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Abstract: This paper introduces and studies a model in which two relay channels interfere with
each other. Motivated by practical scenarios in heterogeneous wireless access networks, each relay
is assumed to be connected to its intended receiver through a digital link with finite capacity.
Inner and outer bounds for achievable rates are derived and shown to be tight for new discrete
memoryless classes, which generalize and unify several known cases involving interference and
relay channels. Capacity region and sum capacity for multiple Gaussian scenarios are also
characterized to within a constant gap. The results show the optimality or near-optimality of
the quantize-bin-and-forward coding scheme for practically relevant relay-interference networks,
which brings important engineering insight into the design of wireless communications systems.
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1. Introduction

Two of the fundamental building blocks of network information theory are the interference
channel (IC) and the relay channel (RC). Despite the fact that the capacity of each channel is still
unknown, the use of relays in interference networks is an interesting research topic and has been part
of wireless networks design, e.g., [1] (Chapter 18). In this paper, we study a specific channel model
which accounts for a particular interaction between the interference channel and the relay channel,
and establish the capacity region or approximate capacity region for several classes of these channels.

Consider a network as illustrated in Figure 1. In this network, a relay channel consisting of
transmitter Tx1, relay R1, and receiver Rx1 interferes with a neighboring relay channel consisting of
transmitter Tx2, relay R2, and receiver Rx2. Specifically, the signal sent by Txi is also received by
Rj and Rxj, for i, j ∈ {1, 2}, i 6= j. Further, each relay Ri is connected to its intended receiver Rxi
via a digital link of finite capacity Ci. This network model characterizes certain key components
of heterogeneous wireless access networks, an important part of the current and future wireless
architectures. For example, in the context of dual connectivity [2], Txi, Ri, and Rxi can respectively act
as a mobile terminal, a pico base station, and the macro base station in a cell i neighboring a cell j within
a multi-cell cellular network. The pico base station and the macro base station are connected over
a dedicated finite-rate backhaul link. In such heterogeneous network setting, there can be multiple
groups of relay channels active at the same time within the wireless transmission range, causing
interference to each other, e.g., the inter-cell interference. As a basis for understanding their effects,
we study the specific case of two interfering relay channels. We call the network in Figure 1 the
interfering relay channels (IRC) to emphasize the fact that each relay is meant to help only one receiver.
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The IRC can also be used as an abstraction for many other settings in wireless ad-hoc networks, sensor
networks, and device-to-device (D2D) communications. The digital link between each relay and its
intended receiver models the scenario in which the relay-receiver link is a wireless link operating at an
orthogonal frequency to the underlying interference channel (e.g., a microwave link) or the scenario in
which the relay-receiver link is a wireline link.
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Figure 1. Interfering relay channels (IRC). Dashed lines depict interference. Mi and M̂i, i ∈ {1, 2},
denote a message and its estimate, respectively.

1.1. Related Work

The channel under investigation is clearly a special case of the general interference channel with
multiple relays. Each relay not only can relay the intended signal but also can forward the unintended
signals for the purpose of interference mitigation. The IRC is also an extension of the interference
channel with a single relay [3], which was thoroughly studied in many contexts, e.g., [4–9]. The most
relevant setting among these references is the interference channel with a degraded broadcasting
relay [8]. Specifically, if R1 coincides with R2 in Figure 1 we recover the channel studied in [8]. Another
closely related problem is the interference channel with limited receiver cooperation in [10], where
each receiver also acts as a relay. Particularly, in the special case when Ri coincides with receiver Rxj,
i, j ∈ {1, 2}, i 6= j, we recover the channel in [10]. In subsequent sections we will draw connections
between our results and the results in [8,10]. At the same time, it is easy to recognize that the IRC is
a generalization of the primitive relay channel, studied by Cover and Kim in [11]. A key difference
is the presence of interference, which may require new ingredients in the optimal coding strategy.
We will later show that a coding scheme that is an extended version for the scheme proposed in [11]
can achieve the capacity region of several types of IRC which have similar relationship between the
channel output to the relay, the channel input from the transmitter, and the channel output to the
receiver as the primitive relay channel has. We also note that the type of relays considered in the IRC
(as well as in [8,9,11]) belongs to the type of in-band reception and out-of-band transmission relays
categorized in [5].

Although the capacity for the general interference channel and relay channels are unknown, due
to their practical relevance, there exist several recent studies investigating fundamental performance
bounds of specific settings of both interference and relaying. In particular, in a Gaussian interference
channel with a causal relay, outer bounds are derived for strong and very strong interference cases [12].
For an interference channel with a relay a layered quantize-and-forward scheme is shown to achieve
a constant gap to the capacity region under certain conditions [13]. New cut-set bounds for causal
discrete memoryless relay networks are derived and achieved by a simple amplify-and-forward scheme
in a causal vector Gaussian relay channel and the two-way relay channel [14]. For the multi-antenna
Gaussian interference channel with a relay, inner and outer bounds are established on the degrees of
freedom [15]. A novel relay-aided interference management strategy can achieve the optimal degrees
of freedom performance even with limited channel knowledge in a massive antenna setting [16].
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The degrees of freedom of interference channels with a cognitive relay under delayed feedback is
considered in [17]. Lastly, a new cooperative transmit scheme is proposed for the multi-way relay
channel, building upon a distributed compute-and-forward strategy [18].

1.2. Summary of Results and Contributions

In this paper, we study several classes of discrete memoryless and Gaussian IRC. The main results
are summarized as follows.

• We propose an inner bound for the capacity region of the discrete memoryless IRC. The coding
technique is based on rate splitting at the transmitters and quantize-bin-forward [10] (Note that in
the literature of relay channels, the term binning and hashing often have the same meaning, see,
e.g., [19]) or extended hash-forward [20].

• We characterize the capacity region of a class of discrete memoryless channels, namely the
semi-deterministic IRC which includes several known interference and relay channels as
special cases.

• We derive an outer bound for the Gaussian IRC and use it to show constant-gaps to the
capacity region or to the sum capacity in multiple scenarios: When the interference is strong,
we characterize the capacity region of the real-valued Gaussian IRC to within 1/2 bit. For the
Gaussian IRC with high-capacity relay-receiver links, we characterize the capacity region to
within log(7) bits. For other regimes of channel parameters, we show that the inner bound
and outer bound are within a bounded gap as long as the interference that each transmitter
induces at the neighboring relay is not unboundedly stronger than the interference induced at the
neighboring receiver. Moreover, for the Gaussian IRC in the so called weak interference-relay
regime, we characterize the sum capacity to within 1 bit.

• We also study a closely related channel model, the compound multiple access relay channel.
We characterize capacity region of a class of the semi-deterministic compound multiple access
relay channel and the capacity region of a class of Gaussian compound multiple access relay
channels to within 1/2 bit.

The achievable scheme in this paper is a combination of common-private rate splitting [21,22]
and quantize-bin-forward [10]. As noted in Section 1.1, related problems have also been studied by
combining rate splitting with generalized hash-forward [8,9] or with noisy network coding [23,24].
By focusing on the particular model of IRC and based on the insights learned from proving the inner
bound, we are able to prove capacity and approximate capacity results for new types of discrete
memoryless and Gaussian channels. For the discrete memoryless channel, the newly established
capacity regions in this paper generalize and unify the capacity results of several relay and interference
channels. The main technical contribution of the paper is the various outer bounds that help
characterize the exact or approximate capacity regions. Further, unlike [8,10] which study only
Gaussian channels, we study both discrete memoryless and Gaussian channels. The results of our
study show that a “simple” combination of rate splitting with the quantize-bin(or hash)-forward
protocol is optimal or nearly optimal for such a complex interference networks like the IRC. This
has an important engineering implication because such a relaying scheme, which does not require
intermediate nodes in the network to decode messages, is highly appealing in real-world systems.

1.3. Organization

The paper is organized as follows: Section 2 presents an achievable rate region for the discrete
memoryless IRC. Section 3 presents examples of discrete memoryless channel for which the achievable
rate region in Section 2 is the capacity region. Section 4 studies the Gaussian IRC, wherein a general
outer bound to the capacity region is derived and used to show the capacity region or sum capacity to
within a constant number of bits for different types of channels. This section also characterizes the
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capacity region of a class of Gaussian compound multiple access relay channel to within a constant
number of bits. Conclusions are presented in Section 5 and long proofs are relegated to the appendices.

1.4. Notation and Definition

We follow the notation of [25]. In particular, we use T n
ε to denote the set of ε-typical n-sequences

as defined in [25] (Chapter 2), and use [1 : 2r] to denote the set {1, 2, . . . , 2dre}, where dre is the smallest

integer ≥ r. We define C(x) =
1
2

log(1 + x) and (x)+ = max(0, x) for a real number x. All log’s
in this paper are to the base 2. a : = b means a equals b by definition. Throughout the paper the
random variable Q denotes the time-sharing variable, with a finite support set Q having cardinality
|Q|. We will make use of the notion of the gap between certain achievable rate regions and the capacity
regions of different channels, whose definition is given below.

Definition 1 (k-bit gap). Let S1 and S2 denote two sets of nonnegative rate pairs (R1, R2). The set S1 is said
to be within k bits of the set S2 if for any (R1, R2) ∈ S2 we have ((R1 − k)+, (R2 − k)+) ∈ S1.

2. Discrete Memoryless IRC and A General Achievability

2.1. Problem Formulation

Refer again to the IRC as depicted in Figure 1. Transmitter Txi wants to send a message Mi to
receiver Rxi, i ∈ {1, 2}. Relay Ri helps receiver Rxi decode its desired message by sending aid signals
via a digital link with finite capacity of Ci bits. The channel is memoryless in the sense that

p(y1i, y2i, yr1i, yr2i|m1, m2, xi
1, xi

2) = pY1,Y2,Yr1,Yr2|X1,X2
(y1i, y2i, yr1i, yr2i|x1i, x2i). (1)

A (2nR1 , 2nR2 , n) code, where n denotes the codeword length, for the discrete memoryless IRC
consists of the following elements, for each k ∈ {1, 2}:

1. a message setMk = [1 : 2nRk ];
2. an encoding function fk :Mk → X n

k that assigns a sequence xn
k to each message mk ∈ Mk;

3. a relaying function rk : Y i−1
rk × [1 : 2(i−1)Ck ]→ [1 : 2Ck ] that maps (yi−1

rk , vi−1
k ) to a symbol vki for

all i ∈ [1 : n], where yi−1
rk denotes the received sequence at the relay k up to and including the

(i− 1)th symbol and vki denotes the ith symbol sent via the digital link of capacity Ck;
4. a decoding function gk : Yn

k × [1 : 2nCk ] → Mk that produces a guess m̂k from the received
sequence yn

k and an index from the set [1 : 2nCk ].

The average probability of error is defined as follows

P(n)
e :=

1
2nR12nR2 ∑

m1∈[1:2nR1 ],m2∈[1:2nR2 ]

P ((m̂1, m̂2) 6= (m1, m2)) . (2)

A rate pair (R1, R2) is said to be achievable if there exists a sequence of (2nR1 , 2nR2 , n) codes,
indexed by n, such that P(n)

e → 0 as n→ ∞. The capacity region of the network is the closure of the set
of achievable rate pairs.

2.2. An Achievable Rate Region for the Discrete Memoryless IRC

Motivation of the achievable scheme: as note in Section 1, the IRC is related to both the primitive
relay channel [11], the interference channel with limited receiver cooperation [10], and the interference
channel with a degraded broadcasting relay [8]. The hash-forward coding scheme that achieves the
capacity of the primitive relay channel [11] under a constraint of channel input and outputs was
generalized to include a quantization stage at the relay in [20] and coined extended hash-forward.
Interestingly, in [8,10] a similar relaying scheme combined with rate-splitting encoding at the transmitters,
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called quantize-bin-forward or generalized hash-forward, was shown to achieve the capacity region of
the respective channels to within a constant number of bits. These facts have motivated us to propose
a coding strategy based on the quantize-bin-forward scheme to our current problem, which leads to
the following inner bound.

Theorem 1 (Inner bound for DM-IRC). Let us define

a1 = I(X1; Y1|X1c, X2c, Q) (3)

a′1 = I(X1; Y1, Ŷr1|X1c, X2c, Q) (4)

b1 = I(X1, X2c; Y1|X1c, Q) (5)

b′1 = I(X1, X2c; Y1, Ŷr1|X1c, Q) (6)

c1 = I(X1; Y1|X2c, Q) (7)

c′1 = I(X1; Y1, Ŷr1|X2c, Q) (8)

d1 = I(X1, X2c; Y1|Q) (9)

d′1 = I(X1, X2c; Y1, Ŷr1|Q) (10)

ξ1 = I(Ŷr1; Yr1|X1, X2c, Y1, Q), (11)

and define a2, a′2, b2, b′2, c2, c′2, d2, d′2, ξ2 by exchanging indices 1↔ 2 everywhere in (3)–(11). Q is drawn from
some finite set Q. Let P denote the collection of joint distributions P of the form

p(q)p(x1, x1c|q)p(x2, x2c|q)p(ŷr1|yr1, q)p(ŷr2|yr2, q)p(y1, y2, yr1, yr2|x1, x2). (12)

For a fixed P ∈ P , letR(P) denote the set of non-negative rate pairs (R1, R2) satisfying

R1 ≤ min{c1 + (C1 − ξ1)
+, c′1} (13)

R1 ≤ min{a1 + (C1 − ξ1)
+, a′1}+ min{b2 + (C2 − ξ2)

+, b′2} (14)

R2 ≤ min{c2 + (C2 − ξ2)
+, c′2} (15)

R2 ≤ min{a2 + (C2 − ξ2)
+, a′2}+ min{b1 + (C1 − ξ1)

+, b′1} (16)

R1 + R2 ≤ min{a1 + (C1 − ξ1)
+, a′1}+ min{d2 + (C2 − ξ2)

+, d′2} (17)

R1 + R2 ≤ min{b1 + (C1 − ξ1)
+, b′1}+ min{b2 + (C2 − ξ2)

+, b′2} (18)

R1 + R2 ≤ min{d1 + (C1 − ξ1)
+, d′1}+ min{a2 + (C2 − ξ2)

+, a′2} (19)

2R1 + R2 ≤ min{a1 + (C1 − ξ1)
+, a′1}+ min{d1 + (C1 − ξ1)

+, d′1}+ min{b2 + (C2 − ξ2)
+, b′2} (20)

R1 + 2R2 ≤ min{b1 + (C1 − ξ1)
+, b′1}+ min{a2 + (C2 − ξ2)

+, a′2}+ min{d2 + (C2 − ξ2)
+, d′2}. (21)

The convex hull of the set
⋃

P∈P R(P) is an achievable region for the DM-IRC.

