
entropy

Article

Logical Entropy and Logical Mutual Information of
Experiments in the Intuitionistic Fuzzy Case

Dagmar Markechová 1,* and Beloslav Riečan 2,3
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1. Introduction

The notions of entropy and mutual information are basic notions in information theory [1] and,
as is known, the customary approach is based on Shannon’s entropy [2]. Let P = (p1, . . . , pn) ∈ <n

be a probability distribution; Shannon’s entropy of P is the number Hs(P) = ∑n
i=1 s(pi), where

s : [0, 1]→ [0, ∞) is the Shannon function defined by s(x) = −x log x, for every x ∈ [0, 1].
Remark that it used the convention (based on continuity arguments) that 0 · log 0 = 0. The idea
of Shannon’s entropy was generalized in a natural way to the Kolmogorov–Sinai entropy h(T) of
dynamical systems [3–5], which allows dynamical systems to be distinguished. Kolmogorov and
Sinai applied the entropy h(T) to prove that non-isomorphic Bernoulli shifts exist. Of course, the
theory of Kolmogorov–Sinai entropy has many other important applications. For this reason, various
proposals were made to generalize the Kolmogorov–Sinai entropy concept. In [6], we generalized the
Kolmogorov–Sinai entropy concept to the case of a fuzzy probability space [7]. This structure represents
an alternative mathematical model of probability theory for the situations when the considered events
are fuzzy events, i.e., events described unclearly, vaguely. Further proposals for fuzzy generalizations
of Shannon’s and Kolmogorov–Sinai entropy are presented e.g., in [8–17]. It is known that there exist
many ways to define operations for modeling the union and intersection of fuzzy sets; an overview
was listed in [18]. We remark that while the model studied in [6] was based on Zadeh’s fuzzy set
operations [19], in our study [14], the Lukasiewicz fuzzy set operations were used.

Since its inception in 1965, the fuzzy set theory has been continually developing, and it has
been shown to be useful in many disciplines. It has been applied to many mathematical areas, such
as algebra, analysis, clustering, graph theory, measure theory, probability theory, control theory,
optimization, topology, and so on. Currently, algebraic structures based on fuzzy set theory, such as
MV-algebras [20–28], D-posets [29–31], effect algebras [32,33], and A-posets [34–36], are intensively
studied. There are also interesting results about the Kolmogorov type entropy on these structures;
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some of them can be found, e.g., in [37–43]. Moreover, the fuzzy set theory also has significant practical
applications; applications of this theory can be found, for example, in control engineering, data
processing, management, logistics, artificial intelligence, computer science, medicine, decision theory,
expert systems, logic, management science, operations research, pattern recognition, and robotics.

In 1983, Atanassov introduced a more general fuzzy theory—intuitionistic fuzzy sets
theory [44–46]. Recall that while a fuzzy set is a mapping µA : Ω→ [0, 1] (where the considered
fuzzy set is identified with its membership function µA), the intuitionistic fuzzy set (shortly, IF-set) is
a pair A = (µA, νA) : Ω→ [0, 1]× [0, 1] of fuzzy sets for which the condition µA(ω) + νA(ω) ≤ 1,
for every ω ∈ Ω, is satisfied. The function µA is called the membership function of A, the function νA
is called the non-membership function of A. Evidently, each fuzzy set µA can be regarded as an IF-set
A = (µA, 1− µA). Each result that applies to IF-sets also applies to the case of fuzzy sets. Of course,
the opposite implication is not valid, e.g., the representation theorem of IF-states does not follow by
the corresponding result for fuzzy states. The theory of IF-sets represents a non-trivial generalization
of the fuzzy set theory; thus, the IF-sets provide opportunities to model a larger class of real situations.
We remark that a probability theory on intuitionistic fuzzy events has been elaborated in [47], see
also [48]. Some results about the Kolmogorov type entropy for the case of intuitionistic fuzzy sets are
given e.g., in [49–53].

When solving some specific problems, instead of Shannon’s entropy it is more appropriate to use
an approach based on the concept of logical entropy [54–57]. If P = (p1, . . . , pn) ∈ <n is a probability
distribution, then the logical entropy of P is defined by the formula H(P) = ∑n

i=1 pi(1− pi). In [57],
historical aspects of the logical entropy formula H(P) are discussed and the relationship between
logical entropy and Shannon’s entropy is examined. The concepts of logical conditional entropy and
the logical mutual information have been introduced as well. We note that some results about the
logical entropy on some of the above mentioned algebraic structures, based on fuzzy set theory, can be
found e.g., in [58–62].

The purpose of the present work is to study the logical entropy and logical mutual information
of experiments in the intuitionistic fuzzy case. The paper is organized in the following way. In the
following section, basic definitions and notations are provided. In Section 3, the concept of logical
entropy for the case of intuitionistic fuzzy experiments is introduced, and basic properties of the
proposed measure are shown. In Section 4, we introduce the concepts of logical mutual information
and conditional mutual information of intuitionistic fuzzy experiments and derive some properties
of these measures. In Section 5, using the suggested concept of logical entropy, we define the logical
entropy of IF-dynamical systems. It is shown that the logical entropy of IF-dynamical systems is
invariant under isomorphism. Finally, an analogy of the Kolmogorov–Sinai theorem on generators for
IF-dynamical systems is proved. Section 6 contains a brief summary.

2. Basic Definitions, Notations and Facts

In this section, we provide basic definitions, notations and facts that will be used throughout
the contribution.

Definition 1. By an IF-event we will understand a pair A = (µA, νA) of functions µA, νA : Ω→ [0, 1]
with the property µA(ω) + νA(ω) ≤ 1, for every ω ∈ Ω.

In the following, we will use the symbol F to denote the family of all IF-events. Analogously
as in the fuzzy case, there are many possibilities to define operations for modeling the union and
intersection of IF-sets (see e.g., [63–65]). We will use the operations ⊕, and · defined as follows.
In the family F we define the partial binary operation ⊕ in the following way: if A = (µA, νA),
and B = (µB, νB) are two IF-events, then A ⊕ B = (µA + µB, νA + νB − 1Ω). Here, 1Ω denotes
the function defined by 1Ω(ω) = 1, for every ω ∈ Ω . Similarly, we denote by 0Ω the function
defined by 0Ω(ω) = 0, for every ω ∈ Ω . Evidently, if A, B ∈ F , then A ⊕ B exists if and only if
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µA + µB ≤ 1Ω, and νA + νB ≥ 1Ω. The zero element of operation ⊕ is the IF-event 0 = (0Ω, 1Ω).
Indeed, A⊕ 0 = (µA, νA) ⊕ (0Ω, 1Ω) = (µA, νA) = A, for any A ∈ F . Further, in the family F ,
we define the binary operation · in the following way: if A = (µA, νA), and B = (µB, νB), then
A · B = (µA · µB, 1Ω − (1Ω − νA) · (1Ω − νB)) = (µA · µB, νA + νB − νA · νB). Put 1 = (1Ω, 0Ω).
Evidently, A · 1 = A, for any A ∈ F . The IF-event 0 = (0Ω, 1Ω) is interpreted as an impossible event;
the IF- event 1 = (1Ω, 0Ω) as a certain event. It can easily be verified that, for any A, B, C ∈ F , the
following conditions are satisfied:

(F1) A⊕ B = B⊕ A if one side is defined in F (commutativity);
(F2) (A⊕ B)⊕ C = A⊕ (B⊕ C) if one side is defined in F (associativity);
(F3) if A⊕ B exists, then C · A⊕ C · B exists, and C · (A⊕ B)= C · A⊕ C · B.

