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Abstract: In this note, the following basic question is explored: in a cyclic group, how are the Shannon
entropies of the sum and difference of i.i.d. random variables related to each other? For the integer
group, we show that they can differ by any real number additively, but not too much multiplicatively;
on the other hand, for Z/3Z, the entropy of the difference is always at least as large as that of the
sum. These results are closely related to the study of more-sums-than-differences (i.e., MSTD) sets in
additive combinatorics. We also investigate polar codes for q-ary input channels using non-canonical
kernels to construct the generator matrix and present applications of our results to constructing polar
codes with significantly improved error probability compared to the canonical construction.
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1. Introduction

For a discrete random variable X supported on a countable set A, its Shannon entropy H(X) is
defined to be:

H(X) = − ∑
x∈A

P(X = x) logP(X = x). (1)

The Shannon entropy can be thought of as the logarithm of the effective cardinality of the support
of X; the justification for this interpretation comes from the fact that when the alphabet A is finite,
H(X) ≤ log |A|, with equality if and only if X is uniformly distributed on A. This suggests an informal
parallelism between entropy inequalities and set cardinality inequalities that has been extensively
explored for projections of subsets of Cartesian product sets (see, e.g., [1] for a review of these and
their applications to combinatorics) and, more recently, for sums of subsets of a group that are of
great interest in the area of additive combinatorics [2]. For two finite subsets A, B of an abelian group,
the sumset A + B and difference set A− B are defined by:

A + B := {a + b : a ∈ A, b ∈ B},

and:
A− B := {a− b : a ∈ A, b ∈ B}.
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In the trivial bound max{|A|, |B|} ≤ |A± B| ≤ |A||B|, replacing the sets A, B by independent discrete
random variables X, Y and replacing the log-cardinality of each set by the Shannon entropy, one
obtains the entropy analogue:

max{H(X), H(Y)} ≤ H(X±Y) ≤ H(X) + H(Y). (2)

This is, of course, an analogy, but not a proof; however, the inequality (2) can be seen to be true from
the elementary properties of entropy.

First identified by Ruzsa [3], this connection between entropy inequalities and cardinality inequalities
in additive combinatorics has been studied extensively in the last few years. Useful tools in additive
combinatorics have been developed in the entropy setting, such as Plünnecke–Ruzsa inequalities by
Madiman, Marcus and Tetali [4,5] and Freiman–Ruzsa and Balog–Szemerédi–Gowers theorems by
Tao [6]. Much more work has also recently emerged on related topics, such as efforts towards an entropy
version of the Cauchy–Davenport inequality [7–10], an entropy analogue of the doubling-difference
inequality [11] and applications of additive combinatorics in information theory [12–17]. Some results
have also been extended from discrete abelian groups to locally compact abelian groups [18,19], with
entropy being defined as an integral with respect to the Haar measure. In the particular case of the
additive group Rd, there continues to be a connection (see, e.g., [20–23]) between entropy inequalities
for random variables and “size” inequalities for sumsets, except that size is taken to be the volume
(Lebesgue measure) of a set rather than its cardinality. Entropy inequalities for sums of discrete random
variables also have implications for probabilistic limit theorems (see, e.g., [24–27]), although this is not
a direction we explore in this paper.

In an abelian group, since addition is commutative while subtraction is not, two generic elements
generate one sum, but two differences. Likely motivated by this observation, the following conjecture
(attributed to Conway) is contained in [28] (Section VI, Problem 7):

“Let A = {a1, a2, . . . , aN} be a finite set of integers, and define A+ A = {ai + aj : 1 ≤ i, j ≤ N}
and A− A = {ai − aj : 1 ≤ i, j ≤ N}. Prove that A− A always has more members than
A + A, unless A is symmetric about 0.”

According to [29], Conway denied having conjectured the patently false statement about equality;
apparently his original conjecture was that A−A always has at least as many elements as A+ A. However,
that is not always the case. In 1969, Marica [30] showed that the conjecture is false by exhibiting the
set A = {1, 2, 3, 5, 8, 9, 13, 15, 16}, for which A + A has 30 elements and A− A has 29 elements. Such
a set is called an MSTD (more-sums-than-differences) set. According to Nathanson [31], Conway
himself had already found the MSTD set {0, 2, 3, 4, 7, 11, 12, 14} in the late 1960s, thus disproving his
own conjecture. Subsequently, Stein [32] showed that one can construct sets A for which the ratio
|A− A|/|A + A| is as close to zero or as large as we please; apart from his own proof, he observed that
such constructions also follow by adapting arguments in an earlier work of Piccard [33] that focused
on the Lebesgue measure of A + A and A− A for subsets A of R. A stream of recent papers aims
to quantify how rare or frequent MSTD sets are (see, e.g., [34,35] for work on the integers and [36]
for finite abelian groups more generally) or try to provide denser constructions of infinite families of
MSTD sets (see, e.g., [37,38]); however, these are not directions we will explore in this note.