Sketch of proof. (Details are presented in Appendix A.) Consider i, j ∈ {1, 2} and i 6= j. We employ
Han–Kobayashi common-private rate splitting at the transmitters and quantize-bin-forward in [10]
at the relays as follows: Transmitter i splits its message mi into a common part mic of rate Ric and
a private part mip of rate Rip. A superposition codebook is generated, with codewords xn

ic(mic)

and xn
i (mic, mip) generated independently with distributions pXic and pXi |Xic

, respectively. Relay

i’s codebook has 2nR̂i codewords ŷn
ri’s, each generated independently according to the marginal

distribution pŶri
. Each codeword in the quantization codebook is assigned to one of {1, . . . , 2nCi} bins

by a uniformly generated random mapping.
Encoding: transmitter i sends out a codeword xn

i corresponding to its message index. Relay i
quantizes its received sequence yn

ri by choosing a quantization codeword ŷn
ri jointly typical with yn

ri,
and then sends out the corresponding bin index to receiver i via the digital link of rate Ci.
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Decoding: receiver i finds a unique message pair (mic, mip) such that the sequences
xn

jc(mjc), xn
ic(mic), xn

i (mic, mip), ŷn
ri (i 6= j), and yn

i are jointly typical for some mjc ∈ {1, . . . , 2Rjc}
and some ŷn

ri whose bin index matches the index that receiver i received from relay i.
Error analysis: error analysis follows standard techniques, see e.g., [10]). We obtain the following

constraints on the partial rates so that the error probability vanishes when n→ ∞:

R1p ≤ min{a1 + (C1 − ξ1)
+, a′1} (22)

R1p + R2c ≤ min{b1 + (C1 − ξ1)
+, b′1} (23)

R1p + R1c ≤ min{c1 + (C1 − ξ1)
+, c′1} (24)

R1p + R1c + R2c ≤ min{d1 + (C1 − ξ1)
+, d′1} (25)

R2p ≤ min{a2 + (C2 − ξ2)
+, a′2} (26)

R2p + R1c ≤ min{b2 + (C2 − ξ2)
+, b′2} (27)

R2p + R2c ≤ min{c2 + (C2 − ξ2)
+, c′2} (28)

R2p + R2c + R1c ≤ min{d2 + (C2 − ξ2)
+, d′2}. (29)

Applying Fourier–Motzkin elimination to the above constraints and removing redundant
inequalities we obtain (13)–(21).

Remark 1. Following the same techniques of [23,24], one can show that the above rate region can also be
achieved by noisy network coding [26], which does not use explicit binning, and by generalized hash-forward [27].
However, for the channel under consideration which has digital links, we find it is easier to gain insights into
the meaning of each term in the rate constraints by employing the quantize-bin-forward strategy, see Remark 2
below. Such insights are useful in establishing approximate capacity results as will be shown in Section 4.

Remark 2. Observe that each constraint in (22)–(29) is the minimum of two terms. The second term corresponds
to the case when Ci, i ∈ {1, 2}, is large enough to convey the quantization ŷn

ri correctly to receiver i. The first
term corresponds to the case when the limited Ci allows receiver i to identify only a list of candidates of ŷn

ri.
In this case, ξi plays the role of a “rate loss”, similar to ξi in [10], whose value depends on the quantization
distortion at the relay Ri.

Remark 3. If we replace Yri (resp. Ŷri) in (3)–(11) by Yj (resp. Ŷj), for i, j ∈ {1, 2}, i 6= j, and plug them
into (22)–(29) we recover the achievable rates for the interference channel with limited receiver cooperation [10]
(one-round conferencing). On the other hand, by setting Ŷr1 = Ŷr2 = Ŷr in (3)–(11) (and symmetrically for
a2, a′2, b2, b′2, c2, c′2, d2, d′2, ξ2) we recover the achievable rate region for the IC with one degraded broadcasting
relay in [8].

3. Capacity Region of Some Classes of Discrete Memoryless IRCs

In this section, we give some examples of discrete memoryless IRC for which the inner bound in
Theorem 1 is the capacity region. These channels have a common feature that the output at the relay Ri is a
function of the input at transmitter Txi and the output at receiver Rxi. To the best of our knowledge, these
are first known capacity regions of interference channels with two relays. The capacity results in this
section generalize and unify the capacity regions of a class of semi-deterministic relay channels [11,28],
the strong interference channel [29], and a class of deterministic interference channels [30].

3.1. Semi-Deterministic IRC

Consider the semi-deterministic discrete memoryless IRC as depicted in Figure 2, which has the
following properties:

• (i): There exist deterministic functions t1(·), t2(·), f1(·, ·), f2(·, ·) (not necessary invertible)
such that:
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– (i.a): T1 = t1(X1), T2 = t2(X2),
– (i.b): Yr1 = f1(X1, Y1), Yr2 = f2(X2, Y2).

• (ii): Y1 depends only on X1 and T2, via the conditional distribution p(y1|x1, t2). Similarly for Y2

and X2, T1.
• (iii): For all positive integers N and all distributions of the form p(W)p(XN

1 |W)p(XN
2 |W),

the following conditions hold:

I(TN
1 ; YN

2 , YN
r2 |XN

2 , W) ≥ I(TN
1 ; YN

1 , YN
r1 |XN

2 , W) (30a)

I(TN
2 ; YN

1 , YN
r1 |XN

1 , W) ≥ I(TN
2 ; YN

2 , YN
r2 |XN

1 , W). (30b)

Y1

Y2

C1

C2

Yr1

Yr2

t1

t2

y1

y2

f1

f2

X1

X2

T1

T2

W1

W2

Wh1

Wh2

R1

R2

Figure 2. Semi-deterministic interfering relay channels.

The main result of this section is in the following theorem.

Theorem 2. The capacity region of the semi-deterministic IRC is the union of the set of non-negative rate pairs
(R1, R2) satisfying

R1 ≤ min{I(X1; Y1|T2, Q) + C1, I(X1; Y1, Yr1|T2, Q)} (31)

R2 ≤ min{I(X2; Y2|T1, Q) + C2, I(X2; Y2, Yr2|T1, Q)} (32)

R1 + R2 ≤ min{I(X1; Y1|T1, T2, Q) + C1, I(X1; Y1, Yr1|T1, T2, Q)}
+ min{I(X2, T1; Y2|Q) + C2, I(X2, T1; Y2, Yr2|Q)} (33)

R1 + R2 ≤ min{I(X1, T2; Y1|T1, Q) + C1, I(X1, T2; Y1, Yr1|T1, Q)}
+ min{I(X2, T1; Y2|T2, Q) + C2, I(X2, T1; Y2, Yr2|T2, Q)} (34)

R1 + R2 ≤ min{I(X1, T2; Y1|Q) + C1, I(X1, T2; Y1, Yr1|Q)}
+ min{I(X2; Y2|T1, T2, Q) + C2, I(X2; Y2, Yr2|T1, T2, Q)} (35)

2R1 + R2 ≤ min{I(X1; Y1|T1, T2, Q) + C1, I(X1; Y1, Yr1|T1, T2, Q)}
+ min{I(X1, T2; Y1|Q) + C1, I(X1, T2; Y1, Yr1|Q)}
+ min{I(X2, T1; Y2|T2, Q) + C2, I(X2, T1; Y2, Yr2|T2, Q)} (36)

R1 + 2R2 ≤ min{I(X1, T2; Y1|T1, Q) + C1, I(X1, T2; Y1, Yr1|T1, Q)}
+ min{I(X2; Y2|T1, T2, Q) + C2, I(X2; Y2, Yr2|T1, T2, Q)}
+ min{I(X2, T1; Y2|Q) + C2, I(X2, T1; Y2, Yr2|Q)} (37)

over all probability distributions of the form p(q)p(x1|q)p(x2|q), with |Q| ≤ 16.

Proof. The achievability and converse proofs are deferred to Appendix B.

Remark 4. Property (iii) in the definition of the semi-deterministic IRC resembles a property of the
semi-deterministic interference channel with common information [31]. One can interpret (30a, 30b) as partially
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strong interference condition: knowing XN
k , receiver k together with relay k can deduce more information about

one part of the message sent by transmitter l (conveyed by TN
l ) than receiver l and relay l can, k, l ∈ {1, 2}, k 6= l.

In Appendix B we show that choosing Tk to represent the common message of transmitter k is capacity achieving.

Remark 5. We can easily obtain the capacity region of the semi-deterministic IRC when only one transmitter
causes interference to its unintended relay and receiver, simply by setting T1 = 0 or T2 = 0 in Theorem 2. In a
more extreme case, when there is no interference in the channel, namely T1 = T2 = 0, the capacity region of the
channel will reduce to the capacity region of two parallel deterministic relay channels of the type in [11]:

R1 ≤ min{I(X1; Y1) + C1, I(X1; Y1, Yr1)} (38)

R2 ≤ min{I(X2; Y2) + C2, I(X2; Y2, Yr2)}. (39)

This is because in this case we are employing the capacity achieving hash-forward coding technique [11] in
two separate channels.

To illustrate further the connection of the semi-deterministic IRC to previously known channels
we will focus on two special cases in the sequel.

3.1.1. Semi-Deterministic IRC with Strong Interference

We observe that in the case when TN
k = XN

k , k ∈ {1, 2}, the condition (30a, 30b) is an immediate
generalization of the strong interference channel [29]. As such, let us consider a discrete memoryless
IRC which satisfies the following conditions:

• (c1.) Yr1 = f1(X1, Y1) and Yr2 = f2(X2, Y2) for some functions f1(·, ·) and f2(·, ·),
• (c2.) I(X1; Y1, Yr1|X2) ≤ I(X1; Y2, Yr2|X2) and I(X2; Y2, Yr2|X1) ≤ I(X2; Y1, Yr1|X1) for all product

distributions on X1 × X2 (Note that due to (c1.) we can rewrite (c2.) as I(X1; Y1, Yr1|X2) ≤
I(X1; Y2|X2) and I(X2; Y2, Yr2|X1) ≤ I(X2; Y1|X1).).

Note that, by the lemma in [29], the second condition (c2.) above implies

I(Xn
1 ; Yn

1 , Yn
r1|Xn

2 ) ≤ I(Xn
1 ; Yn

2 , Yn
r2|Xn

2 ) (40)

I(Xn
2 ; Yn

2 , Yn
r2|Xn

1 ) ≤ I(Xn
2 ; Yn

1 , Yn
r1|Xn

1 ). (41)

Consequently, it can be readily verified that the channel under consideration belongs to the class
of the semi-deterministic IRC. Specifically, the former channel is the latter channel with T1 = X1 and
T2 = X2. Therefore we call the channel under consideration the semi-deterministic IRC under strong
interference. Naturally, the capacity region of this channel can be deduced from Theorem 2, given
as follows.

Corollary 1. The capacity region of the semi-deterministic strong IRC is formed by the union of nonnegative
rate pairs (R1, R2) satisfying

R1 ≤ min{I(X1; Y1|X2, Q) + C1, I(X1; Y1, Yr1|X2, Q)} (42)

R2 ≤ min{I(X2; Y2|X1, Q) + C2, I(X2; Y2, Yr2|X1, Q)} (43)

R1 + R2 ≤ min{I(X1, X2; Y1|Q) + C1, I(X1, X2; Y1, Yr1|Q)} (44)

R1 + R2 ≤ min{I(X1, X2; Y2|Q) + C2, I(X1, X2; Y2, Yr2|Q)}, (45)

over all probability distributions of the form p(q)p(x1|q)p(x2|q), with |Q| ≤ 8.

Obviously, in the special case when there is no relay, Corollary 1 reduces to the capacity region of
the interference channel with strong interference [29].
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3.1.2. Deterministic IRC

Consider a discrete memoryless IRC which has the following properties:

• (c1.): There exist deterministic functions t1(·), t2(·), f1(·, ·), f2(·, ·) (not necessary invertible)
such that:

– (c1.a): T1 = t1(X1), T2 = t2(X2),
– (c1.b): Yr1 = f1(X1, Y1), Yr2 = f2(X2, Y2).

• (c2.): Y1 depends only on X1 and T2 via deterministic function y1(X1, T2). Similarly, Y2 = y2(X2, T1).
Moreover there exist functions k1(·, ·) and k2(·, ·) such that T2 = k1(X1, Y1) and T1 = k2(X2, Y2).
In other words, function yi(·, ·) is invertible given Xi, i = 1, 2.

We name this channel the deterministic IRC of El Gamal–Costa type, depicted in Figure 3. It can
be verified that the deterministic IRC satisfies all the properties of the semi-deterministic IRC in
Figure 2. In particular, property (iii) of the semi-deterministic IRC is satisfied because T2 is a function
of X1 and Y1 (and T1 is a function of X2 and Y2). As a result, the capacity region of the deterministic
channel can be deduced from Theorem 2. What is more, due to the existence of k1(·, ·) and k2(·, ·), the
capacity region of the deterministic IRC remains unchanged if we replace the condition yr1 = f1(x1, y1)

(respectively yr2 = f2(x2, y2)) by yr1 = f ′1(x1, t2) (respectively yr2 = f ′2(x2, t1)), for some functions
f ′1(·, ·), f ′2(·, ·). It is also easy to recognize that the deterministic IRC is in turn a generalization of the El
Gamal–Costa deterministic interference channel [30]. In this sense the deterministic IRC includes the
channel studied in [32], in which the two relays coincide, as a special case.

Y1

Y2

C1

C2

Yr1

Yr2

t1

t2

y1

y2

f1

f2

X1

X2

T1

T2

W1

W2

Wh1

Wh2

Figure 3. Deterministic IRC of El Gamal–Costa type.

3.2. Compound Semi-Deterministic Multiple Access Relay Channel

Note that in the proof of Theorem 1 each receiver can decode (non-uniquely) the common message
sent by the interfering transmitter. This motivates us to study an akin channel which has the same
physical setting as in Figure 1 but each of the receivers is required to decode uniquely both messages
from the transmitters. We name this new channel setup compound semi-deterministic multiple
access relay channel (CS-MARC). We further assume that the following relations Yr1 = f1(X1, Y1) and
Yr2 = f2(X2, Y2) hold for some deterministic functions f1(·, ·) and f2(·, ·), similar to a property of the
semi-deterministic channels studied in Section 3.1. It can be shown that the achievability in Theorem 1,
adapting to the special case of no private message, is capacity achieving for the CS-MARC. Moreover,
by removing either Y1 and Yr1 or Y2 and Yr2 in CS-MARC one can recover the capacity region of a class
of MARC with orthogonal receive components established in [33]. Details are omitted for brevity.

4. Gaussian Interfering Relay Channels

The focus of this section is on the Gaussian IRC. We aim at giving some non-trivial examples
where the inner bound in Theorem 1 can characterize the capacity region or sum capacity to within
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a bounded number of bits. The key to this task is deriving tight outer bounds and tuning the right
parameters affecting the inner bound.