Since in the fuzzy case the inequality µA ≤ µB implies νA = 1Ω − µA ≥ 1Ω − µB = νB, in the
family F it is natural to define the relation ≤ as follows: if A = (µA, νA), and B = (µB, νB) are two
IF-events, then A ≤ B if and only if µA ≤ µB, and νA ≥ νB. The relation ≤ is a partial order such that
0 ≤ A ≤ 1 for all A ∈ F . Gutierrez Garcia and Rodabaugh have proved that intuitionistic fuzzy sets
ordering and topology are reduced to the ordering and topology of fuzzy sets [66]. Another situation
is in measure theory, where the intuitionistic fuzzy case cannot be reduced to the fuzzy case.

Definition 2. A map m : F → [0, 1] is said to be a state if the following conditions are satisfied:

(i) m(A⊕ B)= m(A) + m(B), whenever A⊕ B is defined in F ;
(ii) m(1) = 1.

Example 1. Consider a probability space (Ω, S, P), and put

F = {A = (µA, νA); µA, νA : Ω→ [0, 1] are S−measurable with µA + νA ≤ 1Ω}.

It is easy to verify that the mapping m : F → [0, 1] defined, for any element A = (µA, νA) of F , by
the formula:

m(A) =
∫

Ω
µAdP + α (1−

∫
Ω
(µA+ νA)dP), α ∈ [0, 1], (1)

is a state. Namely, for every A, B ∈ F such that A⊕ B exists, we have:

m(A⊕ B) =
∫

Ω (µA+ µB)dP + α (1−
∫

Ω (µA + µB+ νA + νB − 1Ω)dP )

=
∫

Ω (µA+ µB)dP + α (2−
∫

Ω (µA + µB+ νA + νB)dP )

=
∫

Ω µAdP + α (1−
∫

Ω (µA+ νA)dP ) +
∫

Ω µBdP + α (1−
∫

Ω (µB+ νB)dP )

= m(A) + m(B),

and
m(1) = m((1Ω, 0Ω)) =

∫
Ω

dP + α (1−
∫

Ω
dP ) = 1 + α(1− 1) = 1.

Remark 1. Riečan and Ciungu have shown in [67] that any continuous state m defined on a family F of all
S-measurable IF-events has the form (1). In more detail, if a state m defined on a family F of all S-measurable
IF-events is continuous (i.e., An↗ A implies m(An)↗ m(A)), then there exist exactly one probability measure
P : S→ [0, 1], and exactly one α ∈ [0, 1] such that:

m(A) =
∫

Ω
µAdP + α (1−

∫
Ω
(µA+ νA)dP ), f or any A = (µA, νA) o f F .

Definition 3. By an IF-partition of F , we will understand a finite collection ξ = {A1, . . . , An} of elements of
F such that ⊕n

i=1 Ai exists, and m
(
⊕n

i=1 Ai
)
= ∑n

i=1 m(Ai) = 1.
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Remark 2. A classical probability space (Ω, S, P) can be regarded as a family of IF-events, if we put F =

{(χE, 1Ω − χE); E ∈ S}, where χE is the characteristic function of a set E ∈ S; the mapping m : F → [0, 1]
defined by m((χE, 1Ω − χE)) = P(E), is a state on F . A usual measurable partition {E1, . . . , En} of a space
(Ω, S, P) (i.e., any sequence {E1, . . . , En} ⊂ S such that ∪n

i=1Ei = Ω and Ei ∩ Ej = Ø (i 6= j)) can be
regarded as an IF-partition, if we consider (χEi, 1Ω − χEi) instead of Ei. Namely, Ei ∩ Ej = Ø (i 6= j) implies
∑n

i=1 χEi(ω) ≤ 1, for every ω ∈ Ω, and hence ⊕n
i=1(χEi , 1Ω − χEi ) exists. Moreover, we have:

m(⊕n
i=1(χEi , 1Ω − χEi )) = m((∑n

i=1 χEi , 1Ω −∑n
i=1 χEi ))

= m((χ∪n
i=1Ei

, 1Ω − χ∪n
i=1Ei

)) = P(∪n
i=1Ei) = P(Ω) = 1,

and the equality P(∪n
i=1Ei) = ∑n

i=1 P(Ei) implies:

m(⊕n
i=1(χEi , 1Ω − χEi ))=

n

∑
i=1

m((χEi , 1Ω − χEi )).

Definition 4. Let ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

be two IF-partitions of F . The IF-partition η is said
to be a refinement of ξ (with respect to m) if for each Ai ∈ ξ there exists a subset αi ⊂ {1, . . . , J} such that
m(Ai) = m(⊕j∈αi Bj) = ∑j∈αi

m(Bj), αi ∩ αj = Ø, for i 6= j, and ∪I
i=1αi = {1, . . . , J}.

In the case that η is a refinement of ξ, we write ξ ≺ η.
Denote byM the family of all mappings A = (µA, νA) : Ω→ b0, 1c × b0, 1c. If A = (µA, νA),

and B = (µB, νB) are two elements of M, then we put A ⊕ B = (µA + µB, νA + νB − 1Ω), and
A · B = (µA · µB, νA + νB − νA · νB).

Theorem 1. Let m : F → [0, 1] be a state. Then, the mapping m :M→ [0, 1] defined, for any element
A = (µA, νA) of M, by

m((µA, νA)) = m((µA, 0Ω))−m((0Ω, 1− νA))

is a state, and m/F = m, i.e., m(A) = m(A), for any A ∈ F .

Proof. The proof can be found in [68]. �

Proposition 1. Let A ∈ F such that m(A) = 1. Then, m(A · B) = m(B), for any B ∈ F .

Proof. Put C = (1Ω − µA, 1Ω − νA). Then:

A⊕ C = (µA + 1Ω − µA, νA + 1Ω − νA − 1Ω) = (1Ω, 0Ω) = 1,
A · B⊕ B · C = (µA · µB, νA + νB − νA · νB)⊕ (µB(1Ω − µA), νB + 1Ω − νA − νB(1Ω − νA)) = B,

1 = m(A) + m(C) = 1 + m(C),

hence, m(C) = 0. From the monotonicity of m it follows m(B · C) ≤ m(C) = 0.
Therefore:

m(B) = m(B) = m(A · B) + m(B · C) = m(A · B) = m(A · B).

Proposition 2. Let ξ = {A1, . . . , An} be an IF-partition of F . Then ∑n
i=1 m(Ai · B) = m(B), for any B ∈ F .