Since convolutions of uniforms are always distributed on the sumset of the supports, but are
typically not uniform distributions, it is not immediately obvious from the Conway and Marica
constructions whether there exist i.i.d. random variables X and Y such that H(X + Y) > H(X − Y).
The purpose of this note is to explore this and related questions. For example, one natural related
question to ask is for some description of the coefficient λ ∈ {1, . . . , |G|} that maximizes H(X + λY)
for X, Y drawn i.i.d. from some distribution in G; restricting the choice of coefficients to {+1,−1}
would correspond to the sum-difference question. This question is motivated by applications to the
class of polar codes, which is a very promising class of codes that has attracted much recent attention in
information and coding theory. Specifically, we show that over Fq, the “spread” of the polar martingale
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can be significantly enlarged by using optimized kernels rather than the original kernel
[

1 0
1 1

]
. In some

cases, this leads to significant improvements on the error probability of polar codes, even at low
block lengths like 1024. We also consider additive noise channels and show that the improvement is
particularly significant when the noise distribution is concentrated on a “small” support.

This note is organized as follows. In Section 2.1, we show that entropies of sums (of i.i.d. random
variables) are never greater than entropies of differences for random variables taking values in the cyclic
group Z/3Z; however, this fails for larger groups, and in particular, we show that there always exist
distributions on finite cyclic groups of order at least 21 such that H(X +Y) > H(X−Y). In Sections 2.2
and 2.3, we explore more quantitative questions; that is, we ask not only what the ordering of H(X +Y)
and H(X−Y) may be, but how different these can be in either direction; the finding here is that on
Z, these can differ by arbitrarily large amounts additively, but not too much multiplicatively. Finally,
in Section 3, we explore the question about entropies of weighted sums mentioned at the end of the
previous paragraph and describe the applications to polar codes, as well.

2. Comparing Entropies of Sums and Differences

2.1. Basic Examples

We start by considering the smallest group in which the sum and difference are distinct, namely
Z/3Z. Let p = (p0, p1, p2) be a probability distribution on Z/3Z, and let H(p) be its Shannon entropy.
We denote by ‖p−U‖2 the Euclidean distance between p and the uniform distribution U = ( 1

3 , 1
3 , 1

3 ).
For any fixed 0 ≤ t ≤ log 3, the following lemma verifies the “triangular” shape of the entropy circle
H(p) = t.

Lemma 1. Let p be a probability distribution on the entropy circle H(p) = t such that p0 ≥ p1 ≥ p2. Then,
the distance ‖p−U‖2 is an increasing function of p0.

Proof. If t = 0, then p has to be the deterministic distribution (1, 0, 0). In this case, we have ‖p−U‖2 =√
2/3. If t = log 3, we have p = U and ‖p − U‖2 = 0. In the following, we may assume that

0 < t < log 3. The condition p0 + p1 + p2 = 1 yields:

1 +
dp1

dp0
+

dp2

dp0
= 0. (3)

The entropy identity H(p) = t implies:

(log p0 + 1) + (log p1 + 1)
dp1

dp0
+ (log p2 + 1)

dp2

dp0
= 0. (4)

The above two identities give us that:

dp1

dp0
=

log p0 − log p2

log p2 − log p1
(5)

and:

dp2

dp0
=

log p0 − log p1

log p1 − log p2
. (6)
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Using Identities (3), (5) and (6), we have:

1
2
· d

dp0
‖p−U‖2 =

2

∑
i=0

(
pi −

1
3

)
dpi
dp0

= p0 + p1
log p0 − log p2

log p2 − log p1
+ p2

log p0 − log p1

log p1 − log p2

= (p0 − p1)
log p0 − log p2

log p1 − log p2
− (p0 − p2)

log p0 − log p1

log p1 − log p2

=
(p0 − p1)(p0 − p2)

log p1 − log p2

(
log p0 − log p2

p0 − p2
− log p0 − log p1

p0 − p1

)
≥ 0.

The last inequality follows from the assumption that p0 ≥ p1 ≥ p2 and the concavity of the logarithmic
function.

Now, we can show that the entropy of the sum of two i.i.d. random variables taking values in
Z/3Z can never exceed the entropy of their difference. We use basic facts about the Fourier transform
on finite groups, which can be found, e.g., in [39].

Theorem 1. Let X, Y be i.i.d. random variables taking values in Z/3Z, then we have:

H(X + Y) ≤ H(X−Y). (7)

Proof. Let p = (p0, p1, p2) be the distribution of X. Since Y is an independent copy of X, we can see
that −Y has distribution q = (p0, p2, p1). Then, the distributions of X + Y and X−Y can be written as
p ? p and p ? q, respectively, where “?” is the convolution operation. Let p̂ = ( p̂0, p̂1, p̂2) be the Fourier
transform of p with Fourier coefficients defined by:

p̂j =
2

∑
k=0

pke−i2π jk/3, j = 0, 1, 2.

One basic property of the Fourier transform asserts that:

q̂j = p̂j, (8)

where p̂j is is the conjugate of p̂j. We also have:

( p̂ ? q)j = p̂j · q̂j, (9)

which holds for general distributions q. The Parseval–Plancherel identity says:

‖ p̂‖2
2 = 3‖p‖2

2. (10)

Using the identities (8)–(10), we have:

‖p ? p‖2 = ‖p ? q‖2,

which implies:
‖p ? p−U‖2 = ‖p ? q−U‖2.