Consider the Gaussian IRC as depicted in Figure 4. The received signals at the receiver Rxi
(denoted by Yi) and at the relay Ri (denoted by Yri), i ∈ {1, 2}, are given by

Y1 = h11X1 + h21X2 + Z1, (46)

Y2 = h12X1 + h22X2 + Z2, (47)

Yr1 = h1rX1 + h2cX2 + Zr1, (48)

Yr2 = h1cX1 + h2rX2 + Zr2. (49)

C1

C2

X1

X2

Y1

Y2

R1

R2

Rx1

Rx2

Yr1

Yr2

Tx1

Tx2

M1

M2

hM1

hM2

h1c

h11

h22

h21

h12

h2c

h1r

h2r

Figure 4. Gaussian interfering relay channels.

The noise processes Zi’s are independent and identically distributed ∼N(0, 1), i ∈ {1, 2, r1, r2}.
Without loss of generality we assume an average unit power constraint at each transmitter, namely
1
n ∑n

i=1 |xi|2 ≤ 1, where n is the block length. For simplicity we only consider real-valued channel
gains and input/output symbols, and assume that channel gains are known to all nodes in the
network. For for the convenience of notation, we define the following quantities, which will be used
extensively hereafter:

SNR1 = h2
11, INR1 = h2

21, SNRr1 = h2
1r, INRr1 = h2

2c,

SNR2 = h2
22, INR2 = h2

12, SNRr2 = h2
2r, INRr2 = h2

1c,

η2
1 =

∣∣∣∣1− h1rh21

h2ch11

∣∣∣∣2 , η2
2 =

∣∣∣∣1− h2rh12

h1ch22

∣∣∣∣2 .

In the following, we will first derive an outer bound to the capacity region, adapt the inner bound
for the discrete memoryless IRC in Theorem 1 to the Gaussian channel, and quantify the gaps between
the bounds. The connection to previously known results are drawn where appropriate.

4.1. An Outer Bound to the Capacity Region

An outer bound to the capacity region of the Gaussian IRC is stated below.

Theorem 3. The following set of non-negative rate pairs (R1, R2) forms an outer bound to the capacity region
of the Gaussian IRC:
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R1 ≤ min{C(SNR1) + C1, C(SNR1 + SNRr1)} (50)

R2 ≤ min{C(SNR2) + C2, C(SNR2 + SNRr2)} (51)

R1 + R2 ≤ C(SNR1 + INR1) + C
(

SNR2

1 + INR1

)
+ C1 + C2 (52)

R1 + R2 ≤ C(SNR2 + INR2) + C
(

SNR1

1 + INR2

)
+ C1 + C2 (53)

R1 + R2 ≤ C
(
INR1 +

SNR1

1 + INR2

)
+ C

(
INR2 +

SNR2

1 + INR1

)
+ C1 + C2 (54)

2R1 + R2 ≤ C(SNR1 + INR1) + C
(
INR2 +

SNR2

1 + INR1

)
+ C

(
SNR1

1 + INR2

)
+ 2C1 + C2 (55)

R1 + R2 ≤ C
(

SNR1 + SNRr1

1 + INR2 + INRr2

)
+ C(INR2 + SNRr2 + INRr2 + SNR2(1 + η2

2 INRr2)) (56)

R1 + R2 ≤ C
(

SNR2 + SNRr2

1 + INR1 + INRr1

)
+ C(INR1 + SNRr1 + INRr1 + SNR1(1 + η2

1 INRr1)) (57)

R1 + R2 ≤ C
(
INR1 + INRr1 +

SNRr1 + SNR1(1 + η2
1 INRr1)

1 + INR2 + INRr2

)
+ C

(
INR2 + INRr2 +

SNRr2 + SNR2(1 + η2
2 INRr2)

1 + INR1 + INRr1

)
(58)

2R1 + R2 ≤ C
(

SNR1 + SNRr1

1 + INR2 + INRr2

)
+ C

(
INR2 + INRr2 +

SNRr2 + SNR2(1 + η2
2 INRr2)

1 + INR1 + INRr1

)
+ C(INR1 + SNRr1 + INRr1 + SNR1(1 + η2

1 INRr1)) (59)

R1 + R2 ≤ C
(

SNR1

1 + INR2 + INRr2

)
+ C(SNR2(1 + η2

2 INRr2) + SNRr2 + INR2 + INRr2) + C1 (60)

R1 + R2 ≤ C
(
SNR2 + SNRr2

1 + INR1

)
+ C(SNR1 + INR1) + C1 (61)

R1 + R2 ≤ C
(
INR1 +

SNR1

1 + INR2 + INRr2

)
+ C

(
INR2 + INRr2 +

SNR2(1 + η2
2 INRr2) + SNRr2

1 + INR1

)
+ C1 (62)

2R1 + R2 ≤ C(SNR1 + INR1) + C
(

SNR1

1 + INR2 + INRr2

)
+ C

(
INR2 + INRr2 +

SNR2(1 + η2
2 INRr2) + SNRr2

1 + INR1

)
+ 2C1 (63)

R1 + R2 ≤ C
(

SNR2

1 + INR1 + INRr1

)
+ C(SNR1(1 + η2

1 INRr1) + SNRr1 + INR1 + INRr1) + C2 (64)

R1 + R2 ≤ C(SNR2 + INR2) + C
(
SNR1 + SNRr1

1 + INR2

)
+ C2 (65)

R1 + R2 ≤ C
(
INR2 +

SNR2

1 + INR1 + INRr1

)
+ C

(
INR1 + INRr1 +

SNR1(1 + η2
1 INRr1) + SNRr1

1 + INR2

)
+ C2 (66)

2R1 + R2 ≤ C
(
INR2 +

SNR2

1 + INR1 + INRr1

)
+ C(SNR1(1 + η2

1 INRr1) + SNRr1 + INR1 + INRr1)

+ C
(
SNR1 + SNRr1

1 + INR2

)
+ C2 (67)

2R1 + R2 ≤ C
(
SNR1 + SNRr1

1 + INR2

)
+ C(SNR1 + INR1) + C

(
INR2 +

SNR2

1 + INR1

)
+ C1 + C2 (68)

2R1 + R2 ≤ C
(
SNR1 + SNRr1

1 + INR2

)
+ C(SNR1 + INR1) + C

(
INR2 + INRr2 +

SNR2(1 + η2
2 INRr2) + SNRr2

1 + INR1

)
+ C1, (69)

together with 6 constraints on R1 + 2R2 obtained by exchanging indices 1↔ 2 in the 6 constraints on 2R1 + R2.
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Remark 6. By setting INRr1 = SNRr2 and INRr2 = SNRr1, which, in SNR and INR sense, is similar to letting
the two relays in Figure 4 coincide, the above outer bound reduces to the outer bound for the IC with one degraded
broadcasting relay in [8].

Sketch of proof of the outer bound. (The detailed proof is given in Appendix C.) The bounds are
proven by first giving different types of side information to the decoders (genie-aided bounds). We then
leverage the outer bounds for the multiple input multiple output interference channel (MIMO IC)
established by Telatar and Tse in [34], and the outer bound for the Gaussian MIMO IC [35] (which
is equivalent to [34] for the current channel) to simplify the derivation. In fact, the outer bound in
Theorem 3 is the intersection of 7 regions, each of which corresponds to a group of constraints whose
interpretations and outline of the proofs are given below.

• Group 1: The bounds on individual rates in (50) and (51) are cut-set bounds.
• Group 2: The bounds in (52)–(55) are obtained by first upper bounding the sum capacity gain due

to the relays by C1 + C2. The remaining part is derived by optimizing the bounds established
in [34] or directly applying [35] (Lemma 1).

• Group 3: The bounds in (56)–(59) are genie-aided bounds. First we give Yn
ri to decoder i, i ∈ {1, 2},

to turn the channel into a single input multiple output (SIMO) IC with two antennas at each
receiver. Then we apply the bounds for MIMO IC in [34,35].

• Group 4: The bounds in (60)–(63) are genie-aided bounds. We upper bound the sum capacity gain
due to relay R1 by C1 and give Yr2 to decoder 2 to turn the channel into a SIMO IC. Then we apply
the bounds for MIMO IC in [34,35].

• Group 5: The bounds in (64)–(67) are similarly derived as the bounds in Group 4, by symmetry.
• Group 6: The bound in (68): A genie gives (Yn

r1, Sn
1 , Xn

2 ) to one of the two decoders 1, and give
Sn

2 to decoder 2, where Sn
1 = h12Xn

1 + Zn
2 , Sn

2 = h21Xn
2 + Zn

1 . We also bound the sum capacity
gain due to the relays by C1 + C2. The rest follows from the facts that conditioning does not
increase entropy, the chain rule, and that Gaussian distribution maximizes differential entropy
and conditional differential entropy subject to covariance constraint.

• Group 7: The bound in (69): A genie gives (Yn
r1, Sn

1 , Xn
2 ) to one of the two decoders 1, and gives

(Yn
r2, Sn

2 ) to decoder 2. We also bound the sum capacity gain due to one of the relays R1’s by C1.

4.2. Achievability

We can extend the inner bound for the DM-IRC in Theorem 1 to obtain an inner bound for the
Gaussian channel. Specifically, we choose the following method to generate codebooks: First we
set Q = const. Transmitter i, i ∈ {1, 2}, generates superposition Gaussian codebooks Xn

ic(mic) and
Xn

i (mic, mip) with Xic ∼ N (0, Pic) and Xi = Xic +Xip, Xip ∼ N (0, Pip), Pip + Pic = Pi = 1. The random
variable used to generate the quantization codebook at relay Ri is specified by: Ŷri = Yri + Zqi where
Zqi ∼ N (0, ∆i), independent of everything else; Yri is given in (48) or (49). The quantization distortion
∆i will be specified later, depending on which interference regime the channel belongs to. We also
define the following quantities:

SNR1p = h2
11P1p, SNR2p = h2

22P2p, (70)

INR1p = h2
21P2p, INR2p = h2

12P1p, (71)

SNRr1p = h2
1rP1p, SNRr2p= h2

2rP2p, (72)

INRr1p = h2
2cP2p, INRr2p = h2

1cP1p. (73)

As demonstrated in [10], the key parameters that determine the tightness of the inner bound for
the Gaussian IC with limited receiver cooperation are: (i) power allocation for common and private
messages at each transmitter, and (ii) quantization level at each relay. Reference [10] shows that the
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power allocation rule of [36] together with a new rule for designing the quantization distortion achieve
the capacity region within a constant gap. In the remaining subsections of the current section, we will
show the approximate optimality of such rules for several classes of Gaussian IRC. Especially, the
results in Section 4.5 are obtained from the insights gained from the proof of the general achievability
in Theorem 1. Before that, in the next subsection we will show that a slightly different method for
allocating power achieves a bounded gap to the capacity region of the Gaussian IRC under a condition.

4.3. Capacity Region within a Bounded Gap for General Interference Condition

In this subsection we look for a power allocation and quantization scheme that can guarantee a
bounded gap to the capacity region. We make no assumption on the interference regime the channel
belongs to, except for an assumption of the finiteness of two ratios of channel gains. In later subsections
we will present stronger results, namely constant gaps to the capacity region or the sum capacity,
for several interference conditions.

To begin with, instead of directly applying the power allocation and quantization scheme of [10],
we use a similar strategy as in [8], i.e., we fix the power allocation and optimize the quantization level
at each relay. Specifically, following the insights of [10,36], each transmitter allocates power to its
private message such that the corresponding interference induced at the unintended receiver is below
the noise level, i.e.,

P1p = min
{

1, 1/h2
12

}
, P2p = min

{
1, 1/h2

21

}
. (74)

∆i, i ∈ {1, 2}, is optimized accordingly to minimize the gap between inner and outer bounds.
With the above choice of power allocation we have the following bounded-gap result.

Theorem 4 (Bounded gap to the capacity region). For a given Gaussian IRC satisfying

θ := max
{
|h1c|2
|h12|2

,
|h2c|2
|h21|2

}
< ∞, (75)

the inner bound in Theorem 1, when extended to the Gaussian channel and with the power allocation specified
in (74), is within a bounded gap of the capacity region. The gap is given by

δR = log
(
2 +

1
2
(θ +

√
θ2 + 16θ + 16)

)
bits, (76)

and is obtained with quantization distortion ∆1 = ∆2 = 1
4 (
√

θ2 + 16θ + 16− θ) at both relays.

Proof. See Appendix D.

The astute reader may notice that this gap is similar to the gap derived in [8] (Theorem 3) for the
IC with a degraded broadcast relaying. However, our gap depends only on how much interference
each transmitter causes to the neighboring relay channel (via parameter θ), not on the channel gain
between the transmitter and its intended relay. We emphasize that this is in strong contrast to [8] where
each interference-relay link carries both desired signal (with respect to one receiver) and interference
(with respect to the other receiver). The bounded gap established above is useful in understanding
the capacity behaviour of the channel at asymptotic regions, e.g., via generalized degrees of freedom
analysis. Albeit bounded, the gap in the stated form can be arbitrarily large and therefore not very
informative. In the next subsections we characterized different interference regimes of the channel
within which the gap to the capacity region of sum capacity can be shown to be a constant of bits.

4.4. Capacity Region within 1/2 Bit for Strong Interference

Let us focus on a class of Gaussian IRC in the strong interference regime. Recall that for the
semi-deterministic IRC under strong interference in Section 3 we had the following conditions:
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I(X1; Y1, Yr1|X2) ≤ I(X1; Y2|X2)

I(X2; Y2, Yr2|X1) ≤ I(X2; Y1|X1).

We now consider the Gaussian counterpart. The Gaussian IRC is said to be in the strong
interference regime if

SNR1 + SNRr1 ≤ INR2

SNR2 + SNRr2 ≤ INR1.

Let Ri
S−IRC denote the achievable region obtained by: specializing the general inner bound

in Theorem 1 to the Gaussian IRC, as specified in Section 4.2; setting the whole message at each
transmitter to be the common message, and setting the quantization distortion at each relay to be 1.
Then we have the following results.

Proposition 1. Ri
S−IRC is within 1/2 bit to the capacity region of the Gaussian IRC with strong interference.

Proof. The proof consists of derivingRi
S−IRC and comparing it with the outer bound in Theorem 3.

Details are in Appendix E.

4.5. Capacity Region within log(7) Bits for IRC with High-Capacity Relay-Receiver Links

As we noted in Remark 2 in Section 2, each constraint in (22)–(29) is the minimum of two terms.
The second term corresponds to the situation when the digital link has a high enough rate to describe
the quantization codeword precisely to the receiver. This invokes a question of whether the coding
strategy can guarantee a constant gap to the capacity region of the Gaussian channel in such a situation.
The answer is positive, as we show below.