Proof. Since m
(
⊕n

i=1 Ai
)
= 1, by Proposition 1 and (F3) we get:

m(B) = m((⊕n
i=1 Ai) · B) = m(⊕n

i=1(Ai · B)) =
n

∑
i=1

m(Ai · B).
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Definition 5. Let ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

, be two IF-partitions of F . Their join ξ ∨ η is
defined as the system ξ ∨ η =

{
Ai · Bj; i = 1, . . . , I, j = 1, . . . , J}, if ξ 6= η, and ξ ∨ ξ = ξ.

Theorem 2. If ξ, η are two IF-partitions of F , then ξ ∨ η is also an IF-partition of F , and ξ ≺ ξ ∨ η,
η ≺ ξ ∨ η.

Proof. Let ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

. Since ⊕I
i=1 Ai, and ⊕J

j=1Bj exist, according to (F3) we

obtain that ⊕I
i=1 ⊕

J
j=1 (Ai · Bj) also exists, and ⊕I

i=1 ⊕
J
j=1 (Ai · Bj) = (⊕I

i=1 Ai) · (⊕J
j=1Bj).

By Definition 2 we have:

m
(
⊕I

i=1 ⊕
J
j=1 (Ai · Bj)

)
=

I

∑
i=1

J

∑
j=1

m(Ai · Bj).

Moreover, using Proposition 1 we get:

m
(
⊕I

i=1 ⊕
J
j=1 (Ai · Bj)

)
= m

(
(⊕I

i=1 Ai) · (⊕J
j=1Bj)

)
= m(⊕J

j=1Bj) = 1.

This means that ξ ∨ η =
{

Ai · Bj; i = 1, . . . , I, j = 1, . . . , J} is an IF-partition of F .
Since the system ξ ∨ η is indexed by {(i, j); i = 1, . . . , I, j = 1, . . . , J}, we put αi =

{(i, 1), . . . , (i, J)}, i = 1, 2, . . . , I. Since m(⊕J
j=1Bj) = 1, according to Proposition 1 and (F3), for

i = 1, 2, . . . , I, we get:

m(Ai) =m
(
(⊕J

j=1Bj) · Ai

)
= m

(
⊕J

j=1(Bj · Ai)
)
=

J

∑
j=1

m(Ai · Bj) = ∑
(r,j)∈αi

m(Ar · Bj).

However, this means that ξ ≺ ξ ∨ η. �

3. Logical Entropy of IF-Partitions

It is obvious that each IF-partition ξ = {A1, . . . , An} represents, from the point of view of classical
probability theory, a random experiment with a finite number of results Ai, i = 1, 2, . . . , n, that are
intuitionistic fuzzy events, with a probability distribution pi = m(Ai), i = 1, 2, . . . , n. Namely, pi ≥ 0
for i = 1, 2, . . . , n, and ∑n

i=1 pi =∑n
i=1 m(Ai) = 1. For that reason, we define the logical entropy of

ξ = {A1, . . . , An} as the number:

H(ξ) =
n

∑
i=1

m(Ai)(1−m(Ai)). (2)

Since ∑n
i=1 m(Ai) = 1, we can also write:

H(ξ) =1−
n

∑
i=1

(m(Ai))
2. (3)

Remark 3. Evidently, the IF-partition η = {1} has zero logical entropy.

Example 2. Consider the measurable space (Ω, S), where Ω is the unit interval [0,1] and S is the
σ−algebra of all Borel subsets of [0,1]. Now, we can consider the family of all S-measurable IF-events
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F = {A = (µA, νA); µA, νA : [0, 1]→ [0, 1] are S − measurable with µA + νA ≤ 1Ω}, and the
state m : F → [0, 1] defined, for any element A = (µA, νA) of F , by the formula:

m(A) =
∫ 1

0
µAdx + 1−

∫ 1

0
(µA+ νA)dx .

Put A1 = A2 = (0.1Ω, 0.5Ω). Since A1 ⊕ A2 = (0.2Ω, 0Ω) (and therefore A1 ⊕ A2 exists), and
m(A1 ⊕ A2) =

∫ 1
0 0.2 dx + 1−

∫ 1
0 0.2 dx = 1, the set ξ = {A1, A2} is an IF-partition. It has the m-state

values 0.5, 0.5 of the corresponding elements and the logical entropy H(ξ) = 0.5 .

Some basic properties of the logical entropy of IF-partitions are listed below.

Theorem 3. Let ξ, η be two IF-partitions of F . Then:

(i) H(ξ) ≥ 0;
(ii) ξ ≺ η implies H(ξ) ≤ H(η);
(iii) H(ξ ∨ η) ≥max(H(ξ); H(η)).

Proof. The property (i) is evident. We will prove the second property. Let ξ = {A1, . . . , AI}, η ={
B1, . . . , BJ

}
, ξ ≺ η. Then, for any Ai ∈ ξ there exists a subset αi ⊂ {1, . . . , J}, such that m(Ai)

= ∑j∈αi
m(Bj), αi ∩ αj = ∅, for i 6= j, and ∪I

i=1αi = {1, . . . , J}. Hence, we can write:

H(ξ) = ∑I
i=1 m(Ai)(1−m(Ai)) = ∑I

i=1 (m(Ai)−m(Ai) m(Ai))

= ∑I
i=1

(
∑j∈αi

m(Bj)−∑j∈αi
m(Bj)∑j∈αi

m(Bj)
)

.

As a consequence of the inequality (a + b)2 ≥ a2 + b2, which is true for all non-negative real
numbers a, b, we get:

∑
j∈αi

m(Bj)∑
j∈αi

m(Bj) ≥ ∑
j∈αi

(
m(Bj)

)2, i = 1, . . . , I.

Therefore:
H(ξ) ≤ ∑I

i=1

(
∑j∈αi

m(Bj)−∑j∈αi

(
m(Bj)

)2
)

=∑I
i=1 ∑j∈αi

(
m(Bj)−

(
m(Bj)

)2
)

= ∑J
j=1 m(Bj)(1−m(Bj))

= H(η).

The inequality (iii) is a simple consequence of the previous property and Theorem 2. �

Definition 6. If ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

are two IF-partitions of F , then the conditional logical
entropy of ξ assuming a realization of the IF-experiment η is defined by the formula:

H(ξ/η) =
I

∑
i=1

J

∑
j=1

m(Ai · Bj)(m(Bj)−m(Ai · Bj)). (4)

Remark 4. Since m(Ai · Bj) ≤ m(Bj), for the conditional logical entropy it holds that H(ξ/η) ≥ 0. If we put
η = {1}, then H(ξ/η) = H(ξ).