It is not hard to see that X − Y is symmetric with (p ? q)0 ≥ (p ? q)1 = (p ? q)2. Using Lemma 1,
we can see that the entropy circle passing through p ? q lies inside the Euclidean circle centered at U
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with radius ‖p ? q−U‖2. Thus, the distribution p ? p is on an entropy circle with entropy not greater
than H(p ? q). Then, we have the desired statement.

The property in Theorem 1 fails to hold for larger cyclic groups; we demonstrate this by discussing
three specific examples of i.i.d. random variables X, Y such that the entropy of their sum is larger than
the entropy of their difference.

1. For Conway’s MSTD set A = {0, 2, 3, 4, 7, 11, 12, 14}, we have |A + A| = 26 and |A− A| = 25.
Let X, Y be independent random variables uniformly distributed on A. Straightforward
calculations show that:

H(X + Y)− H(X−Y) =
1

64
log

282429536481
215886856192

> 0.

2. The second example is based on the set A = {0, 1, 3, 4, 5, 6, 7, 10} with |A + A| = |A− A| = 19.
Let X, Y be independent random variables uniformly distributed on A. Then, we have:

H(X + Y)− H(X−Y) =
1
64

log
510 × 810

36 × 77 > 0.

3. The group Z/12Z is the smallest cyclic group that contains an MSTD set. Let A = {0, 1, 2, 4, 5, 9}.
It is easy to check that A is an MSTD set since A+ A = Z/12Z and A− A = (Z/12Z)\{6}. We let
X, Y be independent random variables uniformly distributed on A. Then, we have:

H(X + Y)− H(X−Y) =
1

36
log

334

2010 > 0.

Remark 1. Applying linear transformations, we can get infinitely many MSTD sets of Z from Conway’s
MSTD set. Correspondingly, one can get as many “MSTD” random variables as one pleases. Thus, MSTD sets
are useful in the construction of “MSTD” random variables; however, we can also construct “MSTD” random
variables supported on non-MSTD sets as shown by the second example.

Remark 2. Hegarty [40] proved that there is no MSTD set in Z of size seven, and up to linear transformations,
Conway’s set is the unique MSTD set in Z of size eight. We do not know the smallest support of “MSTD”
random variables taking values in Z, although eight is clearly an upper bound.

Remark 3. We also do not know the smallest m such that there exist “MSTD” random variables taking values
in Z/mZ; however, the third example shows that this m cannot be greater than 12.

2.2. Achievable Differences

We first briefly introduce the construction of Stein [32] of finite subsets Ak ⊂ Z such that the ratio
|Ak − Ak|/|Ak + Ak| can be arbitrarily large or small when k is large. Using this construction, we will
give an alternate proof of the result of Lapidoth and Pete [12], which asserts that H(X−Y) can exceed
H(X + Y) by an arbitrarily large amount.

Let A, B ⊂ Z be two finite subsets. Suppose that the gap between any two consecutive elements
of B is sufficiently large. For any b ∈ B, the set b + A represents a relatively small fluctuation around b.
Large gaps between elements of B will imply that (b + A) ∩ (b′ + A) = ∅ for distinct b, b′ ∈ B. Then,
we will have |A + B| = |A||B|. For m ∈ Z large, this argument implies that |A + m · A| = |A|2, where
m · A := {ma : a ∈ A}. Therefore, the following equations hold simultaneously for sufficiently large
m0 ∈ Z (which depends on A, A− A and A + A):

|A + m0 · A| = |A|2,

|(A + m0 · A)− (A + m0 · A)| = |(A− A) + m0 · (A− A)| = |A− A|2,
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and:
|(A + m0 · A) + (A + m0 · A)| = |A + A|2.

Repeating this argument, we can get a sequence of sets Ak, defined by:

Ak = Ak−1 + mk−1 Ak−1, (11)

where A0 = A, mk−1 ∈ Z sufficiently large, with the following properties:

|Ak| = |A|2k, |Ak ± Ak| = |A± A|2k. (12)

Now, we are ready to reprove the result of Lapidoth and Pete [12].

Theorem 2 ([12]). For any M > 0, there exist i.i.d. Z-valued random variables X, Y with finite entropy such that:

H(X−Y)− H(X + Y) > M.

Proof. Recall the following basic property of Shannon entropy:

0 ≤ H(X) ≤ log |range of X|. (13)

We let Xk, Yk be independent random variables uniformly distributed on the set Ak obtained by the
iteration Equation (11). Using the right-hand side of (13) and the properties given by (12), we have:

H(Xk + Yk) ≤ log |Ak + Ak| = 2k log |A + A|. (14)

Since Xk, Yk are independent and uniform on Ak, for all x ∈ Ak − Ak, we have:

P(Xk −Yk = x) ≥ |Ak|−2.

Notice the fact that −t log t is increasing over (0, 1/e). When k is large enough, we have:

H(Xk −Yk) ≥
|Ak − Ak|
|Ak|2

log |Ak|2

= 4k log |A|
(
|A− A|
|A|2

)2k
. (15)

For any k ∈ Z+, we can always find a set A ⊂ Z with k2 elements such that the set A− A achieves the
possible maximal cardinality,

|A| = k2, |A− A| = |A|2 − |A|+ 1. (16)

Combining (14), (16) and the trivial bound:

|A + A| ≤ |A|(|A|+ 1)
2

,

we have that for k large:

H(Xk + Yk) ≤ 2k log
|A|(|A|+ 1)

2
= 8k log k− 2k log 2 + 2k log(1 + k−2)

= 8k log k− 2k log 2 + o(1).
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Combining (15) and (16), we have:

H(Xk −Yk) ≥ 8k log k
(

1− k−2 + k−4
)2k

= 8k log k exp(2k(−k−2 + O(k−4)))

= 8k log k(1− 2k−1 + O(k−2))

= 8k log k− 16 log k + o(1).