Definition 2 (IRC with high-capacity relay-receiver links). Consider the Gaussian IRC as in Figure 4,
the channel is said to have high-capacity relay-receiver links if the following conditions are satisfied:

C1 ≥ 1
2 log

[
2(SNRr1+INRr1+SNR1INRr1η2

1)(1+INR1+INRr1)+2(4+4INR1+6INRr1)(1+SNR1+INR1)
(4+4INR1+7INRr1)(1+SNR1+INR1)

]
(77)

C2 ≥ 1
2 log

[
2(SNRr2+INRr2+SNR2INRr2η2

2)(1+INR2+INRr2)+2(4+4INR1+6INRr2)(1+SNR2+INR2)
(4+4INR2+7INRr2)(1+SNR2+INR2)

]
. (78)

Proposition 2. For the Gaussian IRC with high-capacity relay-receiver links the quantize-bin-forward scheme
can achieve to within log(7) bits of the capacity region.

Proof. The detailed proof is in Appendix F. The proof also includes the derivation of the high-capacity
relay-receiver links condition as stated in Definition 2. The key elements of the proof are as follows:

• Choosing a quantization distortion at each relay such that the rate loss terms ξ1, ξ2 are bounded
so that one can characterize the conditions on C1, C2 for the second terms in the min in the RHS
of (22)–(29) to be active.

• Choosing the suitable outer bounds among the ones in Theorem 3.
• Choosing a proper power allocation scheme at the transmitters such that the resulting achievable

rates are within constant gaps to the corresponding chosen outer bounds.

Note that in order to achieve the above goals we use the following intuition: In the regime we
are considering, we can think of receiver Rxi and relay Ri collectively as a single receiver with output
(Yi, Ŷri) for the inner bound and output (Yi, Yri) for the outer bound.
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4.6. Sum Capacity within 1 Bit in the Weak Interference-Relay Regime

In Section 4.4 we have seen that when the interference is strong, it is nearly optimal to set the
whole message at each transmitter to be common. A relevant question is: When is it optimal or nearly
optimal to treat interference as noise? In this section, we characterize the conditions under which one
can achieve to within 1 bit of the sum capacity of the Gaussian IRC by treating interference as noise,
i.e., by setting the whole message at each transmitter to be private. First, we need two lemmas, whose
proofs are both given in Appendix G.

Lemma 1. For the Gaussian IRC, if

C1 ≤
1
2

log

(
1 +

1 + INR1 + INRr1 + SNRr1 + SNR1(1 + INRr1η2
1)

(1 + INRr1)(1 + SNR1 + INR1)

)
, (79a)

C2 ≤
1
2

log

(
1 +

1 + INR2 + INRr2 + SNRr2 + SNR2(1 + INRr2η2
2)

(1 + INRr2)(1 + SNR2 + INR2)

)
, (79b)

then the sum capacity is lower bounded by

Cw
lb =

1
2

log
(

1 +
SNR1

1 + INR1

)
+

(
C1 −

1
2

log
(

1 +
1

1 + INRr1

(
1 +

INRr1

1 + INR1

)))+

+
1
2

log
(

1 +
SNR2

1 + INR2

)
+

(
C2 −

1
2

log
(

1 +
1

1 + INRr2

(
1 +

INRr2

1 + INR2

)))+

. (80)

Further, Cw
lb is achieved by treating interference as noise at each decoder.

The next lemma establishes an upper bound on the sum rate.

Lemma 2. For the Gaussian IRC that satisfies√
INR1

SNR2
(1 + INR2) +

√
INR2

SNR1
(1 + INR1) ≤ 1, (81)

the sum capacity is upper bounded by

Cw
ub =

1
2

log
(

1 +
SNR1

1 + INR1

)
+

1
2

log
(

1 +
SNR2

1 + INR2

)
+ C1 + C2. (82)

The above two lemmas lead us to the main result.

Proposition 3 (Sum capacity within 1 bit). For the Gaussian IRC satisfying (79) and (81), called the weak
interference-relay regime, the sum capacity Cw

sum is bounded by

Cw
ub − 1 ≤ Cw

sum ≤ Cw
ub, (83)

where Cw
ub is given in (82).

Proof. The proof follows directly from Lemma 1 and Lemma 2 and the fact that

1
2

log
(

1 +
1

1 + INRr1

(
1 +

INRr1

1 + INR1

))
≤ 1

2
1
2

log
(

1 +
1

1 + INRr2

(
1 +

INRr2

1 + INR2

))
≤ 1

2
.
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Our characterization of the weak interference-relay regime can be considered as a generalization
of the characterization of the low-interference of noisy-interference regime of the Gaussian IC [37–39].
In particular, in the extreme case of C1 = C2 = 0 the lower and upper bounds in (80) and (82)
meet, and therefore we recover the exact sum capacity of the Gaussian interference channel in the
low-interference regime, established in [37–39]. Proposition 3 shows that: when the interference is
weak and the capacities of the digital links are limited, a very simple coding scheme, where each relay
quantizes the received signal and sends the bin index and each decoder treats the unintended signal is
noise, is approximately sum-capacity optimal. This is a reasonable setup in multicell communication
where the interference from the neighboring base stations is weak and the intra-cell backhaul link
between a pico base station and the main base station is capacity-limited.

Figure 5 shows numerical examples for a Gaussian IRC under weak interference-relay
condition. The plots use the following channel parameters (h11, h22, h12, h21, h1r, h2r, h1c, h2c) =

α× (200, 150, 1, 1, 350, 330, 0.05, 0.05), where α is a parameter called the channel scaling factor. We plot
the achievable sum rate in (80), the sum rate upper bound in (82) for different values of α and C1, C2 that
satisfy the conditions (79) and (81). We also plot the sum capacity of the IC without relays. As expected,
one can see that the gap between the sum rate upper bound and the lower bound (achievable sum rate)
is always less than one bit for each fixed (C1, C2). When C1 and C2 decrease, the two bounds move
closer to the sum capacity without relay. When C1 = C2 = 0 they both coincide with the sum capacity
of the IC without relay.
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Figure 5. Sum capacity upper and lower bounds in the weak interference-relay regime.

4.7. Capacity Region within 1/2 Bit for the Compound Multiple Access Relay Channel

We now turn to a Gaussian channel that does not belong to the family of the IRC but is very
closely related. As can be seen in Section 3.2, the coding strategy for the discrete memoryless IRC can
be adapted to achieve the capacity region of the discrete memoryless compound semi-deterministic
MARC. We are drawing the same analogy here for the Gaussian channels. Consider the same physical
channel as the Gaussian IRC but each decoder is required to recover both messages. We call this model
the compound multiple access relay channel (C-MARC). Using the cut-set bound we can establish the
following outer bound to the capacity region of the Gaussian C-MARC.

Lemma 3 (Outer Bound for the Gaussian C-MARC). The capacity region of the Gaussian C-MARC is
contained in the regionRo

C−MARC defined as the set of non-negative rate pairs (R1, R2) satisfying
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R1 ≤ min{C(SNR1) + C1, C(SNR1 + SNRr1)} (84)

R1 ≤ min{C(INR2) + C2, C(INR2 + INRr2)} (85)

R2 ≤ min{C(SNR2) + C2, C(SNR2 + SNRr2)} (86)

R2 ≤ min{C(INR1) + C1, C(INR1 + INRr1)} (87)

R1 + R2 ≤ C(SNR1 + INR1) + C1 (88)

R1 + R2 ≤ C(SNR2 + INR2) + C2 (89)

R1 + R2 ≤ C(SNR1 + INR1 + SNRr1 + INRr1 + SNR1INR1η2
1) (90)

R1 + R2 ≤ C(SNR2 + INR2 + SNRr2 + INRr2 + SNR2INR2η2
2). (91)

We can derive an inner boundRi
C−MARC for the Gaussian C-MARC from Theorem 1 by assigning

the whole message at each transmitter as the common message and then follow the procedure in
Section 4.2. ComparingRi

C−MARC withRo
C−MARC yields the following constant-gap result.

Proposition 4. The inner boundRi
C−MARC for the Gaussian C-MARC is within 1/2 bit of the capacity region

of the channel.

Proof. See Appendix H.

5. Conclusions

In this paper, we proposed and studied an important setup which stemmed from practical
heterogeneous wireless systems, in which a relay can be used as a means to both relaying the
desired signal and mitigating the interference. A general inner bound and multiple outer bounds are
derived and shown to be tight or approximately tight for different classes of channels. The obtained
results generalize and unify the capacity results for a number of relay and interference channels.
The results establish the optimality or near optimality of the quantize-bin/hash-forward relaying
scheme, in combination with the rate-splitting encoding technique, for a new type of interference
network with multiple relays. This in turn has an important engineering value because such a coding
strategy, which does not require the intermediate nodes in the network to decode any messages, is
appealing for implementation in real-world systems. For future work, it would be interesting to
investigate further the optimality of the scheme to other types of interference networks. Another
direction would be to characterize the tradeoff between rate improvements and the cost of having the
relays, e.g., in terms of computational and transmission resources.
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Appendix A. Proof of Theorem 1.

Codebook generation: Codebook for transmitter k, k ∈ {1, 2}: Each message mk is split into a common
part mkc and a private part mkp: mk = (mkc, mkp), mkc ∈ [1 : 2nRkc ], mkp ∈ [1 : 2nRkp ]. Randomly and
independently generate 2nRkc codewords xn

kc(mkc), each according to ∏n
i=1 pXkc(xkci(mkc)). For each

xn
kc(mkc), randomly and conditionally independently generate 2nRkp codewords xn

k (mkc, mkp), each

according to ∏n
i=1 pXk |Xkc

(xki|xkci(mkc)). Codebook for relay k, k ∈ {1, 2}: independently generate 2nR̂k

quantization codewords ŷn
rk, each according to the distribution ∏n

i=1 pŶrk
(ŷrki), where the marginal

distribution pŶrk
is obtained by the marginalization of (12). Uniformly partition the quantization

codewords into 2nCk bins.

Encoding: Transmitter k sends out a codeword xn
k corresponding to its message index mk = (mkc, mkp).

Relay k chooses a quantization codeword ŷn
rk which is jointly typical with its received sequence yn

rk,
and then sends out the bin index lk corresponding to the chosen quantization codeword, i.e., lk = B(ŷn

rk),
where B(·) is the binning function.

Decoding: We describe the decoding at receiver Rx1. Decoder 1 looks for a unique index pair (m1c, m1p)

such that (
xn

1 (m1c, m1p), xn
1c(m1c), xn

2c(m2c), ŷn
r1, yn

1
)
∈ T n

ε (A1)

for some m2c ∈ [1 : 2nR2c ] and some ŷn
r1 with B(ŷn

r1) = l, where l is the bin index received via the digital
link from relay 1. If such a unique pair (m1c, m1p) is found, the decoder declares it as the transmitted
codeword, otherwise it declares an error.

Error analysis: we will do analysis for the receiver 1, the analysis for the receiver 2 follows immediately
by symmetry. In the following we use m to denote a message triple (m1c, m1p, m2c) and xn(m) to denote
the corresponding codeword triple. 1 denotes a vector whose entries are 1’s, with appropriate length.

Without loss of generality, assume that (m1c, m1p, m2c) = (1, 1, 1), i.e., m = 1, was sent.
By the covering lemma [25], the encoding at the relay succeeds with high probability if R̂1 ≥

I(Yr1; Ŷr1). By the law of large number, the transmitted codeword, the truly selected quantization
codeword, and the received sequence are jointly typical as n→ ∞.

Let K denote the index of the truly chosen quantization codeword by the relay 1, and L denotes
its bin index. We identify the following error events:

E1 := ∃ (m1c, m1p) 6= (1, 1), m2c ∈ [1 : 2nR2c ] and ∃ ŷn
r1(k), k ∈ [1 : 2nR̂1 ], k 6= K such that

B(ŷn
r1(k)) = L and the corresponding sequences are jointly typical with yn

1 , as specified in (A1).
E2 := ∃ (m1c, m1p) 6= (1, 1), m2c ∈ [1 : 2nR2c ] such that the corresponding sequences and ŷn

r1(K)
are jointly typical with yn

1 , as specified in (A1).
Conditioned on the successful encoding at the relay, the decoding error at the decoder 1 can be

bounded by:
Pe1 ≤ P(E1) + P(E2). (A2)

Next we bound P(E1) and P(E2).
First note that the decoder 1 is not required to decode m2c correctly. Hence, following the same

argument as in [40] we have

P(E1) ≤∑
S
P(E1(S)), (A3)
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where P(E1(S)) is defined and bounded in the sequel, and S ∈ {{1p}, {1c, 1p}, {1p, 2c}, {1c, 1p, 2c}}.
We also define S̃ := {1c, 1p, 2c} \ S. Further, let mS denote the messages whose indices are given by S,
and RS = ∑i∈S Ri.

P(E1(S)) := ∑
m:mS 6=1,mS̃=1

∑
k 6=K

P
{
(Xn(m), Ŷn

r1(k), Yn
1 ) ∈ T n

ε , B(Ŷn
r1(k)) = L

}
(a)
= 2−nC1 ∑

m:mS 6=1,mS̃=1
∑

k 6=K
P
{
(Xn(m), Ŷn

r1(k), Yn
1 ) ∈ T n

ε

}
≤ 2−nC12nRS ∑

k 6=K
P
{
(Xn(m), Ŷn

r1(k), Yn
1 ) ∈ T n

ε

}
, (A4)

where (a) follows due to the uniform binning. As an example, let us consider the case S = {1p, 2c}.
For this case we have

∑
k 6=K

P
{
(Xn(m), Ŷn

r1(k), Yn
1 ) ∈ T n

ε

}
= ∑

k 6=K
P
{
(Xn

1c(1), Xn
1 (1, m1p), Xn

2c, Ŷn
r1(k), Yn

1 ) ∈ T n
ε

}
= ∑

k 6=K
∑

(xn
1c ,xn

1 ,xn
2c ,ŷn

r1,yn
1 )∈T

n
ε

p(xn
1c, xn

1 , xn
2c, ŷn

r1, yn
1 )

(a)
≤ 2nR̂1 ∑

(xn
1c ,yn

1 )∈T
n

ε

p(xn
1c, yn

1 ) ∑
xn

1∈T
n

ε (X1|xn
1c ,yn

1 )

p(xn
1 |xn

1c)

· ∑
xn

2c∈T n
ε (X2c |xn

1c ,xn
1 ,yn

1 )

p(xn
2c) ∑

ŷn
r1∈T

n
ε (Ŷr1|xn

1c ,xn
1 ,xn

2c ,yn
1 )

p(ŷn
r1)

(b)
≤ 2nR̂1 ∑

(xn
1c ,yn

1 )∈T
n

ε

p(xn
1c, yn

1 )2
−n(I(X1,X2c ;Y1|X1c)+I(Ŷr1;X1,X2c ,Y1)−δ(ε))

≤ 2nR̂12−n(I(X1,X2c ;Y1|X1c)+I(Ŷr1;X1,X2c ,Y1)−δ(ε)), (A5)

where δ(ε) → 0 as n → ∞. (a) follows due to the fact that Ŷn
r1(k) and Xn

2c(m2c) are independent of
(Xn

1c, Yn
1 ) for k 6= K and m2c 6= 1; (b) follows from the properties of jointly typical sequences [25].