Remark 5. Since by Proposition 2, it holds that ∑I
i=1 m(Ai · Bj) =m(Bj), for j = 1, . . . , J, we can also write:

H(ξ/η) =
J

∑
j=1

(m(Bj))
2 −

I

∑
i=1

J

∑
j=1

(m(Ai · Bj))
2. (5)
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Theorem 4. Let ξ, η be two IF-partitions of F . Then

H(ξ/η) =H(ξ ∨ η)−H(η). (6)

Proof. Assume that ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

. Let us calculate:

H(η) + H(ξ/η) =1−∑J
j=1 (m(Bj))

2 +∑J
j=1 (m(Bj))

2 − ∑I
i=1 ∑J

j=1 (m(Ai · Bj))
2

= 1−∑I
i=1 ∑J

j=1 (m(Ai · Bj))
2 =H(ξ ∨ η). �

Remark 6. As a simple consequence of Theorem 4, we get:

H(ξ ∨ η) = H(ξ) + H(η/ξ), (7)

and according to Definition 5 we obtain that H(ξ/ξ) = 0.

Theorem 5. Let ξ, η be two IF-partitions of F . Then

(i) H(ξ/η) ≤ H(ξ);
(ii) H(ξ ∨ η) ≤ H(ξ) + H(η).

Proof. (i) Assume that ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

. Since by Proposition 2, we have:

J

∑
j=1

m(Ai · Bj) = m(Ai), for i = 1, . . . , I,

for i = 1, . . . , I, it holds:

∑J
j=1 m(Ai · Bj)

(
m(Bj)−m(Ai · Bj)

)
≤
(

∑J
j=1 m(Ai · Bj)

) (
∑J

j=1 (m(Bj)−m(Ai · Bj))
)

= m(Ai)
(

∑J
j=1 m(Bj) −∑J

j=1 m(Ai · Bj)
)

= m(Ai)(1−m(Ai)).

Therefore, we get:

H(ξ/η) = ∑I
i=1 ∑J

j=1 m(Ai · Bj)(m(Bj)−m(Ai · Bj))

≤ ∑I
i=1 m(Ai)(1−m(Ai))

= H(ξ).

(ii) The property (i) along with (7) implies:

H(ξ ∨ η) =H(η)+H(ξ/η) ≤H(η)+H(ξ).

The proof is complete. �

Theorem 6. Let ξ, η, ς be IF-partitions of F . Then

H(ξ ∨ η/ς) =H(ξ/ς)+H(η/ς ∨ ξ).
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Proof. Let ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

, ς = {C1, . . . , CK}. Then by Equation (5) we get:

H(ξ/ς) + H(η/ς ∨ ξ)

= ∑K
k=1(m(Ck))

2 −∑I
i=1 ∑K

k=1(m(Ai · Ck))
2 + ∑K

k=1 ∑I
i=1(m(Ck · Ai))

2 −∑J
j=1 ∑K

k=1 ∑I
i=1
(
m(Bj · Ck · Ai)

)2

= ∑K
k=1(m(Ck))

2 −∑J
j=1 ∑K

k=1 ∑I
i=1
(
m(Bj · Ck · Ai)

)2

= H(ξ ∨ η/ς). �

Theorem 7. Let ξ1, ξ2, . . . , ξn and η be IF-partitions of F . Then

(i) H(ξ1 ∨ ξ2 ∨ . . . ∨ ξn) = H(ξ1) + ∑n
i=2 H(ξi/ ∨i−1

k=1 ξk);

(ii) H
(
∨n

i=1 ξi/η) = H(ξ1 /η) + ∑n
i=2 H(ξi/(∨ i−1

k=1 ξk) ∨ η).

Proof. (i) We shall prove the statement using mathematical induction. By Equation (7), we have:

H(ξ1 ∨ ξ2) =H(ξ1)+H(ξ2/ξ1).

For n = 3, using the previous equality and Theorem 6, we get:

H(ξ1 ∨ ξ2 ∨ ξ3) =H(ξ1)+H(ξ2 ∨ ξ3/ξ1)

= H(ξ1)+H(ξ2/ξ1)+H(ξ3/ξ2 ∨ ξ1)

= H(ξ1)+∑3
i=2 H(ξi/ ∨i−1

k=1 ξk).

Now let us suppose that the result is true for a given n ∈ N. Then

H(ξ1 ∨ ξ2 ∨ . . . ∨ ξn ∨ ξn+1)

= H(ξ1 ∨ ξ2 ∨ . . . ∨ ξn)+H(ξn+1/ξ1 ∨ ξ2 ∨ . . . ∨ ξn)

= H(ξ1) +∑n
i=2 H(ξi/ ∨i−1

k=1 ξk)+H(ξn+1/ξ1 ∨ ξ2 ∨ . . . ∨ ξn)

= H(ξ1) +∑n+1
i=2 H(ξi/ ∨i−1

k=1 ξk).

Thus, by the principle of mathematical induction, the result follows.
(ii) The proof of the second assertion is analogous; it suffices to use Theorem 6 and the principle

of mathematical induction. �

4. Logical Mutual Information of IF-Partitions

In this section, using the results of the previous parts, we define the notions of logical mutual
information and logical conditional mutual information of IF-partitions and prove basic properties of
these measures. We also present some numerical examples to illustrate the results.

Definition 7. Let ξ, η be two IF-partitions of F . Then, we define the logical mutual information of ξ and η by
the formula:

I(ξ, η) =H(ξ)−H(ξ / η). (8)

Remark 7. As a simple consequence of Equation (6), we have:

I(ξ, η) =H(ξ) + H(η) −H(ξ ∨ η). (9)

From Equation (9), it follows that I(ξ, η) = I(η, ξ), and I(ξ, ξ) = H(ξ).
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Theorem 8. Let ξ, η be two IF-partitions of F . Then

0 ≤ I(ξ, η) ≤ min(H(ξ), H(η)).

Proof. The non-negativity of logical mutual information I(ξ, η) follows from the subadditivity
of logical entropy (the property (ii) of Theorem 5) and Equation (9). The second inequality is a
consequence of Equation (9) and the property (iii) of Theorem 3. �

Example 3. Consider the family F of IF-events from Example 2 and the state m : F → [0, 1] defined by the
formula:

m(A) =
∫ 1

0
µAdx +

1
2
(1−

∫ 1

0
(µA+ νA)dx ). (10)

Put A1 = (µA1 , νA1), where the functions µA1 , νA1 : [0, 1]→ [0, 1] are defined by µA1(x) = x,
νA1(x) = 1− x, for every x ∈ b0, 1c, and A2 = (µA2 , νA2), where the functions µA2 , νA2 : [0, 1]→ [0, 1]
are defined by µA2(x) = 1− x, νA2(x) = x, for every x ∈ b0, 1c. Evidently, the set ξ = {A1, A2} is an
IF-partition with the m-state values 1

2 , 1
2 of the corresponding elements, and the logical entropy H(ξ) = 1

2 .
Further, we put B1 = (µB1 , νB1), where the functions µB2 , νB2 : [0, 1]→ [0, 1] are defined by µB1(x) = x2,
νB1(x) = 1− x2, for every x ∈ b0, 1c, and B2 = (µB2 , νB2), where the functions µB2 , νB2 : [0, 1]→ [0, 1]
are defined by µB2(x) = 1 − x2, νB2(x) = x2, for every x ∈ b0, 1c. Then, the set η = {B1, B2} is an
IF-partition with the m-state values 1

3 , 2
3 of the corresponding elements and the logical entropy H(η) = 4

9 . The
join of ξ and η is the system ξ ∨ η = {A1 · B1, A1 · B2, A2 · B1, A2 · B2}, where µA1·B1(x) = x3, νA1·B1(x) =
1− x3, µA1·B2(x) = x(1− x2), νA1·B2(x) = 1− x(1− x2), µA2·B1(x) = (1− x)x2, νA2·B1(x) = 1− (1−
x)x2, µA2·B2(x) = (1− x)(1− x2), νA2·B2(x) = 1− (1− x)(1− x2), x ∈ b0, 1c, with the m-state value
1
4 , 1

4 , 1
12 , 5

12 of the corresponding elements. The logical entropy of ξ ∨ η is the number:

H(ξ ∨ η) = 1− 11
36

= 0.6945.