Therefore, we have:

H(Xk −Yk)− H(Xk + Yk) = 2k log 2− 16 log k + o(1).

Then, the statement follows from that k can be arbitrarily large.

We observe that the following complementary result is also true.

Theorem 3. For any M > 0, there exist i.i.d. Z-valued random variables X, Y with finite entropy such that:

H(X + Y)− H(X−Y) > M.

Remark 4. The previous argument cannot be used to prove this result. If we proceed with the same argument,
we will see that the lower bound of H(Xk + Yk) similar to (15) will be really bad. The reason is that:(

|A + A|
|A|2

)2k
→ 0

exponentially fast. Both Theorems 2 and 3 can be proven using a probabilistic construction of Ruzsa [41] on the
existence of large additive sets A with |A− A| very close to the maximal value |A|2, but |A + A| ≤ n2−c for
some explicit absolute constant c > 0; and similarly, with the roles of A− A and A + A reversed.

In fact, we have the following stronger result.

Theorem 4. For any M ∈ R, there exist i.i.d. Z-valued random variables X, Y with finite entropy such that:

H(X + Y)− H(X−Y) = M.

Proof. Let X be a random variable taking values in {0, 1, · · · , n− 1} ⊂ Z. Then, H(X +Y)−H(X−Y)
is a continuous function of the probability mass function of X, which consists of n real variables. We can
assume that n is large enough if necessary. From the discussion in Section 2.1, we know that this
function can take both positive and negative values (for instance, Theorem 1 implies that a binary
distribution can give us negative difference, and the uniform distribution on Conway’s MSTD set will
yield a positive difference). Since the function is continuous, the intermediate value theorem implies
that its range must contain an open interval (a, b) with a < 0 < b. Let X1, · · · , Xk be k independent
copies of X, and we define X′ = (X1, · · · , Xk). Let Y′ be an independent copy of X′. Then, we have:

H(X′ + Y′)− H(X′ −Y′) = k[H(X + Y)− H(X−Y)].

The range of H(X′ + Y′)− H(X′ −Y′) will contain (ka, kb). This difference can take any real number
since k can be arbitrarily large. The random variables X′, Y′ take finite values of Zk. Using the linear
transformation (x1, · · · , xk)→ x1 + dx2 + · · ·+ dk−1xk, we can map X, Y to Z-valued random variables.
This map preserves entropy as d is large enough. Therefore, these Z-valued random variables will
have the desired property.
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Recall that, for a real-valued random variable X with the density function f (x), the differential
entropy h(X) is defined by:

h(X) = −E log f (X) = −
∫
R

f (x) log f (x)dx. (17)

Theorem 5. For any M ∈ R, there exist i.i.d. real-valued random variables X, Y with finite differential entropy,
such that:

h(X + Y)− h(X−Y) = M. (18)

Proof. From Theorem 4, we know that there exist Z-valued random variables X′, Y′ with the desired
property. Let U, V be independent random variables uniformly distributed on (−1/4, 1/4), which are
also independent of (X′, Y′). Then, we define X = X′ + U and Y = Y′ + V. Elementary calculations
will show that:

h(X + Y) = H(X′ + Y′) + h(U + V),

and:
h(X−Y) = H(X′ −Y′) + h(U −V).

Since U, V are symmetric, U + V and U −V have the same distribution. Therefore, we have:

h(X + Y)− h(X−Y) = H(X′ + Y′)− H(X′ −Y′).

Then, the theorem follows.

Remark 5. In the set cardinality setting, Nathanson [42] raised the question: what are the possible values of
|A + A| − |A− A| for finite subsets A ⊂ Z? Martin and O’Bryant [34] proved that for any k ∈ Z, there
exists A such that |A + A| − |A− A| = k; this was also independently obtained by Hegarty [40].

Remark 6. It is interesting to contrast Theorem 5 with the observation in Remark 7.1 of [43] that for i.i.d.
real-valued random variables X, Y, h∞(X−Y)− h∞(X + Y) ≤ log 2, where h∞ denotes the Rényi differential
entropy of order infinity (i.e., if X has density f , h∞(X) = − log ess supx f (x)).

2.3. Entropy Analogue of the Freiman–Pigarev Inequality

We proved that the entropies of the sum and difference of two i.i.d. random variables can
differ by an arbitrary amount additively. However, we will show that they do not differ too much
multiplicatively.