Substitute (A5) back to (A4) we conclude that for S = {1p, 2c}, P(E1(S))→ 0 as n→ ∞ if

R1p + R2c < I(X1, X2c; Y1|X1c) + I(Ŷr1; X1, X2c, Y1) + C1 − R̂1. (A6)

On the other hand, we can also bound P(E1(S)) as follows:

P(E1(S)) = ∑
m:mS 6=1,mS̃=1

∑
k 6=K

P
{
(Xn(m), Ŷn

r1(k), Yn
1 ) ∈ T n

ε , B(Ŷn
r1(k)) = L

}
≤ ∑

m:mS 6=1,mS̃=1
P {(Xn(m), Yn

1 ) ∈ T n
ε }

· P
{
∃ k 6= K, B(Ŷn

r1(k)) = L,
(
Xn

1 (m), Ŷn
r1, Yn

1
)
∈ T n

ε |(Xn(m), Yn
1 ) ∈ T n

ε

}
≤ 2nRSP {(Xn(m), Yn

1 ) ∈ T n
ε } . (A7)

Similar to the derivation of (A5) we can bound the probability in (A7) and show that for
S = {1p, 2c}, P(E1(S))→ 0 as n→ ∞ if

R1p + R2c < I(X1, X2c; Y1|X1c). (A8)

Combining (A6) and (A8) we conclude that for S = {1p, 2c}, P(E1(S))→ 0 as n→ ∞ if
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R1p + R2c < I(X1, X2c; Y1|X1c) + (I(Ŷr1; X1, X2c, Y1) + C1 − R̂1)
+

(a)
= I(X1, X2c; Y1|X1c) + (C1 − I(Ŷr1; Yr1|X1, X2c, Y1))

+

= I(X1, X2c; Y1|X1c) + (C1 − ξ1)
+, (A9)

where (a) follows from R̂1 ≥ I(Yr1; Ŷr1) and the Markov chain Ŷr1 −Yr1 − (X1, X1c, X2c, Y1).
For P(E2): Similar to (A3) we have

P(E2) ≤∑
S
P(E2(S))

where

P(E2(S)) := ∑
m:mS 6=1,mS̃=1

P
{
(Xn(m), Ŷn

r1(K), Yn
1 ) ∈ T n

ε

}
.

Notice that in this case the quantization codeword is the true one chosen by the relay. Hence,
to bound P(E2(S))’s we can consider (Yn

1 , Ŷn
r1) as a single channel output sequence. The bounds then

follow directly from the properties of the jointly typical sequences [25]. In particular, for S = {1p, 2c},
P(E2(S))→ 0 as n→ ∞ if

R1p + R2c ≤ I(X1, X2c; Y1, Ŷr1|X1c). (A10)

Combining (A9) and (A10) we have: For S = {1p, 2c}, P(E1(S))→ 0 and P(E2(S))→ 0 as n→ ∞
if (23) is satisfied. Applying the same analysis for other S ∈ {{1p}, {1c, 1p}, {1p, 2c}, {1c, 1p, 2c}},
we conclude that P(E1) and P(E2), and therefore Pe1 in (A2) vanishes as n → ∞ if the constraints
in (22)–(25) are satisfied.

Appendix B. Proof of Theorem 2.

Appendix B.1. Achievability

Since Tk = tk(Xk), k ∈ {1, 2}, we can choose Xkc = Tk in the general inner bound in Theorem 1.
Furthermore, we set Ŷrk = Yrk, i.e., we only do hash-forward. Using the properties of the channel
we have:

a1 = I(X1; Y1|T1, T2, Q)

a′1 = I(X1; Y1, Yr1|T1, T2, Q)

b1 = I(X1, T2; Y1|T1, Q)

b′1 = I(X1, T2; Y1, Yr1|T1, Q)

c1 = I(X1; Y1|T2, Q)

c′1 = I(X1; Y1, Yr1|T2, Q)

d1 = I(X1, T2; Y1|Q)

d′1 = I(X1, T2; Y1, Yr1|Q)

ξ1 = I(Yr1; Yr1|X1, T2, Y1, Q)

(a)
= 0,

where (a) follows because Yr1 is a function of (X1, Y1). By symmetry we easily obtain
a2, a′2, b2, b′2, c2, c′2, d2, d′2, ξ2. Substituting the above quantities into the inner bound in Theorem 1 we
obtain an inner bound for the semi-deterministic IRC, which consists of the inequalities in Theorem 2
plus the following two inequalities, emanating from (14) and (16):
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R1 ≤ min{I(X1; Y1|T1, T2, Q) + C1, I(X1; Y1, Yr1|T1, T2, Q)}
+ min{I(X2, T1; Y2|T2, Q) + C2, I(X2, T1; Y2, Yr2|T2, Q)} (A11)

R2 ≤ min{I(X2; Y2|T1, T2, Q) + C2, I(X2; Y2, Yr2|T1, T2, Q)}
+ min{I(X1, T2; Y1|T1, Q) + C1, I(X1, T2; Y1, Yr1|T1, Q)} (A12)

In the sequel we prove the redundancy of (A11) and (A12). First note that,

I(T2; Y2, Yr2|X1, Q) = H(T2|X1, Q)− H(T2|Y2, Yr2, X1, Q)

(a)
= H(T2|Q)− H(T2|Y2, Yr2, X1, T1, Q)

≥ H(T2|T1, Q)− H(T2|Y2, Yr2, T1, Q)

= I(T2; Y2, Yr2|T1, Q), (A13)

where (a) follows because T1 is a function of X1, and X1 is independent of T2 given Q. By symmetry
we have

I(T1; Y1, Yr1|X2, Q) ≥ I(T1; Y1, Yr1|T2, Q). (A14)

Next, we have

min{I(X2, T1; Y2|T2, Q) + C2, I(X2, T1; Y2, Yr2|T2, Q)} ≥ I(X2, T1; Y2|T2, Q)

≥ I(T1; Y2|X2, T2, Q)

(c)
= I(T1; Y2|X2, Q)

(d)
= I(T1; Y2, Yr2|X2, Q)

(e)
≥ I(T1; Y1, Yr1|X2, Q)

( f )
≥ I(T1; Y1, Yr1|T2, Q), (A15)

where:

• (c) is because T2 is a function of X2, and Y2 depends only on (X2, T1);
• (d) is because Yr2 = f2(X2, Y2);
• (e) is due to (30a) with N = 1, W = Q;
• ( f ) is due to (A14).

Inserting (A15) into the right hand side (RHS) of (A11) gives:

RHS of (A11) ≥ min{I(X1; Y1|T1, T2, Q) + C1, I(X1; Y1, Yr1|T1, T2, Q)}+ I(T1; Y1, Yr1|T2, Q)

≥ min{I(X1; Y1|T2, Q) + C1, I(X1; Y1, Yr1|T2, Q)}
= RHS of (31).

Therefore (A11) is redundant. By symmetry (A12) is redundant.

Appendix B.2. Converse

Before upperbounding the achievable rates we will prove some useful inequalities. Consider a
sequence of (2nR1 , 2nR2 , n) codes with vanishing error probability. Note that since the messages M1 and
M2 are independent, Xn

k (Mk) is independent of Xn
l (Ml) and Tn

l , k, l ∈ {1, 2}, k 6= l. Hence we have

I(Tn
2 ; Yn

2 , Yn
r2|Xn

1 ) ≥ I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 ), (A16)
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whose proof is similar to the proof of (A13), by replacing each random variable with the corresponding
random n-sequence, and W = ∅.

Let us denote the sequence that receiver k receives from relay k (via the digital link) by Vn
k ,

k ∈ {1, 2}. We have

I(Xn
1 ; Yn

1 , Vn
1 ) = I(Xn

1 ; Yn
1 ) + I(Xn

1 ; Vn
1 |Yn

1 ) (A17)

I(Xn
1 ; Yn

1 , Vn
1 )

(a1)
≤ I(Xn

1 ; Yn
1 ) + H(Vn

1 ) (A18)

I(Xn
1 ; Yn

1 , Vn
1 )

(a2)
≤ I(Xn

1 ; Yn
1 |Tn

2 ) + H(Vn
1 ) (A19)

I(Xn
1 ; Yn

1 , Vn
1 ) ≤ I(Xn

1 , Tn
1 ; Yn

1 |Tn
2 ) + H(Vn

1 ) (A20)

I(Xn
1 ; Yn

1 , Vn
1 ) = I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 |Tn

2 ) + H(Vn
1 ) (A21)

I(Xn
1 ; Yn

1 , Vn
1 ) ≤ I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) + H(Vn

1 ), (A22)

where: (a1) follows from the nonnegativity of entropy, and conditioning does not increase entropy;
(a2) is because Xn

1 is independent of Tn
2 . We also have

I(Xn
1 ; Yn

1 , Vn
1 ) ≤ I(Xn

1 ; Yn
1 , Yn

r1, Vn
1 )

(b1)
= I(Xn

1 ; Yn
1 , Yn

r1) (A23)

I(Xn
1 ; Yn

1 , Vn
1 )

(b2)
≤ I(Xn

1 ; Yn
1 , Yn

r1|Tn
2 )

≤ I(Xn
1 , Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) (A24)

I(Xn
1 ; Yn

1 , Vn
1 ) = I(Xn

1 ; Yn
1 , Yn

r1|Tn
1 , Tn

2 ) + I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 ) (A25)

where: (b1) is because Vn
1 is a function of Yn

r1; (b2) is because Xn
1 is independent of Tn

2 . On the other
hand, from (A18),

I(Xn
1 ; Yn

1 , Vn
1 ) ≤ I(Xn

1 ; Yn
1 ) + H(Vn

1 )

= I(Xn
1 , Tn

2 ; Yn
1 )− I(Tn

2 ; Yn
1 |Xn

1 ) + H(Vn
1 )

(c1)
= I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
2 ; Yn

1 , Yn
r1|Xn

1 ) + H(Vn
1 )

(c2)
≤ I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
2 ; Yn

2 , Yn
r2|Xn

1 ) + H(Vn
1 )

(c3)
≤ I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 ) + H(Vn
1 ) (A26)

where: (c1) is because Yn
r1 is a function of Xn

1 and Yn
1 ; (c2) is due to (30a, 30b) with N = n, W = ∅; (c3)

follows from (A16). Furthermore, using (A23)

I(Xn
1 ; Yn

1 , Vn
1 ) ≤ I(Xn

1 ; Yn
1 , Yn

r1)

= I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1)− I(Tn
2 ; Yn

1 , Yn
r1|Xn

1 )

(d1)
≤ I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

2 ; Yn
2 , Yn

r2|Xn
1 )

(d2)
≤ I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

2 ; Yn
2 , Yn

r2|Tn
1 ), (A27)

where: (d1) is due to (30a, 30b); (d2) follows from (A16).
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By symmetry we obtain the following inequalities, which are the duals of (A26) and (A27):

I(Xn
2 ; Yn

2 , Vn
2 ) ≤ I(Xn

2 , Tn
1 ; Yn

2 )− I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 ) + H(Vn
2 ), (A28)

I(Xn
2 ; Yn

2 , Vn
2 ) ≤ I(Xn

2 , Tn
1 ; Yn

2 , Yn
r2)− I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ). (A29)

We are now ready to bound the achievable rates.

Proof of (31): by Fano’s inequality,

n(R1 − εn) ≤ I(W1; Yn
1 , Vn

1 )

≤ I(Xn
1 ; Yn

1 , Vn
1 )

(e1)
≤ I(Xn

1 ; Yn
1 |Tn

2 ) + H(Vn
1 )

(e2)
≤

n

∑
i=1

[I(X1i; Y1i|T2i) + H(V1i)]

≤
n

∑
i=1

[I(X1i; Y1i|T2i) + C1], (A30)

where: (e1) is due to (A19); (e2) is because conditioning does not increase entropy, and because Y1i
depends only on (X1i, T2i).

Next,

n(R1 − εn) ≤ I(Xn
1 ; Yn

1 , Vn
1 )

( f1)
≤ I(Xn

1 , Tn
1 ; Yn

1 , Yn
r1|Tn

2 )

( f2)
≤

n

∑
i=1

I(X1i, T1i; Y1i, Yr1i|T2i), (A31)

where: ( f1) follows from (A24); ( f2) is because Yr1i is a function of Y1i and X1i, and Y1i depends only
on X1i, T2i.

We define a random variable Q, uniformly distributed over {1, . . . , n} and independent of
everything else. Further, for k ∈ {1, 2} we define Xk = XkQ, Tk = TkQ, Yk = YkQ, Yrk = YrkQ.
Then (A30) and (A31) become

R1 − εn ≤ I(X1; Y1|T2) + C1

R1 − εn ≤ I(X1, T1; Y1, Yr1|T2),

where εn → 0 as n→ ∞, which proves (31).

The bound on R2 in (32) follows from (31) by symmetry.
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Proof of (33): again, starting with Fano’s inequality,

n(R1 + R2 − 2εn) (A32)

≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(g1)
≤ min{I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) + H(Vn

1 ), I(Xn
1 ; Yn

1 , Yn
r1|Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 )}

+ min{I(Xn
2 , Tn

1 ; Yn
2 )− I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2)− I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 )}
= min{I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + H(Vn

1 ), I(Xn
1 ; Yn

1 , Yn
r1|Tn

1 , Tn
2 )}

+ min{I(Xn
2 , Tn

1 ; Yn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2)}
(g2)
≤ min{

n

∑
i=1

[I(X1i; Y1i|T1i, T2i) + H(V1i)],
n

∑
i=1

I(X1i; Y1i, Yr1i|T1i, T2i)}

+ min{
n

∑
i=1

[I(X2i, T1i; Y2i) + H(V2i)],
n

∑
i=1

I(X2i, T1i; Y2i, Yr2i)}

≤ min{
n

∑
i=1

[I(X1i; Y1i|T1i, T2i) + C1],
n

∑
i=1

I(X1i; Y1i, Yr1i|T1i, T2i)}

+ min{
n

∑
i=1

[I(X2i, T1i; Y2i) + C2],
n

∑
i=1

I(X2i, T1i; Y2i, Yr2i)}, (A33)

where: we use (A22), (A25), (A28), and (A29) in (g1); (g2) is because conditioning does not increase
entropy, Y1i depends only on (X1i, T2i), Yr1i is a function of (X1i, Y1i), and similar conditions for Y2i
and Yr2i.

The bound on R1 + R2 in (35) follows from (33) by symmetry.