Let us calculate the logical mutual information I(ξ, η) of IF-partitions ξ = {A1, A2}, η = {B1, B2}. By
Equation (9), we get:

I(ξ, η) =
1
2
+

4
9
− 1 +

11
36

=
9

36
=

1
4
= 0.25.

Theorem 9. If IF-partitions ξ = {A1, . . . , AI}, and η =
{

B1, . . . , BJ
}

are independent, i.e., m(Ai · Bj)

= m(Ai) ·m(Bj), for i = 1, . . . , I, j = 1, . . . , J, then I(ξ, η) = H(ξ) · H(η).

Proof. Let us calculate:

I(ξ, η) =H(ξ) + H(η) −H(ξ ∨ η)

= 1−∑I
i=1(m(Ai))

2 + 1−∑J
j=1

(
m(Bj)

)2 − 1 + ∑I
i=1 ∑J

j=1

(
m(Ai · Bj)

)2

= 1−∑I
i=1(m(Ai))

2 −∑J
j=1

(
m(Bj)

)2
+ ∑I

i=1(m(Ai))
2 ∑J

j=1

(
m(Bj)

)2

=
(

1−∑I
i=1(m(Ai))

2
)
·
(

1−∑J
j=1

(
m(Bj)

)2
)

=H(ξ) · H(η). �

Corollary 1. If IF-partitions ξ, η are independent, then

1− H(ξ ∨ η) = (1− H(ξ)) · (1− H(η)).
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Proof. Let us calculate:

(1− H(ξ)) · (1− H(η)) = 1− H(ξ)− H(η) + H(ξ) · H(η)

= 1− H(ξ)− H(η) + I(ξ, η)

= 1− H(ξ)− H(η) + H(ξ) + H(η)− H(ξ ∨ η)

= 1− H(ξ ∨ η). �

In the following part, we define the logical conditional mutual information of IF-partitions and,
using this notion, we establish the chain rules for logical mutual information of IF-partitions.

Definition 8. Let ξ, η, ς be IF-partitions of F . Then, the logical conditional mutual information of ξ and η

assuming a realization of ς is defined by the formula:

I(ξ, η/ς) = H(ξ/ς)− H(ξ/η ∨ ς). (11)

Theorem 10. For IF-partitions ξ, η, ς of F , it holds:

I(ξ, η ∨ ς) =I(ξ, η)+I(ξ, ς/η) =I(ξ, ς)+I(ξ, η/ς).

Proof. Let us calculate:

I(ξ, η)+I(ξ, ς/η) =H(ξ)− H(ξ/η)+H(ξ/η)−H(ξ/η ∨ ς)

= H(ξ)− H(ξ/η ∨ ς) =I(ξ, η ∨ ς).

The second equality is obtained analogously. �

The result of the previous theorem is illustrated by the following example.

Example 4. Consider the family F of IF-events from Example 2, the state m : F → [0, 1] defined by Equation
( 10), and the IF-partitions ξ = {A1, A2}, η = {B1, B2} from the previous example. In addition, put
ς = {C1, C2}, where µC1(x) = x3, νC1(x) = 1 − x3, µC2(x) = 1 − x3, νC2(x) = x3, for every x ∈
b0, 1c. We will show that I(ξ, η ∨ ς) = I(ξ, η)+ I(ξ, ς/η). The join of η and ς is the system η ∨ ς =

{B1 · C1, B1 · C2, B2 · C1, B2 · C2} with the m-state values 1
6 , 1

6 , 1
12 , 7

12 of the corresponding elements. By
simple calculation, we obtain:

H(ξ/η ∨ ς) = 0.402777− 0.229614 = 0.173163 ;

and consequently

I(ξ, ς/η) = H(ξ/η)− H(ξ/η ∨ ς) = 0.25− 0.173163 = 0.076837.

By definition we have:

I(ξ, η ∨ ς) =H(ξ)−H(ξ/η ∨ ς) = 0.5− 0.173163 = 0.326837.

In Example 3, we have calculated that I(ξ, η) = 0.25. It is now possible to verify that the equality
I(ξ, η ∨ ς) = I(ξ, η)+ I(ξ, ς/η) is valid.
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Theorem 11. (Chain rules for logical mutual information). Let ξ1, ξ2, . . . , ξn and η be IF-partitions of F . Then,
for n = 1, 2, . . . , it holds:

I(∨n
i=1ξi, η) =I(ξ1 /η) +

n

∑
i=2

I(ξi, η/ ∨i−1
k=1 ξk).

Proof. By (8), Theorem 7, and (11), we obtain

I(∨n
i=1ξi, η) = H(∨n

i=1ξi)− H(∨n
i=1ξi/η)

= H(ξ1) +∑n
i=2 H(ξi/ ∨i−1

k=1 ξk)−H(ξ1 /η) −∑n
i=2 H(ξi/(∨ i−1

k=1 ξk) ∨ η)

= I(ξ1 /η) +∑n
i=2

(
H(ξi/ ∨i−1

k=1 ξk) −H(ξi/(∨ i−1
k=1 ξk) ∨ η)

)
= I(ξ1 /η) +∑n

i=2 I(ξi, η/ ∨i−1
k=1 ξk). �

Definition 9. Let ξ, η, ς be IF-partitions of F . We say that ξ is conditionally independent to ς assuming a
realization of η (and write ξ → η → ς ) if I(ξ, ς/η) = 0.

Theorem 12. For IF-partitions ξ, η, ς of F , it holds: ξ → η → ς if and only if ς→ η → ξ.

Proof. Let ξ → η → ς, i.e., I(ξ, ς/η) = 0. Then H(ξ/η) = H(ξ/η ∨ ς), and by Equation (6) we get:

H(ξ/η) =H(ξ/η ∨ ς)= H(ξ ∨ η ∨ ς)−H(η ∨ ς).

Let us calculate:

I(ς, ξ/η) =H(ς/η)−H(ς/ξ ∨ η) =H(ς ∨ η)−H(η)−H(ξ ∨ η ∨ ς)+H(ξ ∨ η)= H(ξ/η)− H(ξ/η) = 0.

However, this indicates that ς→ η → ξ. The reverse implication is obvious. �

Remark 8. According to the previous theorem, we may say that ξ and ς are conditionally independent, assuming
a realization of η, and write ξ ↔ η ↔ ς instead of ξ → η → ς.

