step impact
dictionary not only extracts the transient impulse components clearly but also the noise components
in reconstructed vibration signal have been removed evidently, and the signal-to-noise ratio (SNR)
in Figure 9a is −27.7460 db. Compared with the original vibration signal as shown in Figure 6,
the time-frequency distribution combines the information in time and frequency domains, it can
be easily seen from Figure 9a,b that there are no interference noises among the extracted transient
impulses. The transient impulses time-frequency distribution is more clearly, which effectively reveal
the fault feature from the incipient vibration signal. The Hilbert envelop spectrum is shown in Figure 9c.
As can be seen, the characteristic frequency 240 Hz (close to the theoretical fault frequency of outer race
236.4 Hz) and its harmonic frequencies (3fo, 4fo and 5fo) are clearly detected, therefore, the proposed
method is exactly suitable for incipient fault bearing signal.

Table 2. Parameters of the proposed R-WMNPLq (q = 0.5) method.

Regular
Operator-q Smoothing Parameter Penalty

Parameter
Maximum

Iterations Number Stopping Threshold

0.5 ε0 = 1 λ = 10−6 1000 ‖xk − x0‖2/‖x0‖2 ≤ 10−3
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Figure 9. The identified results using the proposed method. (a) The reconstructed signal;
(b) Time-frequency distribution of the reconstructed signal; (c) Hilbert envelope spectrum of the
reconstructed signal.

A considerable amount of literature has been published on the application of orthogonal matching
pursuit (OMP) and L1-norm regularization algorithms in mechanical fault diagnosis [44–46]. To further
validate the superiority of the proposed method, the OMP and L1-norm regularization techniques
were sequentially used on the 19th IMF model vibration signal. The running iteration time is set
as 50. Figure 10a,c,e and Figure 10b,d,f are the results of the OMP and L1-norm regularization
methods, respectively. The signal-to-noise ratio (SNR) in Figure 10a,b is −29.1315 db and −35.4638 db,
respectively. As shown in Figure 10a, strong noises still remained in the reconstructed impulsive signal.
Besides, by comparing Figure 6a with Figure 10a, it should be noted that the conventional L1-norm
technique removes too much energy of the original vibration signal to effectively reduce the noises
but also shrinks the fault feature frequency. Compared with the results of Hilbert envelope spectrum
shown in Figure 10e,f, it can be seen that the OMP and L1-norm regularization technique do not have
a satisfactory performance in incipient fault diagnosis of rolling bearings.
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Figure 10. The identified results using the proposed method. (a) The reconstructed signal using the
OMP method; (b) Time-frequency distribution of the reconstructed signal using the OMP method;
(c) Hilbert envelope spectrum of the reconstructed signal using the OMP method; (d) The reconstructed
signal using the L1-Norm regularization method; (e) Time-frequency distribution of the reconstructed
signal using the L1-Norm regularization method; (f) Hilbert envelope spectrum of the reconstructed
signal using the L1-Norm regularization method.

In addition to the sparse representation method methods, the superiority and effectiveness
requires further validation with a traditional approach. Therefore, the same signal, namely the 19th
IMF model, was also processed by the spectral Kurtogram (SK) method [47,48]. The Kurtogram of
the 19th IMF model is displayed in Figure 11a, from which the optimal demodulation frequency
band, namely 5333–10,000 Hz, can be detected. Thus a band-pass filter was designed to extract the
potential features from the 19th IMF model, then the envelope spectrum was applied to the filtered
signal, the corresponding envelope spectrum is shown in Figure 11b. As can be seen, no explicit fault
characteristic frequencies are observed and it is also hard to distinguish the fault location from the
incipient fault signal.
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Figure 11. Diagnosis result using the spectral kurtogram method. (a) Kurtogram of 19th IMF model
component; (b) The Hilbert envelope spectrum of the band-pass filtered signal.

5. Conclusions

This work originated from a study on the sparse representation approach and incipient fault
diagnosis of rolling bearings. Although a lot of works have achieved successful application in fault
diagnosis of rotating machinery based upon sparse representation methods such as greedy pursuit,
orthogonal matching pursuit (OMP), L1-norm regularization, the developed approaches are not
satisfactory for reconstructing periodic transient impulses and identifying the physical structure
information of periodic impulses, especially when the fault is in an incipient stage.

This paper proposes a novel feature extraction method for incipient bearing fault diagnosis
combining re-weighted minimizing nonconvex penalty Lq (R-WMNPLq, q = 0.5) regular and
impulse-step impact dictionary. The proposed method provides a new point of view for periodic
instantaneous impulse reconstruction by introducing a penalty parameter, smoothing parameter and
regular operator on a sparse representation model to guarantee the reasonable distribution consistence
of peak vibration values. On the other hand, the original physical structure information was formed by
impulse-step impact dictionary atoms. Effectiveness in the extraction of transient impulse is verified
by an accelerated life test. The experimental analysis shows that the proposed method can achieve
good performance in reducing noises and extracting fault characteristic from raw vibration signals in
comparison with the matching pursuit method (OMP), L1-norm regularization and spectral Kurtogram
(SK) method, especially for vibration signals with heavy background noises, and it is well suited for
on-line practical applications.