Proof of (34): by Fano’s inequality,

n(R1 + R2 − 2εn)

≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(h1)
≤ min{I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 ) + H(Vn
1 ), I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

2 ; Yn
2 , Yn

r2|Tn
1 )}

+ min{I(Xn
2 , Tn

1 ; Yn
2 )− I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2)− I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 )}
= min{I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 ) + H(Vn
1 ), I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 )}

+ min{I(Xn
2 , Tn

1 ; Yn
2 )− I(Tn

2 ; Yn
2 , Yn

r2|Tn
1 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2)− I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 )}
(h2)
≤ min{I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
1 ; Yn

1 , Yn
r1) + H(Vn

1 ), I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1)− I(Tn
1 ; Yn

1 , Yn
r1)}

+ min{I(Xn
2 , Tn

1 ; Yn
2 )− I(Tn

2 ; Yn
2 , Yn

r2) + H(Vn
2 ), I(Xn

2 , Tn
1 ; Yn

2 , Yn
r2)− I(Tn

2 ; Yn
2 , Yn

r2)}
≤ min{I(Xn

1 , Tn
2 ; Yn

1 )− I(Tn
1 ; Yn

1 ) + H(Vn
1 ), I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

1 ; Yn
1 , Yn

r1)}
+ min{I(Xn

2 , Tn
1 ; Yn

2 )− I(Tn
2 ; Yn

2 ) + H(Vn
2 ), I(Xn

2 , Tn
1 ; Yn

2 , Yn
r2)− I(Tn

2 ; Yn
2 , Yn

r2)}
(h3)
= min{I(Xn

1 , Tn
1 , Tn

2 ; Yn
1 )− I(Tn

1 ; Yn
1 ) + H(Vn

1 ), I(Xn
1 , Tn

1 , Tn
2 ; Yn

1 , Yn
r1)− I(Tn

1 ; Yn
1 , Yn

r1)}
+ min{I(Xn

2 , Tn
1 , Tn

2 ; Yn
2 )− I(Tn

2 ; Yn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

1 , Tn
2 ; Yn

2 , Yn
r2)− I(Tn

2 ; Yn
2 , Yn

r2)}
= min{I(Xn

1 , Tn
2 ; Yn

1 |Tn
1 ) + H(Vn

1 ), I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1|Tn
1 )}

+ min{I(Xn
2 , Tn

1 ; Yn
2 |Tn

2 ) + H(Vn
2 ), I(Xn

2 , Tn
1 ; Yn

2 , Yn
r2|Tn

2 )}
(h4)
≤ min{

n

∑
i=1

[I(X1i, T2i; Y1i|T1i) + C1],
n

∑
i=1

I(X1i, T2i; Y1i, Yr1i|T1i)}

+ min{
n

∑
i=1

[I(X2i, T1i; Y2i|T2i) + C2],
n

∑
i=1

I(X2i, T1i; Y2i, Yr2i|T2i)} (A34)
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where: we use (A26), (A27), (A28), and (A29) in (h1); (h2) is because Tn
1 and Tn

2 are independent; (h3)

is because Tn
1 is a function of Xn

1 , Tn
2 is a function of Xn

2 ; (h4) holds due to the same reasons that make
(g2) hold.

Proof of (36):

n(2R1 + R2 − 2εn)

≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

1 ; Yn
1 , Vn

1 ) + I(Xn
2 ; Yn

2 , Vn
2 )

(t1)
≤ min{I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 ) + H(Vn

1 ), I(Xn
1 ; Yn

1 , Yn
r1|Tn

1 , Tn
2 ) + I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 )}

+ min{I(Xn
1 , Tn

2 ; Yn
1 )− I(Tn

2 ; Yn
2 , Yn

r2|Tn
1 ) + H(Vn

1 ), I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1)− I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 )}
+ min{I(Xn

2 , Tn
1 ; Yn

2 )− I(Tn
1 ; Yn

1 , Yn
r1|Tn

2 ) + H(Vn
2 ), I(Xn

2 , Tn
1 ; Yn

2 , Yn
r2)− I(Tn

1 ; Yn
1 , Yn

r1|Tn
2 )}

= min{I(Xn
1 ; Yn

1 |Tn
1 , Tn

2 ) + H(Vn
1 ), I(Xn

1 ; Yn
1 , Yn

r1|Tn
1 , Tn

2 )}
+ min{I(Xn

1 , Tn
2 ; Yn

1 ) + H(Vn
1 ), I(Xn

1 , Tn
2 ; Yn

1 , Yn
r1)}

+ min{I(Xn
2 , Tn

1 ; Yn
2 )− I(Tn

2 ; Yn
2 , Yn

r2|Tn
1 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2)− I(Tn
2 ; Yn

2 , Yn
r2|Tn

1 )}
(t2)
≤ min{I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + H(Vn

1 ), I(Xn
1 ; Yn

1 , Yn
r1|Tn

1 , Tn
2 )}

+ min{I(Xn
1 , Tn

2 ; Yn
1 ) + H(Vn

1 ), I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1)}
+ min{I(Xn

2 , Tn
2 , Tn

1 ; Yn
2 )− I(Tn

2 ; Yn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

2 , Tn
1 ; Yn

2 , Yn
r2)− I(Tn

2 ; Yn
2 , Yn

r2)}
= min{I(Xn

1 ; Yn
1 |Tn

1 , Tn
2 ) + H(Vn

1 ), I(Xn
1 ; Yn

1 , Yn
r1|Tn

1 , Tn
2 )}

+ min{I(Xn
1 , Tn

2 ; Yn
1 ) + H(Vn

1 ), I(Xn
1 , Tn

2 ; Yn
1 , Yn

r1)}
+ min{I(Xn

2 , Tn
1 ; Yn

2 |Tn
2 ) + H(Vn

2 ), I(Xn
2 , Tn

1 ; Yn
2 , Yn

r2|Tn
2 )}

(t3)
≤ min{

n

∑
i=1

[I(X1i; Y1i|T1i, T2i) + C1],
n

∑
i=1

I(X1i; Y1i, Yr1i|T1i, T2i)}

+ min{
n

∑
i=1

[I(X1i, T2i; Y1i) + C1],
n

∑
i=1

I(X1i, T2i; Y1i, Yr1i)}

+ min{
n

∑
i=1

[I(X2i, T1i; Y2i|T2i) + C2],
n

∑
i=1

I(X2i, T1i; Y2i, Yr2i|T2i)}, (A35)

where: we use (A22), (A25), (A26), (A27), (A28), and (A29) in (t1); (t2) holds since Xn
2 is a function of

Tn
2 , Tn

1 and Tn
2 are independent, and due to chain rule and the nonnegativity of entropy; (t3) holds due

to the same reasons that make (g2) hold.

The bound on R1 + 2R2 in (37) follows from (36) by symmetry.

The bound on the cardinality of Q follows from the application of the Support Lemma [41]
(Lemma 3.4, p. 310).

Appendix C. Proof of Theorem 3.

Throughout the proofs we use Vn
i to denote the output of the digital relay link at receiver i,

i ∈ {1, 2}. In the inequalities below we utilize the following facts: (a) Xn
1 is independent of Xn

2 , (b) Vn
k

is a function of Yn
rk, k ∈ {1, 2}, (c) i.i.d Gaussian distribution maximizes the differential entropy and

the conditional differential entropy subject to covariance constraints.

Bounds on individual rates in (50) and (51):

By Fano’s inequality we have
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n(R1 − εn) ≤ I(Xn
1 ; Vn

1 , Yn
1 )

≤ I(Xn
1 ; Vn

1 , Yn
1 , Xn

2 )

(a)
= I(Xn

1 ; Vn
1 , Yn

1 |Xn
2 )

= I(Xn
1 ; Yn

1 |Xn
2 ) + I(Xn

1 ; Vn
1 |Yn

1 , Xn
2 )

≤ I(Xn
1 ; Yn

1 |Xn
2 ) + H(Vn

1 ). (A36)

We have

I(Xn
1 ; Yn

1 |Xn
2 ) = h(Yn

1 |Xn
2 )− h(Yn

1 |Xn
1 , Xn

2 )

= h(h11Xn
1 + Zn

1 )− h(Zn
1 )

(c)
≤ n

2
log(1 + SNR1), (A37)

and

H(Vn
1 ) ≤ nH(V1)

≤ nC1. (A38)

Putting (A37) and (A38) back to (A36) we have

R1 − εn ≤
1
2

log(1 + SNR1) + C1, (A39)

where εn → 0 as n→ ∞. We also have

n(R1 − εn) ≤ I(Xn
1 ; Vn

1 , Yn
1 )

(b)
≤ I(Xn

1 ; Yn
r1, Yn

1 )

(a)
= I(Xn

1 ; Yn
r1, Yn

1 |Xn
2 )

= I(Xn
1 ; Yn

1 |Xn
2 ) + I(Xn

1 ; Yn
r1|Yn

1 , Xn
2 )

= h(h11Xn
1 + Zn

1 )− h(Zn
1 ) + h(h1rXn

1 + Zn
r1|h11Xn

1 + Zn
1 )− h(Zn

r1)

(c)
≤ n

2
log(1 + SNR1 + SNRr1). (A40)

Next, to prove the outer bounds on the sum rate and weighted sum rate, we will first transform
the genie aided channel into a MIMO IC plus some bounded terms. We will then leverage the outer
bounds for the MIMO IC which are developed by Karmakar and Varanasi in [35] (Lemma 1), which
can be shown to be the same as the bounds introduced by Telatar and Tse in [34] for the channel
under consideration.

Bounds on R1 + R2 in (52)–(54).

By Fano’s inequality we have

n(R1 + R2 − 2εn) ≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

= I(Xn
1 ; Yn

1 ) + I(Xn
1 ; Vn

1 |Yn
1 ) + I(Xn

2 ; Yn
2 ) + I(Xn

2 ; Vn
2 |Yn

2 )

≤ I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) + H(Vn
1 ) + H(Vn

2 )

≤ I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) + nC1 + nC2.

At this point we can use the bounds on I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) established in [34] or [35] (Lemma 1)
to end up with the bounds in (56)–(58).



Entropy 2017, 19, 441 27 of 40

Bounds on 2R1 + R2 in (55). By Fano’s inequality we have

n(2R1 + R2 − 3εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

≤ 2I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) + 2H(Vn
1 ) + H(Vn

2 )

≤ 2I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) + 2nC1 + nC2.

Applying the bounds on 2I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) in [34,35] we complete the proof.

Bounds on R1 + R2 in (56)–(58). By Fano’s inequality we have

n(R1 + R2 − 2εn) ≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ I(Xn

1 ; Yn
1 , Yn

r1) + I(Xn
2 ; Yn

2 , Yn
r2).

By defining Ȳi := (Yi, Yri), i ∈ {1, 2}, we can apply the bounds in [34,35] to obtain (56)–(58).

Bounds on 2R1 + R2 in (59). By Fano’s inequality we have

n(2R1 + R2 − 3εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ 2I(Xn

1 ; Yn
1 , Yn

r1) + I(Xn
2 ; Yn

2 , Yn
r2).

Then we define Ȳi := (Yi, Yri), i ∈ {1, 2}, and apply the bounds on 2I(Xn
1 ; Ȳn

1 ) + I(Xn
2 ; Ȳn

2 )

in [34,35].

Bounds on R1 + R2 in (60)–(62). By Fano’s inequality we have

n(R1 + R2 − 2εn) ≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ I(Xn

1 ; Yn
1 ) + H(Vn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2)

≤ I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2) + nC1.

At this point we can use the bounds on I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2) in [34,35] to end up with the

bounds in (60)–(62).

Bound on 2R1 + R2 in (63) By Fano’s inequality

n(2R1 + R2 − 3εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ 2I(Xn

1 ; Yn
1 ) + 2H(Vn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2)

≤ 2I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2) + 2nC1.

Then we can use the bound on 2I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2) in [34,35] to obtain (63).

Bounds on R1 + R2 in (64)–(66). These bounds follow readily from the bounds in (60)–(62) by symmetry.

Bound on 2R1 + R2 in (67) By Fano’s inequality

n(2R1 + R2 − 3εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ 2I(Xn

1 ; Yn
1 , Yn

r1) + I(Xn
2 ; Yn

2 ) + H(Vn
2 )

≤ 2I(Xn
1 ; Yn

1 , Yn
r1) + I(Xn

2 ; Yn
2 ) + nC2.

Then we can use the bound on 2I(Xn
1 ; Yn

1 , Yn
r1) + I(Xn

2 ; Yn
2 ) in [34,35].
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Bounds on 2R1 + R2 in (68): Let Sn
1 = h12Xn

1 + Zn
2 , Sn

2 = h21Xn
2 + Zn

1 . We see that Yn
1 = h11Xn

1 + Sn
2 ,

Yn
2 = h22Xn

2 + Sn
1 . Using Fano’s inequality, conditioning does not increase entropy, chain rule we have

that if a rate pair (R1, R2) is achievable, then

n(2R1 + R2 − 3εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ I(Xn

1 ; Yn
1 , Yn

r1) + I(Xn
1 ; Yn

1 ) + I(Xn
1 ; Vn

1 |Yn
1 ) + I(Xn

2 ; Yn
2 ) + I(X2; Vn

2 |Yn
2 )

≤ I(Xn
1 ; Yn

1 , Yn
r1, Sn

1 , Xn
2 ) + I(Xn

1 ; Yn
1 ) + H(Vn

1 ) + I(Xn
2 ; Yn

2 , Sn
2 ) + H(Vn

2 )

(a)
= I(Xn

1 ; Yn
1 , Yn

r1, Sn
1 |Xn

2 ) + I(Xn
1 ; Yn

1 ) + H(Vn
1 ) + I(Xn

2 ; Yn
2 , Sn

2 ) + H(Vn
2 )

≤ I(Xn
1 ; Sn

1 |Xn
2 ) + I(Xn

1 ; Yn
1 , Yn

r1|Sn
1 , Xn

2 ) + I(Xn
1 ; Yn

1 ) + h(Yn
2 , Sn

2 )

− h(Yn
2 , Sn

2 |Xn
2 ) + nC1 + nC2

= h(Sn
1 )− h(Zn

2 ) + h(Yn
1 , Yn

r1|Sn
1 , Xn

2 )− h(Zn
1 , Zn

1r) + h(Yn
1 )− h(Sn

2 ) + h(Yn
2 , Sn

2 )

− h(Sn
1 , Zn

1 ) + nC1 + nC2

= h(Sn
1 )− h(Zn

2 ) + h(Yn
1 , Yn

r1|Sn
1 , Xn

2 )− h(Zn
1 , Zn

1r) + h(Yn
1 ) + h(Yn

2 |Sn
2 )− h(Sn

1 )

− h(Zn
1 ) + nC1 + nC2

= h(Yn
1 , Yn

r1|Sn
1 , Xn

2 )− h(Zn
1 , Zn

1r) + h(Yn
1 )− h(Zn

1 ) + h(Yn
2 |Sn

2 )− h(Zn
2 )

+ nC1 + nC2

= h(h11Xn
1 + Zn

1 , h1rXn
1 + Zn

r1|h12Xn
1 + Zn

2 )− h(Zn
1 , Zn

1r) + h(h11Xn
1 + h21Xn

2 + Zn
1 )

− h(Zn
1 ) + h(h22Xn

2 + h12Xn
1 + Zn

2 |h21Xn
2 + Zn

1 )− h(Zn
2 ) + nC1 + nC2

(c)
≤ n(RHS of (68)).