Theorem 13. For IF-partitions ξ, η, ς of F such that ξ → η → ς, we have

(i) I(ξ ∨ η, ς) = I(η, ς);
(ii) I(η, ς) = I(ξ, ς)+ I(ς, η/ξ);
(iii) I(ξ, η/ς) ≤ I(ξ, η).

Proof. (i) Since by the assumption I(ξ, ς/η) = 0, using the chain rule for logical mutual information,
we obtain:

I(ξ ∨ η, ς) =I(η ∨ ξ, ς) =I(η, ς)+I(ξ, ς/η) =I(η, ς).

(ii) By Theorem 10, we have I(ξ ∨ η, ς) = I(ς, ξ)+ I(ς, η/ξ). Hence using (i), we can write:

I(η, ς) =I(ξ ∨ η, ς) =I(ς, ξ)+I(ς, η/ξ).

(iii) From (ii), it follows the inequality I(ς, η/ξ) ≤ I(ς, η). By Theorem 12, we can interchange ξ

and ς. Doing so, we obtain the inequality I(ξ, η/ς) ≤ I(ξ, η). �

We note that, in the classical theory, the last claim of Theorem 13 is known as the data
processing inequality.
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5. Logical Entropy of IF-Dynamical Systems

The classical dynamical system is a quadruplet (Ω, S, P, T), where (Ω, S, P) is a probability
space, and T : Ω→ Ω is a measure preserving map, i.e., A ∈ S implies T−1(A) ∈ S, and P(T−1(A)) =

P(A). Define τ : S→ S by the equality τ(A) = T−1(A), for any A ∈ S. Then, τ is a mapping with the
property P(τ(A)) = P(A), for any A ∈ S. In addition, τ(A∪ B) = T−1(A∪ B) = T−1(A)∪ T−1(B) =
τ(A) ∪ τ(B), for any A, B ∈ S; analogously, τ(A ∩ B) = τ(A) ∩ τ(B), for any A, B ∈ S. It is a
motivation for the following definition.

Definition 10. Let F be the family of all IF-events and m : F → b0, 1c be a state. Then, the triplet (F , m, τ)

will be called an IF-dynamical system, if τ : F → F is such a mapping that the following conditions are
satisfied:

(i) A ∈ F implies τ(A) ∈ F , and m(A) = m(τ(A));
(ii) if A, B, C ∈ F , and A ⊕ B = C, then τ(C) = τ(A) ⊕ τ(B);
(iii) if A, B ∈ F , then τ(A · B) = τ(A) · τ(B).

Proposition 3. Let any IF-dynamical system (F , m, τ) be given. If ξ = {A1, . . . , An} is an IF-partition of F ,
then the system τξ = {τ(A1), . . . , τ(An)} is also an IF-partition of F .

Proof. Since ⊕n
i=1 Ai exists, according to Definition 8, τ

(
⊕n

i=1 Ai
)
∈ F , and τ

(
⊕n

i=1 Ai
)
= ⊕n

i=1τ (Ai).
This means that ⊕n

i=1τ (Ai) exists. Moreover, we have:

m(⊕n
i=1τ (Ai)) = m(τ(⊕n

i=1 Ai)) = m(⊕n
i=1 Ai) = 1,

and

m(⊕n
i=1τ (Ai)) = m(⊕n

i=1 Ai) =
n

∑
i=1

m(Ai) =
n

∑
i=1

m(τ (Ai)). �

Define τ2 = τ ◦ τ, and put τk = τ ◦ τk−1, k = 1, 2, . . . , where τ0 is the identical mapping on F .

Theorem 14. Let any IF-dynamical system (F , m, τ) be given. If ξ, η are IF-partitions ofF , then the following
properties are satisfied:

(i) τ (ξ ∨ η) = τξ ∨ τ η;
(ii) ξ ≺ η implies τξ ≺ τη

(iii) H
(

τkξ
)
= H(ξ), k = 0, 1, 2, . . . ;

(iv) H
(

τkξ/τkη
)
= H(ξ/η), k = 0, 1, 2, . . . ;

(v) H(∨n−1
i=0 τiξ) = H(ξ) + ∑n−1

j=1 H(ξ/ ∨j
i=1 τiξ)

Proof. Assume that ξ = {A1, . . . , AI}, η =
{

B1, . . . , BJ
}

.
The property (i) follows from the condition τ(Ai · Bj) = τ(Ai) · τ(Bj), i = 1, . . . , I, j = 1, . . . , J.
(ii) If ξ ≺ η, then for each Ai ∈ ξ, there exists a subset αi ⊂ {1, . . . , J} such that m(Ai)

= m(⊕j∈αi Bj) = ∑j∈αi
m(Bj), αi ∩ αj = Ø for i 6= j, and ∪I

i=1αi = {1, . . . , J}. We get:

m(τ(Ai)) = m(τ(⊕j∈αi Bj)) = m(⊕j∈αi τ(Bj)) = ∑
j∈αi

m(τ(Bj)),i = 1, 2, . . . , I.

However, this indicates that τξ ≺ τη.
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(iii) Since m
(

τk(Ai)
)
= m(Ai), for i = 1, 2, . . . , I, k = 0, 1, 2, . . . , we get:

H
(

τkξ
)
= 1−

I

∑
i=1

(
m(τk(Ai))

)2
= 1−

I

∑
i=1

(m(Ai))
2 = H(ξ).

(iv) The proof is analogous to the proof of the previous property.
(v) We will prove by mathematical induction. For the case of n = 2, the equality holds by

Equation (7). We assume that the statement holds for a given n ∈ N and we prove it is true for n + 1.
By part (iii), we have:

H(∨n
i=1τiξ) = H(τ(∨n−1

i=0 τiξ)) = H(∨n−1
i=0 τiξ).

Therefore, by Equation (7) and the induction assumption, we can write:

H(∨n
i=0τiξ) = H((∨n

i=1τiξ) ∨ ξ) = H(∨n
i=1τiξ) + H(ξ/ ∨n

i=1 τiξ)

= H(∨n−1
i=0 τiξ) + H(ξ/ ∨n

i=1 τiξ)

= H(ξ)+ ∑n−1
j=1 H(ξ/ ∨j

i=1 τiξ) + H(ξ/ ∨n
i=1 τiξ)

= H(ξ)+ ∑n
j=1 H(ξ/ ∨j

i=1 τiξ).

The proof is complete. �

Lemma 1. Let {an}∞
n=1 be a sequence of non-negative real numbers such that ar+s ≤ ar + as, for every

r, s ∈ N. Then lim
n→∞

1
n an exists.

Proof. The proof can be found in [69]. �

Proposition 4. Let (F , m, τ) be an IF-dynamical system, and ξ be an IF-partition of F . Then, there exists the
following limit:

lim
n→∞

1
n

H(∨n−1
i=0 τiξ).

Proof. Put an = H(∨n−1
i=0 τiξ). According to Theorem 5 and property (iii) of the previous theorem, for

every r, s ∈ N, we have:

ar+s =H(∨r+s−1
i=0 τiξ) ≤H(∨r−1

i=0 τiξ) + H(∨r+s−1
i=r τiξ)

= ar + H(τr(∨s−1
i=0 τiξ)) = ar + H(∨s−1

i=0 τiξ) = ar + as.