However, the proposed methodology is only applicable for accelerated life test of rolling bearings
under constant operating conditions, and variable conditions such as variable speed, torque and
variable harsh working environments should be considered in the future which may help generalizing
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the proposed method. Moreover, the proposed sparse representation method can be also improved for
the detection of multiple faults concurrence in our future work.
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Appendix A

Proof of Theorem 1 [35,36]. It should be noted from Equation (18) that the
{

x(k)
}

is monotonically

decreasing sequence because ‖x(k+1) − x(k)‖2
2 → 0 . Thus we might as well set

{
x(k)

}
converges to

xε∗ ,λ. Letting i→ ∞ , the Equation (11) can be rewritten as:

(
qxε∗ ,λ[i]

(ε2∗ + ‖xε∗ ,λ[i]‖2
2)

1−q/2 )1≤i≤M +
1
λ

DT(Dxε∗ ,λ − b) = 0 (A1)

Namely, xε∗ ,λ is the critical point of Lq(x, ε, λ) with ε = ε∗ > 0. According to Lemma 2, we have
the following:

Lq(xε∗ ,λ, ε∗, λ) ≤ Lq(x(kj), εkj, λ) ≤ Lq(x(0), ε0, λ)

≤
m
∑

i=1
‖x(0)[i]‖2

2 + mε0 ≤ ‖x(0)‖
2
2 + m (A2)

which means:

‖Dxε∗ ,λ − b‖2
2 ≤

√
2λLq(xε∗ ,λ, ε∗, λ) ≤

√
2λ(‖x(0)‖2

2 + m) (A3)

Let T be an index dataset of nonzero entries of xo and T* be an index dataset of s largest entries in
L2-norm of

{
xε∗ ,λ

}
, since ‖x0‖0 ≤ s, we get:

‖xε∗ ,λ − x0‖2
2 ≤ m

1
2 ‖xε∗ ,λ − x0‖2

2

≤ m
1
2 ‖(xε∗ ,λ − x0)T∪T∗‖

2
2 + m

1
2 ‖(xε∗ ,λ − x0)(T∪T∗)c‖2

2

≤ m
1
2 1√

1−δ2,s
‖(Dxε∗ ,λ − x(0))T∪T∗‖

2
2 + m

1
2 ‖(xε∗ ,λ − x0)(T∪T∗)c‖2

2

≤ m
1
2 1√

1−δ2,s
‖(Dxε∗ ,λ − Dx(0))‖2

2 + m
1
2 ( 1√

1−δ2,s
‖D‖2 + 1)‖(xε∗ ,λ)(T∪T∗)c‖2

2

≤ m
1
2 1√

1−δ2,s

√
2λ(‖x(0)‖2

2 + m) + m
1
2 ( 1√

1−δ2,s
‖D‖2 + 1)‖(xε∗ ,λ)(T∗)c‖2

2

≤ m
1
2 1√

1−δ2,s

√
2λ(‖x(0)‖2

2 + m) + m
1
2 ( 1√

1−δ2,s
‖D‖2 + 1)δs(xε∗ ,λ)2

(A4)

If C1 and C2 are as follows:

C1 = m
1
2 1√

1−δ2,s

√
2λ(‖x(0)‖2

2 + m)

C2 = m
1
2 ( 1√

1−δ2,s
‖D‖2 + 1)

(A5)

This is the proof of Equation (13) in Theorem 1.
Further, if ε∗ = 0, then εk0 = 0 for point k0, and x(k0) is a s-sparse signal. Otherwise, there is

a sequence
{

x(nk)
}

satisfies εnk = α · r
(

x(nk)
)

s+1
> 0. In the former case, x(k0) is a s-sparse signal,

and we get x0,λ = x(k). In the latter case, due to
{

x(nk)
}

is bounded with limit point x0,λ, and without
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loss of generality, we assume the convergent sub-sequence of
{

x(nk)
}

is also x(nk), x0,λ = lim
k→∞

x(nk),

and then lim
k→∞

r(x(nk))s+1 = lim
k→∞

εnk
α = 0, that is, the sub-sequence of x(nk) is a s-sparse signal. Therefore,

based on the above two cases, and without loss of generality, we assume the s-sparse signal is x(k),
we have lim

k→∞
x(k) = x∗, using the RIP of D, we have,

‖x∗ − x0‖2
2 ≤ m

1
2 ‖x∗ − x0‖2

2

≤ m
1
2 1√

1−δ2s
‖Dx∗ − Dx0‖2

2

= m
1
2 1√

1−δ2s
‖Dx∗ − b‖2

2

≤ m
1
2 1√

1−δ2s
lim
k→∞

(2λLq(x(k), εk, λ))
1
2

≤ m
1
2 1√

1−δ2s
(2λLq(x(k), εk, λ))

1
2

≤ m
1
2 1√

1−δ2s

√
2λ‖x(0)‖2

2

(A6)

Letting C3 is represented as follows:

C3 = m
1
2

1√
1− δ2s

√
2‖x(0)‖2

2 (A7)

This is the proof of Equation (14) in Theorem 1. We are thus ready to prove Theorem 1.
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