Bounds on 2R1 + R2 in (69): We define Sn
1 , Sn

2 as above. Again, using Fano’s inequality, conditioning
does not increase entropy, chain rule we have that if a rate pair (R1, R2) is achievable, then

n(2R1 + R2 − εn) ≤ 2I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

(b)
≤ I(Xn

1 ; Yn
1 , Yn

r1) + I(Xn
1 ; Yn

1 ) + I(Xn
1 ; Vn

1 |Yn
1 ) + I(Xn

2 ; Yn
2 , Yn

r2)

≤ I(Xn
1 ; Yn

1 , Yn
r1, Sn

1 , Xn
2 ) + I(Xn

1 ; Yn
1 ) + H(Vn

1 ) + I(Xn
2 ; Yn

2 , Yn
r2, Sn

2 )

≤ h(Sn
1 )− h(Zn

2 ) + h(Yn
1 , Yn

r1|Sn
1 , Xn

2 )− h(Zn
1 , Zn

1r) + h(Yn
1 )− h(Sn

2 ) + nC1

+ I(Xn
2 ; Yn

2 , Yn
r2, Sn

2 ). (A41)

The last term in (A41) can be bounded as follows:

I(Xn
2 ; Yn

2 , Yn
r2, Sn

2 ) = I(Xn
2 ; Sn

2 ) + I(Xn
2 ; Yn

2 , Yn
r2|Sn

2 )

= h(Sn
2 )− h(Zn

1 ) + h(Yn
2 , Yn

r2|Sn
2 )− h(Yn

2 , Yn
r2|Xn

2 , Sn
2 )

≤ h(Sn
2 )− h(Zn

1 ) + h(Yn
2 , Yn

r2|Sn
2 )− h(Yn

2 |Xn
2 , Sn

2 )− h(Yn
r2|Xn

2 , Sn
2 , Yn

2 , Xn
1 )

= h(Sn
2 )− h(Zn

1 ) + h(Yn
2 , Yn

r2|Sn
2 )− h(Sn

1 )− h(Zn
r2). (A42)

Putting (A42) back to (A41) we have

n(2R1 + R2 − εn) ≤ h(Yn
1 , Yn

r1|Sn
1 , Xn

2 )− h(Zn
1 , Zn

1r) + h(Yn
1 )− h(Zn

1 ) + h(Yn
2 , Yn

r2|Sn
2 )− h(Zn

2 )− h(Zn
r2)

(c)
≤ n(RHS of (69)). (A43)

Appendix D. Proof of Theorem 4.

Before proving Theorem 4 we need two lemmas, whose proofs follow in the sequel.
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Lemma A1. Given the power allocation in (74), we have:

SNR1p ≥
SNR1

1 + INR2
, SNRr1p ≥

SNRr1
1 + INR2

, (A44)

INR1p ≤ 1, INRr1p ≤ |h2c|2/|h21|2. (A45)

Proof. Since we choose P1p = min
{

1, 1
|h12|2

}
and P2p = min

{
1, 1
|h21|2

}
,

SNR1p = |h11|2P1p = |h11|2 min
{

1,
1
|h12|2

}
≥ |h11|2

1 + |h12|2

=
SNR1

1 + INR2
.

Similarly we can show that SNRr1p ≥ SNRr1
1+INR2

. Next,

INR1p = |h21|2P2p = |h21|2 min
{

1,
1
|h21|2

}
≤ 1,

and

INRr1p = |h2c|2P2p = |h2c|2 min
{

1,
1
|h21|2

}
≤ |h2c|2
|h21|2

.

Lemma A1 enables us to prove Lemma A2 below.

Lemma A2. Let us define:

f1(∆1) =
1
2

log
(

2 + 2∆1 + |h2c|2/|h21|2
)

(A46)

f2(∆2) =
1
2

log
(

2 + 2∆2 + |h1c|2/|h12|2
)

. (A47)

Given the power allocation in (74) we have

ξ1 ≤
1
2

log
[

1 +
1

∆1

(
1 +
|h2c|2
|h21|2

)]
(A48)

a1 ≥ C
(

SNR1

1 + INR2

)
− 1

2
(A49)

a′1 ≥ C
(
SNR1 + SNRr1

1 + INR2

)
− f1(∆1) (A50)

b1 ≥ C
(
INR1 +

SNR1

1 + INR2

)
− 1

2
(A51)

b′1 ≥ C
(
INR1 + INRr1 +

SNR1(1 + η2
1 INRr1) + SNRr1

1 + INR2

)
− f1(∆1) (A52)

c1 ≥ C (SNR1)−
1
2

(A53)

c′1 ≥ C (SNR1 + SNRr1)− f1(∆1) (A54)

d1 ≥ C (SNR1 + INR1)−
1
2

(A55)

d′1 ≥ C
(
INR1 + INRr1 + SNR1(1 + η2

1 INRr1) + SNRr1

)
− f1(∆1). (A56)
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Similar inequalities hold for a2, a′2, b2, b′2, c2, c′2, d2, d′2 by symmetry.

Proof. The proof is similar to the proof of [8] (Lemma 1). We will use the results of Lemma A1, indexed

as follows: (a) SNR1p ≥ SNR1
1+INR2

, (b) SNRr1p ≥ SNRr1
1+INR2

, (c) INR1p ≤ 1, and (d) INRr1p ≤ |h2c |2
|h21|2

.
First, for the term related to the quantization at each relay:

ξ1 = I(Ŷr1; Yr1|X1, X2c, Y1)

=
1
2

log

[
1 +

1
∆1

(
1 +

INRr1p

1 + INR1p

)]

≤ 1
2

log

[
1 +

1
∆1

(
1 +

INRr1p

INR1p

)]

=
1
2

log
[

1 +
1

∆1

(
1 +
|h2c|2
|h21|2

)]
.

For other quantities in Lemma A2:

a1 = I(X1; Y1|X1c, X2c)

=
1
2

log

(
1 +

SNR1p

1 + INR1p

)
(c)
≥ 1

2
log
(
1 + SNR1p

)
− 1

2
(a)
≥ 1

2
log
(

1 +
SNR1

1 + INR2

)
− 1

2
.

a′1 = I(X1; Y1, Ŷ1r|X1c, X2c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1p + INR1p) + SNRr1p + INRr1p(1 + η2

1SNR1p)

(1 + ∆1)(1 + INR1p) + INRr1p

)

=
1
2

log
(
(1 + ∆1)(1 + SNR1p + INR1p) + SNRr1p + INRr1p(1 + η2

1SNR1p)
)

− 1
2

log
(
(1 + ∆1)(1 + INR1p) + INRr1p

)
(c,d)
≥ 1

2
log
(
1 + SNR1p + SNRr1p)

)
− f1(∆1)

(a,b)
≥ 1

2
log
(

1 +
SNR1 + SNRr1

1 + INR2

)
− f1(∆1).

In the same way we can show that

b1 = I(X1, X2c; Y1|X1c)

=
1
2

log

(
1 + SNR1p + INR1

1 + INR1p

)

≥ 1
2

log
(

1 + INR1 +
SNR1

1 + INR2

)
− 1

2
.
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b′1 = I(X1, X2c; Y1, Ŷ1r|X1c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1p + INR1) + SNRr1p + INRr1(1 + η2

1SNR1p)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

log

(
1 + INR1 + INRr1 +

SNR1(1 + η2
1 INRr1) + SNRr1

1 + INR2

)
− f1(∆1).

c1 = I(X1; Y1|X2c)

=
1
2

log

(
1 +

SNR1

1 + INR1p

)

≥ 1
2

log(1 + SNR1)−
1
2

.

c′1 = I(X1; Y1, Ŷ1r|X2c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1 + INR1p) + SNRr1 + INRr1p(1 + η2

1SNR1)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

log (1 + SNR1 + SNRr1)− f1(∆1).

d1 = I(X1, X2c; Y1)

=
1
2

log

(
1 + SNR1 + INR1

1 + INR1p

)

≥ 1
2

log(1 + SNR1 + INR1)−
1
2

.

d′1 = I(X1, X2c; Y1, Ŷ1r)

=
1
2

log

(
(1 + ∆1)(1 + SNR1 + INR1) + SNRr1 + INRr1(1 + η2

1SNR1)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

(
1 + INR1 + INRr1 + SNR1(1 + η2

1 INRr1) + SNRr1

)
− f1(∆1).

Hence Lemma A2 is proven.

Now we are ready to prove Theorem 4. First, let us define δCi := (Ci − ξi)
+, gi(ξi) := 1/2 + ξi,

i ∈ {1, 2}. Comparing each constraint of the inner bound (13)–(21) with each corresponding constraint
of the outer bound (50)–(69), and utilizing the inequalities in Lemma A2 (marked with (∗) below),
we have:

For individual rate constraints:

• min{c1 + δC1, c′1} in the RHS of (13) is within max{g1(ξ1), f1(∆1)} of the RHS of (50).

Proof. We have:

c1 + (C1 − ξ1)
+

(∗)
≥ 1

2
log(1 + SNR1)−

1
2
+ C1 − ξ1

=
1
2

log(1 + SNR1) + C1 − g1(ξ1),

which is within g1(ξ1) of the outer bound 1
2 log(1 + SNR1) + C1 in RHS of (13). The remaining

gap follows straightforwardly from the lower bound on c′1 in Lemma A2.

• a1 + δC1 + b2 + δC2 (resp. a1 + δC1 + b′2) in the RHS of (14) is within g1(ξ1) + g2(ξ2) (resp.
g1(ξ1) + f2(∆2)) of the first term in the RHS of (50).
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Proof. We have:

a1 + (C1 − ξ1)
+ + b2 + (C2 − ξ2)

+ ≥ a1 + C1 − ξ1 + b2 + C2 − ξ2

(∗)
≥ 1

2
log
(

1 +
SNR1

1 + INR2

)
− 1

2
+ C1 − ξ1

+
1
2

log
(

1 + INR2 +
SNR2

1 + INR1

)
− 1

2
+ C2 − ξ2

≥ 1
2

log (1 + SNR1) + C1 − (ξ1 +
1
2
)− (ξ2 +

1
2
)

=
1
2

log (1 + SNR1) + C1 − g1(ξ1)− g2(ξ2),

which is within g1(ξ1) + g2(ξ2) of the outer bound 1
2 log (1 + SNR1) + C1. Further,

a1 + (C1 − ξ1)
+ + b′2

(∗)
≥ 1

2
log
(

1 +
SNR1

1 + INR2

)
− 1

2
+ C1 − ξ1

+
1
2

log

(
1 + INR2 + INRr2 +

SNR2(1 + η2
2 INRr2) + SNRr2

1 + INR1

)
− f2(∆2)

≥ 1
2

log (1 + SNR1) + C1 − g1(ξ1)− f2(∆2),

which is within g1(ξ1) + f2(∆2) of the outer bound 1
2 log (1 + SNR1) + C1.

• a′1 + b2 + δC2 (resp. a′1 + b′2) in the RHS of (14) is within f1(∆1) + g2(ξ2) (respectively f1(∆1) +

f2(∆2)) of the second term in the RHS of (50).

Proof. We have:

a′1 + b2 + (C2 − ξ2)
+

(∗)
≥ 1

2
log
(

1 +
SNR1 + SNRr1

1 + INR2

)
− f1(∆1)

+
1
2

log
(

1 + INR2 +
SNR2

1 + INR1

)
− 1

2
+ C2 − ξ2

≥ 1
2

log (1 + SNR1 + SNRr1)− f1(∆1)− (
1
2
+ ξ2)

=
1
2

log (1 + SNR1 + SNRr1)− f1(∆1)− g2(ξ2),

which is within f1(∆1) + g2(ξ2) of the outer bound 1
2 log (1 + SNR1 + SNRr1). Next,

a′1 + b′2
(∗)
≥ 1

2
log
(

1 +
SNR1 + SNRr1

1 + INR2

)
− f1(∆1)

+
1
2

log

(
1 + INR2 + INRr2 +

SNR2(1 + η2
2 INRr2) + SNRr2

1 + INR1

)
− f2(∆2)

≥ 1
2

log (1 + SNR1 + SNRr1)− f1(∆1)− f2(∆2),

which is within f1(∆1) + f2(∆2) of the outer bound 1
2 log (1 + SNR1 + SNRr1).

Similar gaps for R2 follow by symmetry.

For sum rate constraints: following the same line of the above proofs we can show that of the
constraints on R1 + R2 in (17)–(19):
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• d1 + δC1 + a2 + δC2, a1 + δC1 + d2 + δC2, b1 + δC1 + b2 + δC2 are within g1(ξ1) + g2(ξ2) of the
RHS’s of (52)–(54), respectively.

• a′1 + d′2, d′1 + a′2, b′1 + b′2 are within f1(∆1) + f2(∆2) of the RHS’s of (56)–(58), respectively.
• a1 + δC1 + d′2, d1 + δC1 + a′2, b1 + δC1 + b′2 are within g1(ξ1) + f2(∆2) of the RHS’s of (60)–(62),

respectively.
• b′1 + b2 + δC2, a′1 + d2 + δC2, d′1 + a2 + δC2 are within f1(∆1) + g2(ξ2) of the RHS’s of (64)–(66),

respectively.

For weighted sum rate constraints: of the inner bounds on 2R1 + R2 in (20), it can be shown that the
bounds a1 + δC1 + d′1 + b2 + δC2 and a1 + δC1 + d′1 + b′2 are redundant. For the remaining bounds:

• a1 + δC1 + d1 + δC1 + b2 + δC2 is within 2g1(ξ1) + g2(ξ2) of the RHS of (55).
• a′1 + d′1 + b′2 is within 2 f1(∆1) + f2(∆2) of the RHS of (59).
• a1 + δC1 + d1 + δC1 + b′2 is within 2g1(ξ1) + f2(∆2) of the RHS of (63).
• a′1 + d′1 + b2 + δC2 is within 2 f1(∆1) + g2(ξ2) of the RHS of (67).
• a′1 + d1 + δC1 + b2 + δC2 is within f1(∆1) + g1(ξ1) + g2(ξ2) of the RHS of (68).
• a′1 + d1 + δC1 + b′2 is within f1(∆1) + g1(ξ1) + f2(∆2) of the RHS of (69).

The gaps for R1 + 2R2 follow directly from the gaps for 2R1 + R2 by symmetry.
To this end, we loosen the gaps obtained from the above comparisons by replacing |h2c|2/|h21|2 in

the definition of ∆1 and ξ1 in (A46) and (A48) with its upper bound θ defined in (75) (similarly done for
∆2 and ξ2). The final step is optimizing ∆1 and ∆2 to minimize the new (loosened) gaps. At this point we
can apply the result in [8] and conclude that the optimal values are ∆1 = ∆2 = 1

4 (
√

θ2 + 16θ + 16− θ).
Direct calculation leads to the optimized gap in (76).

Appendix E. Proof of Proposition 1.