Hence, by Lemma 1, lim
n→∞

1
n H(∨n−1

i=0 τiξ) exists. �

Definition 11. Let (F , m, τ) be an IF-dynamical system, and ξ be any IF-partition of F . The logical entropy of
τ with respect to ξ is defined by:

h(τ, ξ) = lim
n→∞

1
n

H(∨n−1
i=0 τiξ).

The logical entropy of an IF-dynamical system (F , m, τ) is defined by the formula:

h(τ) =sup{h(τ, ξ) ; ξ is an IF− partition o f F}.
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Example 5. Let F be the family of all IF-events and m : F → b0, 1c be a state. Then, the triplet (F , m, I),
where I : F → F is an identity mapping, is a trivial case of an IF-dynamical system. The operation ∨ is
idempotent, therefore:

h(I, ξ) = lim
n→∞

1
n

H(∨n−1
i=0 Iiξ)= lim

n→∞

1
n

H(ξ) = 0, f or every IF− partition ξ of F ,

and the logical entropy of (F , m, I) is h(I) = sup{h(I, ξ) ; ξ is an IF − partition o f F} = 0.

Theorem 15. Let any IF-dynamical system (F , m, τ) be given. If ξ, η are IF-partitions of F such that ξ ≺ η,
then h(τ, ξ) ≤ h(τ, η).

Proof. If ξ ≺ η, then ∨n−1
i=0 τiξ ≺ ∨n−1

i=0 τiη, for n = 1, 2, . . . . By property (ii) from Theorem 3, we have
H(∨n−1

i=0 τiξ) ≤ H(∨n−1
i=0 τiη), for n = 1, 2, . . . . Hence, h(τ, ξ) ≤ h(τ, η). �

Definition 12. Two IF-dynamical systems (F1, m1, τ1), (F2, m2, τ2) are said to be isomorphic if there exists a
bijective mapping ψ : F1 → F2 satisfying the following conditions:

(i) ψ(τ1(A)) = τ2(ψ(A)), for every A ∈ F1;
(ii) ψ(A · B) = ψ(A) · ψ(B), for every A, B ∈ F1;
(iii) for every A, B ∈ F1, A⊕ B exists if and only if ψ(A)⊕ ψ(B) exists, and ψ(A⊕ B) = ψ(A)⊕ ψ(B);
(iv) m1(A) = m2(ψ(A)), for every A ∈ F1.

Lemma 2. Let (F1, m1, τ1), (F2, m2, τ2) be isomorphic IF-dynamical systems wherein a mapping
ψ : F1 → F2 represents their isomorphism. Let ξ = {A1, . . . , An} be an IF-partition of F1. Then, the
system ψ(ξ) = {ψ(A1), . . . , ψ(An)} is an IF-partition of F2 with the logical entropy H(ψ(ξ)) = H(ξ), and
moreover, h(τ2, ψ(ξ)) = h(τ1, ξ).

Proof. Since ⊕n
i=1 Ai exists, by condition (iii) of the previous definition ⊕n

i=1ψ(Ai) exists, and it holds
ψ(⊕n

i=1 Ai) = ⊕n
i=1ψ(Ai). Therefore, by condition (iv) of the previous definition, we can write:

m2(⊕n
i=1ψ(Ai)) =m2(ψ(⊕n

i=1 Ai)) =m1(⊕n
i=1 Ai) = 1.

On the other hand, m2
(
⊕n

i=1ψ(Ai)
)

= ∑n
i=1 m2(ψ(Ai)). This means that ψ(ξ) =

{ψ(A1), . . . , ψ(An)} is an IF-partition of F2. Let us calculate:

H(ψ(ξ)) =
n

∑
i=1

m2(ψ(Ai)) (1−m2(ψ(Ai))) =
n

∑
i=1

m1(Ai)(1−m1(Ai)) =H(ξ).

Consequently, using conditions (i) and (ii) of the previous definition, we get:

h(τ2, ψ(ξ)) = lim
n→∞

1
n H
(
∨n−1

i=0 τi
2ψ(ξ)

)
= lim

n→∞
1
n H
(
∨n−1

i=0 ψ
(
τi

1ξ
))

= lim
n→∞

1
n H
(

ψ
(
∨n−1

i=0 τi
1ξ
))

= lim
n→∞

1
n H
(
∨n−1

i=0 τi
1ξ
)
=h(τ1, ξ).

Lemma 3. Let (F1, m1, τ1), (F2, m2, τ2) be isomorphic IF-dynamical systems wherein a mapping
ψ : F1 → F2 represents their isomorphism. Then, for the inverse ψ−1 : F2 → F1, the following properties
are satisfied:

(i) ψ−1(A · B) = ψ−1(A) · ψ−1(B), for every A, B ∈ F2;
(ii) for any A, B ∈ F2, if A⊕ B exists, then ψ−1(A)⊕ ψ−1(B) exists, too, and ψ−1(A⊕ B) = ψ−1(A)⊕

ψ−1(B);
(iii) m1(ψ

−1(A)) = m2(A), for every A ∈ F2;
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(iv) m1
(
(ψ−1 ◦ τ2)(A)

)
= m1

(
(τ1 ◦ ψ−1)(A)

)
, for every A ∈ F2.

Proof. Since ψ : F1 → F2 is bijective, for every A, B ∈ F2, there exist A′, B′ ∈ F1 such that ψ−1(A) =

A′, ψ−1(B) = B′.

(i) We get:

ψ−1(A · B) =ψ−1(ψ
(

A′
)
· ψ
(

B′
)
) =ψ−1(ψ

(
A′ · B′

)
) = A′ · B′= ψ−1(A) · ψ−1(B).

(ii) Let A, B ∈ F2 such that A ⊕ B exists. Then, ψ−1(A ⊕ B) exists because ψ is surjective.
Let us calculate:

ψ−1(A⊕ B) =ψ−1(ψ(A′
)
⊕ ψ

(
B′
))

=ψ−1(ψ
(

A′ ⊕ B′
) )

= A′ ⊕ B′= ψ−1(A)⊕ ψ−1(B).

(iii) Let A ∈ F2. Then

m2(A) = m2
(
ψ
(

A′
))

= m1
(

A′
)
= m1

(
ψ−1(A)

)
.

(iv) Let A ∈ F2. Then we have

m1

(
(ψ−1 ◦ τ2)(A)

)
= m1

(
ψ−1(τ2(A))

)
= m2(τ2(A)) = m2(A),

and
m1

(
(τ1 ◦ ψ−1)(A)

)
= m1

(
τ1(ψ

−1(A))
)
= m1

(
ψ−1(A)

)
= m2(A).

Hence, the equality m1
(
(ψ−1 ◦ τ2)(A)

)
= m1

(
(τ1 ◦ ψ−1)(A)

)
holds. �

Theorem 16. If the IF-dynamical systems (F1, m1, τ1), (F2, m2, τ2) are isomorphic, then h(τ1) = h(τ2).