In additive combinatorics, for a finite additive set A, the doubling constant σ[A] is defined as:

σ[A] =
|A + A|
|A| . (19)

Similarly, the difference constant δ[A] is defined by:

δ[A] =
|A− A|
|A| . (20)

It was first observed by Ruzsa [44] that:

δ[A]1/2 ≤ σ[A] ≤ δ[A]3. (21)
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The upper bound can be improved down to δ[A]2 using Plünnecke inequalities. Thus, a finite additive
set has a small doubling constant if and only if its difference constant is also small. In the entropy
setting, we have:

1
2
≤ H(X + Y)− H(X)

H(X−Y)− H(X)
≤ 2 (22)

for i.i.d. random variables X, Y. The upper bound was proven by Madiman [13], and the lower
bound was proven independently by Ruzsa [3] and Tao [6]. The inequalities also hold for differential
entropy [11,18] and in fact for entropy with respect to the Haar measure on any locally compact abelian
group [19]. In other words, after subtraction of H(X), the entropies of the sum and the difference
of two i.i.d. random variables are not too different. We observe that the entropy version (22) of the
doubling-difference inequality implies the entropy analogue of the following result proven by Freiman
and Pigarev [45]:

|A− A|3/4 ≤ |A + A| ≤ |A− A|4/3. (23)

Theorem 6. Let X, Y be i.i.d. discrete random variables with finite entropy, then we have:

3
4
<

H(X + Y)
H(X−Y)

<
4
3

. (24)

Proof. The basic fact of Shannon entropy (2) implies that H(X + Y) = 0 if and only if H(X−Y) = 0.
In this case, the above theorem is true if we define 0/0 = 1. Therefore, we assume that neither
H(X + Y) nor H(X−Y) is zero. For the upper bound, we have:

H(X + Y)
H(X−Y)

=
H(X + Y)

H(X−Y)− H(X) + H(X)

≤ H(X + Y)
(H(X + Y)− H(X))/2 + H(X)

=
2H(X + Y)

H(X + Y) + H(X)

<
4
3

The second step follows from the upper bound in (22) and the fact that Shannon entropy is non-negative.
The last step uses the right-hand side of (2) and the fact that, in the i.i.d. case, “=” of the upper bound
happens only when X takes on a single value, i.e., H(X) = 0. The lower bound can be proven in a
similar way.

Remark 7. It is unknown if the inequality (22) is the best possible. Suppose that, for some α ∈ (1, 2), we have:

α−1 ≤ H(X + Y)− H(X)

H(X−Y)− H(X)
≤ α.

Using the same argument, the above theorem can be improved to:

α + 1
2α

<
H(X + Y)
H(X−Y)

<
2α

α + 1
.

Remark 8. The above theorem does not hold for continuous random variables. For example, let X be an
exponential random variable with parameter λ and Y be an independent copy of X. Then, X + Y satisfies the
Gamma distribution Γ(2, λ−1) with the differential entropy:
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h(X + Y) = 1 + γ− log λ ≈ 1.577− log λ,

where γ is Euler’s constant. On the other hand, X−Y has the Laplace distribution Laplace(0, λ−1) with the
differential entropy:

h(X−Y) = 1 + log 2− log λ ≈ 1.693− log λ.

We can see that:

lim
λ→(2e)+

h(X + Y)
h(X−Y)

= ∞,

and:

lim
λ→(2e)−

h(X + Y)
h(X−Y)

= −∞.

3. Weighted Sums and Polar Codes

3.1. Polar Codes: Introduction

Polar codes, invented by Arıkan [46] in 2009, achieve the capacity of arbitrary binary-input
symmetric discrete memoryless channels. Moreover, they have low encoding and decoding complexity
and an explicit construction. Consequently, they have attracted a great deal of attention in recent
years. In order to discuss polar codes more precisely, we now recall some standard terminology from
information and coding theory.

As is standard practice in information theory, we use Uk to denote (U1, . . . , Uk) and I(X; Y|Z) to
denote the conditional mutual information between X and Y given Z, which is defined by:

I(X; Y|Z) = H(X, Z) + H(Y, Z)− H(X, Y, Z)− H(Z).

It is well known and also trivial to see that the conditional entropy H(X|Y), defined as the mean
using the distribution of Y of H(X|Y = y), satisfies the “chain rule” H(Y) + H(X|Y) = H(X, Y), so
that I(X; Y|Z) = H(X|Z)− H(X|Y, Z). The mutual information between X and Y, namely I(X; Y) =
H(X)− H(X|Y), emerges in the case where there is no conditioning. In particular, I(X; Y|Z) = 0 if
and only if X and Y are conditionally independent given Z. Furthermore, one also has the chain rule
for mutual information, which states that I(X; Y, Z) = I(X; Z) + I(X; Y|Z).

A major goal in coding theory is to obtain efficient codes that achieve the Shannon capacity on a
discrete memoryless channel. A memoryless channel is defined first by a “one-shot” channel W, which
is a stochastic kernel from an input alphabet X to an output alphabet Y (i.e., for each x ∈ X , W(·|x) is
a probability distribution on Y), and the memoryless extension of W for length n vectors is defined by:

W(n)(yn|xn) =
n

∏
i=1

W(yi|xi), xn ∈ X n, yn ∈ Yn. (25)

To simplify the notation, one often makes a slight abuse of notation, writing W(n) as W.
A linear code of block length n on an alphabet X = F (which must be a field) is a subspace of Fn.