Proof. Let ψ : F1 → F2 be a mapping representing an isomorphism of IF-dynamical systems
(F1, m1, τ1), (F2, m2, τ2). By Lemma 2, if ξ = {A1, . . . , An} is an IF-partition of F1, then the system
ψ(ξ) = {ψ(A1), . . . , ψ(An)} is an IF-partition of F2 and h(τ2, ψ(ξ)) = h(τ1, ξ). Therefore:

{h(τ1, ξ); ξ is an IF− partition of F1} ⊂{h(τ2, η); η is an IF− partition of F2},

and consequently:

h(τ1) = sup{h(τ1, ξ); ξ is an IF− partition of F1} ≤sup{h(τ2, η); η is an IF− partition of F2} = h(τ2).

The opposite inequality is obtained in a similar way; it suffices to consider the inverse
ψ−1 : F2 → F1. If η = {B1, . . . , Bn} is an IF-partition of F2, then it is easy to verify that ψ−1(η)

=
{

ψ−1(B1), . . . , ψ−1(Bn)
}

is an IF-partition of F1. Indeed, since ⊕n
i=1Bi exists, according to property

(ii) from Lemma 3, ⊕n
i=1ψ−1(Bi) exists, too. Moreover, we have:

m1

(
⊕n

i=1ψ−1 (Bi)
)
= m1

(
ψ−1(⊕n

i=1Bi)
)
= m2(⊕n

i=1Bi) = 1,

and

m1

(
⊕n

i=1ψ−1 (Bi)
)
=

n

∑
i=1

m1

(
ψ−1 (Bi)

)
.

By means of (iii) from the previous lemma, we get:

H
(

ψ−1(η)
)
=

n

∑
i=1

m1

(
ψ−1(Bi)

) (
1−m1

(
ψ−1(Bi)

))
=

n

∑
i=1

m2(Bi) (1−m2(Bi)) =H(η).
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Thus, according to the previous lemma, we can write:

h
(
τ1, ψ−1(η)

)
= lim

n → ∞
1
n H
(
∨n−1

i=0 τi
1ψ−1(η)

)
= lim

n → ∞
1
n H
(
∨n−1

i=0 ψ−1(τi
2η
))

= lim
n → ∞

1
n H
(

ψ−1
(
∨n−1

i=0 τi
2η
))

= lim
n → ∞

1
n H
(
∨n−1

i=0 τi
2η
)
=h(τ2, η).

Therefore:

{h(τ2, η); is an IF− partition of F2} ⊂{h(τ1, ξ); ξ is an IF− partition of F1},

and consequently:

h(τ2) = sup{h(τ2, η); η is an IF− partition of F2} ≤ sup{h(τ1, ξ); ξ is an IF− partition of F1} = h(τ1).

The proof is completed. �

In the final part, we prove an analogy of the Kolmogorov–Sinai theorem on generators for the
studied situation. This theorem (see e.g., [69]) is the main tool for calculating the entropy of dynamical
system. First, analogously as in [62], we introduce the following definition.

Definition 13. Let (F , m, τ) be an IF-dynamical system and ς be an IF-partition of F . Then ς is called an
m-generator of (F , m, τ) if to any IF-partition ξ of F , there exists an integer k > 0 such that ξ ≺ ∨k

i=0τiς.

Proposition 5. Let (F , m, τ) be an IF-dynamical system, and ξ be an IF-partition of F . Then, for each natural
number k, it holds

h(τ, ξ) = h
(

τ, ∨k
i=0τiξ

)
.

Proof. Let ξ be any IF-partition of F . Then, for each natural number k, we can write:

h
(

τ, ∨k
i=0τiξ

)
= lim

n → ∞
1
n H(∨n−1

j=0 τ j(∨k
i=0τiξ))= lim

n → ∞
k+n

n ·
1

k+n H(∨k+n−1
t=0 τtξ)

= lim
n → ∞

1
k+n H(∨k+n−1

t=0 τtξ) = h(τ, ξ). �

Theorem 17. Let (F , m, τ) be an IF-dynamical system and ς be an m-generator of (F , m, τ). Then

h(τ) = h(τ, ς).

Proof. Let ς be an m-generator of (F , m, τ). Then to any IF-partition ξ of F , there exists an integer
k > 0 such that ξ ≺ ∨k

i=0τiς. Consequently by Theorem 15 and Proposition 5, for every IF-partition ξ of
F , we have:

h(τ, ξ) ≤ h
(

τ, ∨k
i=0τiς

)
= h(τ, ς).

Thus, we can conclude:

h(τ) =sup{h(τ, ξ) ; ξ is an IF− partition of F} = h(τ, ς).

6. Discussion

The purpose of the present study was to introduce the concepts of logical entropy and logical
mutual information of experiments in the intuitionistic fuzzy case. Our results have been presented in
Sections 3–5.
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In Section 3, we defined the notions of logical entropy and logical conditional entropy for
intuitionistic fuzzy experiments, and proved the basic properties of the proposed measures. It was
proved that the logical entropy of intuitionistic fuzzy experiments has properties analogous to the
properties of Shannon entropy of measurable partitions, in the sense of classical probability theory. In
Section 4, the results of the previous part were used to develop a logical information theory for the
intuitionistic fuzzy case. The concepts of logical mutual information and logical conditional mutual
information of intuitionistic fuzzy experiments have been introduced, and properties of these measures
were studied. Specifically, the chain rule for logical mutual information has been established, and
the data processing inequality for conditionally independent IF-partitions was proved. We have also
provided some numerical examples to illustrate the results.

In Section 5, the concept of logical entropy of IF-partitions was used to define the logical entropy
of IF-dynamical systems. It was shown that the logical entropy of IF-dynamical systems is invariant
under any isomorphism. Finally, we have provided an analogy of the Kolmogorov–Sinai theorem on
generators for the intuitionistic fuzzy case.

All of the mentioned results can be immediately applied to the fuzzy case. On the other hand, it is
hopeful to use the methods developed here in some more general algebraic structures. For example,
we mentioned in Theorem 1 the possibility of embedding F to the familyM with a state m extending
the state m. ActuallyM is an example of an MV-algebra with a product [20–28]. Further research
ought to more fully investigate potential general applications for the methods developed in this work.
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41. Di Nola, A.; Dvurečenskij, A.; Hyčko, M.; Manara, C. Entropy on Effect Algebras with the Riesz

Decomposition Property I: Basic Properties. Kybernetika 2005, 41, 143–160.
42. Giski, Z.E.; Ebrahimi, M. Entropy of Countable Partitions on effect Algebras with the Riesz Decomposition

Property and Weak Sequential Effect Algebras. Cankaya Univ. J. Sci. Eng. 2015, 12, 20–39.
43. Ebrahimi, M.; Mosapour, B. The Concept of Entropy on D-posets. Cankaya Univ. J. Sci. Eng. 2013, 10, 137–151.
44. Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
45. Atanassov, K. More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 33, 37–45. [CrossRef]
46. Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications; Physica Verlag: New York, NY, USA, 1999.
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