The vectors in the subspace are often called the codewords. A linear code is equivalently defined by a
generator matrix, i.e., a matrix with entries in the field whose rows form a basis for the code. If the
dimension of the code is k and if G is a k× n generator matrix for the linear code, the codewords are
given by the span of the rows of G, i.e., all multiplications uG where u is a 1× k vector over the field.
We refer to [47,48] for a more detailed introduction to information and coding theory.

In polar codes, the generator matrix of block length n is obtained by deleting some rows of the
matrix Gn =

[
1 0
1 1

]⊗ log2 n. (If the channel is symmetric, the generator matrix is indeed obtained by
deleting rows; otherwise, in addition to deleting rows, one may also have to translate the codewords,
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i.e., use an affine code.) Which rows to delete depends on the channel and the targeted error probability
(or rate). For a symmetric discrete memoryless channel W, the rows to be deleted are indexed by:

Bε,n := {i ∈ [n] : I(Ui; YnUi−1) ≤ 1− ε}, (26)

where ε is a parameter governing the error probability, the vector Un has i.i.d. components, which are
uniform on the input alphabet, Xn = UnGn, and Yn is the output of n independent uses of W when
Xn is the input.

To see the purpose of the transform Gn, consider the case n = 2 first. Applying G2 to the vector
(U1, U2) yields:

X1 = U1 + U2,

X2 = U2.

Transmitting X1 and X2 on two independent uses of a binary input channel W leads to two output
variables Y1 and Y2; recall that this means that Y1 (or Y2) is a random variable whose distribution is
given by W(·|x) where x is the realization of X1 (or X2). If we look at the mutual information between
the vectors X2 = (X1, X2) and Y2 = (Y1, Y2), since the pair of components (X1, Y1) and (X2, Y2) are
mutually independent, the chain rule yields:

I(X2; Y2) = I(X1; Y1) + I(X2; Y2) = 2I(W), (27)

where I(W) is defined as the mutual information of the one-shot channel W with a uniformly-distributed
input. Further, since the transformation G2 is one-to-one and since the mutual information is clearly
invariant under one-to-one transformations of its arguments (the mutual information depends only on
the joint distribution of its arguments), we have that:

I(U2; Y2) = I(X2; Y2). (28)

If we now apply the chain rule to the left-hand side of the previous equality, the dependencies in the
components of U2 obtained by mixing X2 with G2 lead this time to two different terms, namely,

I(U2; Y2) = I(U1; Y2) + I(U2; Y2, U1). (29)

Putting back (27)–(29) together, we have that:

I(W) =
1
2

(
I(U1; Y2) + I(U2; Y2, U1)

)
. (30)

Now, the above is interesting because the two terms in the right-hand side are precisely not equal.
In fact, I(U2; Y2, U1) must be greater than its counter-part without the mixing of G2, i.e., I(U2; Y2, U1) ≥
I(X2; Y2) = I(W). To see this, note that:

I(U2; Y2, U1) = H(U2)− H(U2|Y2, U1)

≥ H(U2)− H(U2|Y2)

= H(X2)− H(X2|Y2)

= I(X2; Y2)

where the inequality above uses the fact that conditioning can only reduce entropy; hence, dropping
the variable U1 in H(U2|Y2, U1) can only increase the entropy. Further, one can check that besides for
degenerated cases where W is deterministic or fully noisy (i.e., making input and output independent),
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I(U2; Y2, U1) is strictly larger than I(X2; Y2). Thus, the two terms in the right-hand side of (30) are
respectively lesser and greater that I(W), but they average out to the original amount I(W).

In summary, out of two independent copies of the channel W, the transform G2 allows us to create
two new synthetic channels:

W− : U1 → Y1, Y2

W+ : U2 → Y1, Y2, U1

that have respectively a worse and better mutual information:

I(W−) ≤ I(W) ≤ I(W+).

while overall preserving the total amount of mutual information:

I(W) =
1
2
(I(W+) + I(W−)).

The key use of the above phenomena is that if one wants to transmit only one bit (uniformly drawn),
using W+ rather than W leads to a lower error probability since the channel W+ carries more
information. One can then iterate this argument several times and hope to obtain a subset of channels
of very high mutual information, on which bits can be reliably transmitted. After log2 n iterations,
one obtains the synthesized channels Ui 7→ (Yn, Ui−1). Thus, for a given number of information
bits to be transmitted (i.e., for a given rate), one can select the channels with the largest mutual
information to minimize the error probability. As explained in the next section, the phenomenon of
polarization happens in the sense that as n tends to infinity, the synthesized channels have mutual
information tending to either zero or one (besides for a vanishing fraction of exceptions). Hence,
sending information bits through the high mutual information channels (equivalently, deleting rows
of Gn corresponding to low mutual information channels) allows one to achieve communication rates
as large as the mutual information of the original binary input channel. The construction extends to
q-ary input alphabets when q is prime using the same matrix Gn =

[
1 0
1 1

]⊗ log2 n, while carrying the
operations over Fq. (If q is a power of a prime and one uses modulo q operations, the polarization still
occurs, but to multiple levels, as shown independently by [49,50].)

It is tempting to investigate what happens if one keeps the Kronecker structure of the generator
matrix, but modifies the kernel

[
1 0
1 1

]
. For binary input alphabets, there is no other interesting choice

(up to equivalent permutations). In Mori and Tanaka [51], the error probability of non-binary polar
codes constructed on the basis of Reed–Solomon matrices is calculated using numerical simulations on
q-ary erasure channels. It is confirmed that 4-ary polar codes can have significantly better performance
than binary polar codes. Our goal here is to investigate potential improvements at finite block length
using modified kernels over Fq. We propose to pick kernels not by optimizing the polar code exponent
as in [51], but by maximizing the polar martingale spread. This connects to the object of study in this
paper, as explained next. The resulting improvements are illustrated with numerical simulations.

3.2. Polar Martingale

In order to see that polarization happens, namely that:

1
n
|{i ∈ [n] : I(Ui; Yn, Ui−1) ∈ (ε, 1− ε)}| → 0, (31)

it is helpful to rely on a random process having a uniform measure on the possible realizations of
I(Ui; YnUi−1). Then, counting the number of such mutual information in (ε, 1− ε) can be obtained
by evaluating the probability that the process lies in this interval. The process is defined by taking
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{Bn}n≥1 to be i.i.d. random variables uniform on {−,+}, and the binary (or q-ary with q prime)
random input channels {Wn, n ≥ 0} are defined by:

W0 := W,

Wn := WBn
n−1, ∀n ≥ 1. (32)

Then, the polarization result can be expressed as:

P{I(Wn) ∈ (ε, 1− ε)} → 0. (33)

The process I(Wn) is particularly handy as it is a bounded martingale with respect to the filtration Bn.
This is a consequence of the balance equation derived in (30). Therefore, I(Wn) converges almost surely,
which means that almost surely, for any ε > 0 and n large enough, |I(Wn+1)− I(Wn)| = I(W+

n )−
I(Wn) < ε. Since for q-ary input channels (q prime), the only channels for which I(W+)− I(W) is
arbitrarily small is when I(W) is arbitrarily close to zero or one, the conclusion of polarization follows.
The key point is that the martingale I(Wn) is a random walk in [0, 1], and it is unstable at any point
I(W) ∈ (0, 1) as it must move at least I(W+)− I(W) > 0 in this range. The plot of I(W+)− I(W) > 0
for different values of I(W) is provided in Figure 1.

Thus, the larger the spread I(W+)− I(W), the more unstable the martingale is at non-extremal
points and the faster it should converge to the extremes (i.e., polarized channels). To see why this is
connected to the object of study of this paper, we need one more aspect about polar codes.

Figure 1. Plot of I(W) (horizontal axis) vs. I(W+)− I(W) for all possible binary input channels (the
tick on the horizontal axis is at one, and the tick on vertical axis is at 1/4).

When considering channels that are “additive noise”, polarization can be understood in terms
of the noise process rather than the actual channels Wn. Consider for example the binary symmetric
channel. When transmitting a codeword cn on this channel, the output is Yn = cn + Zn, where Zn has
i.i.d. Bernoulli components. The polar transform can then be carried over the noise Zn. Since:

I(Ui; YnUi−1) = 1− H((GnZn)i|(GnZn)i−1), (34)

the mutual information of the polarized channels is directly obtained from the conditional entropies of
the polarized noise vector GnZn. The counterpart of this polarization phenomenon is called source
polarization [52]. It is extended in [53] to multiple correlated sources. For n = 2, the spread of the
two conditional entropies is exactly given by H(Z + Z′)− H(Z), where Z, Z′ are i.i.d. under the noise
distribution. In Arıkan and Telatar [54], the rate of convergence of the polar martingale is studied as
a function of the block length. Our goal here is to investigate the performance at finite block length,
motivated by maximizing the spread at block length n = 1. When considering non-binary polar codes,
that spread is governed by the entropy of a linear combination of i.i.d. variables. Preliminary results
on this approach were presented in [55].

One should also mention that several works have investigated the scaling law of polar codes.
In particular, the scaling exponent is characterized in [56,57] and is shown to be between three and four
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(in contrast to an exponent of two for random codes), with further details available in [58]. Other works
have also studied the effect of using kernels that have dimension greater than two, such as in [59–61].
Such approaches allow one to achieve a probability of error that decays faster than exponential in
the square root of the block length, in fact almost exponential for arbitrary large kernels, but to the
expense of a significant increase in complexity (leaving dimension two the most relevant dimension
for practical applications).

3.3. Kernels with Maximal Spread

Being interested in the performance of polar codes at finite block length, we start with the
optimization of the kernel matrix over Fq of block length n = 2. Namely, we investigate the following
optimization problem:

K∗(W) = arg max
K∈M2(Fq)

I(W+(W, K)), (35)

where W+(W, K) is the channel u2 7→ Y1Y2u1 and (Y1, Y2) are the output of two independent uses of
W when (x1, x2) = (u1, u2)K are the inputs. We call K∗ the two-optimal kernel for W.

A general kernel is a 2× 2 invertible matrix over Fq. Let K =
[

a b
c d

]
be such a matrix, and let

(U1, U2) be i.i.d. under µ over Fq and (X1, X2) = (U1, U2)K. Since K is invertible, we have:

2H(µ) = H(U1, U2) = H(X1, X2) = H(X1) + H(X2|X1) (36)

and:

H(X1)− H(µ) = H(µ)− H(X2|X1) (37)

which is the entropy spread gained by using the transformation K. To maximize the spread, one may
maximize H(X1) = H(aU1 + cU2) over the choice of a and c or simply H(U1 + cU2) over the choice
of c. Hence, the maximization problem depends only on the variable c (a can be set to one, and b, d
only need to ensure that K is invertible), which leads to a kernel of the form K =

[
1 0
c 1

]
. Note that to

maximize the spread, one may alternatively minimize H(X2|X1) = H(U2|U1 + cU2).
We consider in particular channels which are “additive noise”, in which case, one can equivalently

study the “source” version of this problem as follows:

λ∗(µ) = arg max
λ∈Fq

H(U1 + λU2), (38)

where U1, U2 are i.i.d. under µ. As discussed above, this is related with the previous problem
by choosing:

K∗(W) =

[
1 0

λ∗(µ) 1

]
,

where µ is the distribution of the noise of the channel W.
Our first observation about the optimal coefficients λ∗(µ) is in the context of F3 and follows

immediately from Theorem 1.

Corollary 1. For a probability distribution µ over F3,

λ∗(µ) = 2

if µ(1) 6= µ(2), and λ∗(µ) = {1, 2} if µ(1) = µ(2).
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Figure 2 illustrates the improvements of the error probability of a polar code using the kernel[
1 0
2 1

]
instead of

[
1 0
1 1

]
for a block length n = 1024 when the channel is an additive noise channel over

F3 with noise distribution {0.7, 0.3, 0}.
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Figure 2. For an additive noise channel over F3 with noise distribution {0.7, 0.3, 0}, the block error
probability (in log10 scale) of a polar code with block length of n = 1024 is plotted against the rate of
the code. The red curve (lower curve) is for the polar code using the two-optimal kernel, whereas the
blue curve is for the polar code using the original kernel.

When µ is over Fq with q ≥ 5, λ∗(µ) varies with µ. For example, one can check numerically that
for the distribution {0.8, 0.1, 0.1, 0, 0}, we have λ∗ = 4, whereas for the distribution {0.7, 0.2, 0.1, 0, 0},
we have λ∗ = {2, 3}. Thus, finding a solution to the problem of determining λ∗(µ) for general
probability distributions µ on Fq seems not so easy. Nonetheless, for a certain class of probability
distributions µ, we can identify λ∗(µ) explicitly using the following observation.

Proposition 1. Let µ be a probability distribution over Fq with support Sµ. If there exists γ ∈ Fq such that:

|Sµ + γSµ| = |Sµ|2 (39)

then:

H(U2|U1 + γU2) = 0 (40)

where U1, U2 are i.i.d. under µ.

Proof. The condition |Sµ + γSµ| = |Sµ|2 ensures that knowing u1 + γu2 with u1, u2 ∈ Sµ allows one
to exactly recover both u1 and u2.

Remark 9. The condition on the support could be simplified, but as such, it makes the conclusion of Proposition 1
immediate. Also note that γ such that H(U2|U1 + γU2) = 0 is clearly optimal to maximize the spread, i.e., it
maximizes H(U1 + γU2).

Let us consider some examples of distributions satisfying (39):

1. Let µ over F5 be such that Sµ = {0, 1}. Picking γ = 2, one obtains 2Sµ = {0, 2} and Sµ + 2Sµ =

{0, 1, 2, 3}, and (39) is verified. In this case, using γ = 1 can only provide a strictly smaller
spread since it will not set H(U2|U1 + γU2) = 0. It is hence better to use the two-optimal kernel
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[
1 0
2 1

]
rather than the original kernel

[
1 0
1 1

]
. As illustrated in Figure 3, this leads to significant

improvements in the error probability at finite block length. Also note that a channel with noise
µ satisfying (39) has positive zero-error capacity, which is captured by the two-optimal kernel as
shown with the rapid drop of the error probability (it is zero at low enough rates since half of the
synthesized channels have noise entropy exactly zero). If µ is close to a distribution satisfying (39),
the error probability can also be significantly improved with respect to the original kernel

[
1 0
1 1

]
.

2. Over F11, let µ be such that Sµ = {0, 1, 2}. Picking γ = 2, one obtains 2Sµ = {0, 2, 4}, and (39)
does not hold. However, picking γ = 3 leads to 3Sµ = {0, 3, 6}, and (39) holds. Therefore,
the choice of γ varies with respect to q.

3. Over general Fq, let k = b
√

q− 1c. If Sµ = {0, 1, . . . , k− 1}, we can see that γ = k will satisfy (39).
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Figure 3. For an additive noise channel over F5 with noise distribution {0.7, 0.3, 0, 0, 0}, the block error
probability (in log10 scale) of a polar code with block length of n = 1024 is plotted against the rate of
the code. The red curve (lower curve) is for the polar code using the two-optimal kernel, whereas the
blue curve is for the polar code using the original kernel.

In conclusion, we have shown that over Fq, the martingale spread can be significantly enlarged
by using two-optimal kernels rather than the original kernel

[
1 0
1 1

]
. Moreover, we have observed that

this can lead to significant improvements on the error probability of polar codes, even at low block
length (n = 1024). For additive noise channels, while the improvement is significant when the noise
distribution is concentrated on a “small” support, the improvement may not be as significant for
distributions that are more more spread out.
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