First, by setting Xkc ← Xk, Rkp = 0, k ∈ {1, 2}, Q = 1 in Theorem 1, i.e., the whole message at
each transmitter is set to be the common message, and noticing that each decoder does not interested
in decoding the common message of the unpaired transmitter uniquely, we obtain the following
achievable rate regionRi

S−IRC:

R1 ≤ min{c1 + (C1 − ξ1)
+, c′1} (A57)

R2 ≤ min{c2 + (C2 − ξ2)
+, c′2} (A58)

R1 + R2 ≤ min{d1 + (C1 − ξ1)
+, d′1} (A59)

R1 + R2 ≤ min{d2 + (C2 − ξ2)
+, d′2}. (A60)

From the equations of the received signals Y1, Y2, Yr1, Yr2 in (46)–(49), and by choosing the
distribution of the quantization codebooks Ŷrk = Yrk + Zqk with Zqk ∼ N(0, ∆k), k ∈ {1, 2} we have:

c1 = I(X1; Y1|X2) =
1
2

log(1 + SNR1) (A61a)

c′1 = I(X1; Y1, Ŷr1|X2) =
1
2

log
(

1 + SNR1 +
SNRr1

1 + ∆1

)
(A61b)

d1 = I(X1, X2; Y1) =
1
2

log(1 + SNR1 + INR1) (A61c)

d′1 = I(X1, X2; Y1, Ŷr1) =
1
2

log

(
1 + SNR1 + INR1 +

SNRr1 + INRr1 + SNR1INR1η2
1

1 + ∆1

)
(A61d)

ξ1 = I(Ŷr1; Yr1|X1, X2, Y1) =
1
2

log
(

1 +
1

∆1

)
, (A61e)
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and c2, c′2, d2, d′2, ξ2 follow by symmetry. Next, we choose the quantization level ∆1 = 1. This reflects
the fact that in many networks with relays, it is near optimal for each relay to quantize its received
signal at the noise level [10,42]. It then follows from (A61e) that ξ1 = 1/2. We proceed to compare the
inner and outer bounds, keeping in mind that ∆1 = ∆2 = 1, ξ1 = ξ2 = 1/2, SNR1 + SNRr1 ≤ INR2,
and SNR2 + SNRr2 ≤ INR1.

Individual rate constraints. Direct comparison reveals that

• c1 + (C1 − ξ1)
+ = 1

2 log(1 + SNR1) + (C1 − ξ1)
+ in (A57) is within 1/2 bit of the outer bound

1
2 log(1 + SNR1) + C1 in (50).

• c′1 = 1
2 log

(
1 + SNR1 +

SNRr1
1+∆1

)
in (A57) is within 1/2 bit of the outer bound 1

2 log(1 + SNR1 +

SNRr1) in (50).

Therefore, the inner bound on R1 is within 1/2 bit of the outer bound. The same gap for R2

follows by symmetry.

Sum rate constraints. Direct comparison reveals that

• d1 + (C1− ξ1)
+ = 1

2 log(1+ SNR1 + INR1) + (C1− ξ1)
+ in (A59) is within 1 bit of the outer bound

1
2

log
(

1 +
SNR2 + SNRr2

1 + INR1

)
+

1
2

log(1 + SNR1 + INR1) + C1

in (61).

• d′1 = 1
2 log

(
1+ SNR1 + INR1 +

SNRr1+INRr1+SNR1INR1η2
1

1+∆1

)
in (A59) is within 1 bit of the outer bound

1
2

log
(

1 +
SNR2 + SNRr2

1 + INR1 + INRr1

)
+

1
2

log(1 + INR1 + SNRr1 + INRr1 + SNR1(1 + η2
1 INRr1))

in (57).

By symmetry, it follows that min{d2 + (C2 − ξ2)
+, d′2} is within 1 bit of the outer bounds in (65)

and (56).

Appendix F. Proof of Proposition 2.

We will prove the theorem in the reverse direction, i.e., we fix the power allocation at the
transmitters and the quantization distortion at the relays, and then find the conditions on C1, C2

such that the second terms in the min in the RHS of (22)–(29) are active.
Since we are focusing on the case when the quantization codewords can be recovered correctly at

that destination, i.e., Ŷrk is a channel output at the receiver Rxk, k ∈ {1, 2}, it is reasonable to think of
relay and receiver as single receiver. As such, we expect that the rule of thumb for power allocation
in [10,36] should perform well. Accordingly, we allocate transmit power for the private signal such
that it arrives at the unintended receiver at the level below the noise level. Specifically, we choose

P1p = min
{

1,
1

INR2 + INRr2

}
(A62)

P2p = min
{

1,
1

INR1 + INRr1

}
. (A63)

Moreover, as learned from the linear deterministic model in [10], it is reasonable for each relay
to choose the quantization distortion at the level of undesired signals plus noise perceived by the
associated receiver. In particular we choose

∆1 = 1 + INRr1p, ∆2 = 1 + INRr2p. (A64)



Entropy 2017, 19, 441 35 of 40

Then we have the “rate-loss” terms to be bounded

ξ1 = I(Ŷr1; Yr1|X1, X2c, Y1)

=
1
2

log

[
1 +

1
∆1

(
1 +

INRr1p

1 + INR1p

)]

≤ 1
2

. (A65)

Similarly, ξ2 ≤ 1
2 . In the same line of the proof of Lemma A1 in Appendix D, we can show the

following bounds:

INRr1

1 + INR1 + INRr1
≤ INRr1p ≤ 1 (A66a)

INR1

1 + INR1 + INRr1
≤ INR1p ≤ 1 (A66b)

SNRr1

1 + INR2 + INRr2
≤ SNRr1p (A66c)

SNR1

1 + INR2 + INRr2
≤ SNR1p. (A66d)

Now, in order for the second terms in the min in the RHS of (22)–(29) to be active we need

(C1 − ξ1)
+ ≥ max{a′1 − a1, b′1 − b1, c′1 − c1, d′1 − d1}
= d′1 − d1.

Since ξ1 ≤ 1
2 , a sufficient condition would be

C1 ≥
1
2
+ d′1 − d1

=
1
2
+ I(X1, X2c; Ŷr1|Y1). (A67)

Now we have

I(X1, X2c; Ŷr1|Y1) =
1
2

log

1 + ∆1 +
SNRr1+INRr1+SNR1INRr1η2

1
1+SNR1+INR1

1 + ∆1 +
INRr1p

1+INR1p


(a)
≤ 1

2
log

1 + ∆1 +
SNRr1+INRr1+SNR1INRr1η2

1
1+SNR1+INR1

1 + ∆1 +
INRr1p

2


(b)
≤ 1

2
log

[
(SNRr1 + INRr1 + SNR1INRr1η2

1)(1 + INR1 + INRr1) + (4 + 4INR1 + 6INRr1)(1 + SNR1 + INR1)

(4 + 4INR1 + 7INRr1)(1 + SNR1 + INR1)

]
,

where (a) follows from the upper bound on INR1p in (A66b), (b) follows from the lower bound on
INRr1p in (A66a). Hence, a sufficient condition for C1 is

C1 ≥ 1
2 log

[
2(SNRr1+INRr1+SNR1INRr1η2

1)(1+INR1+INRr1)+2(4+4INR1+6INRr1)(1+SNR1+INR1)
(4+4INR1+7INRr1)(1+SNR1+INR1)

]
. (A68)
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Due to this condition on C1 (and similarly for C2), the achievable rate region in Theorem 1 reduces to

R1 ≤ c′1 (A69)

R1 ≤ a′1 + b′2 (A70)

R2 ≤ c′2 (A71)

R2 ≤ a′2 + b′1 (A72)

R1 + R2 ≤ a′1 + d′2 (A73)

R1 + R2 ≤ b′1 + b′2 (A74)

R1 + R2 ≤ d′1 + a′2 (A75)

2R1 + R2 ≤ a′1 + d′1 + b′2 (A76)

R1 + 2R2 ≤ b′1 + a′2 + d′2. (A77)

Let us define

g1(∆1) :=
1
2

log((1 + ∆1)(1 + INR1p) + INRr1p)

g2(∆2) :=
1
2

log((1 + ∆2)(1 + INR2p) + INRr2p).

Using the bounds in (A66a)–(A66d) we have

g1(∆1) ≤
1
2

log(7) (A78a)

g2(∆2) ≤
1
2

log(7), (A78b)

and

a′1 = I(X1; Y1, Ŷ1r|X1c, X2c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1p + INR1p) + SNRr1p + INRr1p(1 + η2

1SNR1p)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

log
(
1 + SNR1p + SNRr1p)

)
− g1(∆1)

≥ 1
2

log
(

1 +
SNR1 + SNRr1

1 + INR2 + INRr2

)
− g1(∆1).

In the same way we can show that

b′1 = I(X1, X2c; Y1, Ŷ1r|X1c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1p + INR1) + SNRr1p + INRr1(1 + η2

1SNR1p)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

log

(
1 + INR1 + INRr1 +

SNR1(1 + η2
1 INRr1) + SNRr1

1 + INR2 + INRr2

)
− g1(∆1).

c′1 = I(X1; Y1, Ŷ1r|X2c)

=
1
2

log

(
(1 + ∆1)(1 + SNR1 + INR1p) + SNRr1 + INRr1p(1 + η2

1SNR1)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

log (1 + SNR1 + SNRr1)− g1(∆1).
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d′1 = I(X1, X2c; Y1, Ŷ1r)

=
1
2

log

(
(1 + ∆1)(1 + SNR1 + INR1) + SNRr1 + INRr1(1 + η2

1SNR1)

(1 + ∆1)(1 + INR1p) + INRr1p

)

≥ 1
2

(
1 + INR1 + INRr1 + SNR1(1 + η2

1 INRr1) + SNRr1

)
− g1(∆1).

The preceding inequalities lead to the following gap between inner and outer bounds:

• Constraints on R1:

– The RHS of (A69) is within g1(∆1) of the RHS of (50).
– The RHS of (A70) is within g1(∆1) + g2(∆2) of the RHS of (50).

• Constraints on R2 follow by symmetry.
• Constraints on R1 + R2:

– The RHS of (A73) is within g1(∆1) + g2(∆2) of the RHS of (56).
– Similarly for the RHS of (A75).
– The RHS of (A74) is within g1(∆1) + g2(∆2) of the RHS of (58).

• Constraint on 2R1 + R2:
The RHS of (A76) is within 2g1(∆1) + g2(∆2) of the RHS of (59).

• Constraint on 2R1 + R2 follows by symmetry.

In summary, we conclude that inner bound on the individual rates are within g1(∆1) + g2(∆2)

bits of the outer bound, inner bound on R1 + R2 is within g1(∆1) + g2(∆2) of the outer bound, inner
bound on 2R1 + R2 is within 2g1(∆1) + g2(∆2) of the outer bound, and inner bound on R1 + 2R2 is
within g1(∆1) + 2g2(∆2) of the outer bound. Using (A78) we obtain the desired gap. Finally, recall
that the outer bounds we have just used are derived by assuming each receiver cooperates with its
associated relay.

Appendix G. Proofs of Lemma 1 and Lemma 2.

Proof of Lemma 1: by setting the whole message at each transmitter to be private, i.e., setting Xkc = ∅,
Rkc = 0, k ∈ {1, 2}, and Q = const in Theorem 1, the achievable rate region for the IRC reduces to a
rectangle given by

R1 ≤ min{I(X1; Y1) + (C1 − I(Ŷr1; Yr1|X1, Y1))
+, I(X1; Y1, Ŷr1)}

R2 ≤ min{I(X2; Y2) + (C2 − I(Ŷr2; Yr2|X2, Y2))
+, I(X2; Y2, Ŷr2)}.

Extending the above achievable region to the Gaussian IRC, as described in Section 4.2, with the
quantization distortion ∆k = 1 + INRrk, k ∈ {1, 2}, we can easily show that I(Xk; Yk) + (Ck −
I(Ŷrk; Yrk|Xk, Yk))

+ ≤ I(Xk; Yk, Ŷrk) if the conditions in (79) are satisfied. Hence, the resulting
achievable region is given by

R1 ≤ I(X1; Y1) + (C1 − I(Ŷr1; Yr1|X1, Y1))
+

R2 ≤ I(X2; Y2) + (C2 − I(Ŷr2; Yr2|X2, Y2))
+,

which gives rise to the achievable sum rate Cw
lb = R1 + R2 in explicit form in (80).
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Proof of Lemma 2: recall that we denote the sequences sent over the digital links by Vn
1 and Vn

2 . By the
Fano’s inequality

n(R1 + R2 − 2εn) ≤ I(Xn
1 ; Yn

1 , Vn
1 ) + I(Xn

2 ; Yn
2 , Vn

2 )

≤ I(Xn
1 ; Yn

1 ) + H(Vn
1 ) + I(Xn

2 ; Yn
2 ) + H(Vn

2 )

≤ I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) + nC1 + nC2, (A79)

where εn → 0 as n→ ∞. Under the condition (81) we can proceed to bound I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) in
the same way as done in [37–39]. Specifically, we can find a useful and smart genie, which gives us

I(Xn
1 ; Yn

1 ) + I(Xn
2 ; Yn

2 ) ≤
n
2

log
(

1 +
SNR1

1 + INR1

)
+

n
2

log
(

1 +
SNR2

1 + INR2

)
. (A80)

Combining (A79) and (A80) we have Lemma 2 proven.

Appendix H. Proof of Proposition 4.

Similarly to the Gaussian IRC in the strong interference regime, we also set the whole message at
each transmitter to be the common message, i.e., Xkc ← Xk, Rkp = 0, k ∈ {1, 2}, Q = 1 in (22)–(29). As a
result, the achievable rate regionRi

C−MARC consists of (A57)–(A60) plus two extra conditions given
below, which follows from (27) and (23), due to the fact that each decoder is to decode both messages:

R1 ≤ min{b2 + (C2 − ξ2)
+, b′2} (A81)

R2 ≤ min{b1 + (C1 − ξ1)
+, b′1}. (A82)

By the same procedure for quantization as for the Gaussian IRC with strong interference in
Appendix E, we obtain c1, c′1, d1, d′1, ξ1 as in (A61), plus

b1 = I(X2; Y1|X1) =
1
2

log(1 + INR1) (A83)

b′1 = I(X2; Y1, Ŷr1|X1) =
1
2

log
(

1 + INR1 +
INRr1

1 + ∆1

)
, (A84)

and symmetrically for b2, b′2, c2, c′2, d2, d′2, ξ2. Note that we also choose ∆1 = ∆2 = 1, which make
ξ1 = ξ2 = 1/2 (see (A61e)). Keeping these in mind, let us compare the inner and outer bounds.

Individual rate constraints.

• c1 + (C1 − ξ1)
+ = 1

2 log(1 + SNR1) + (C1 − ξ1)
+ in (A57) is within 1/2 bit of the outer bound

1
2 log(1 + SNR1) + C1 in (84).

• c′1 = 1
2 log

(
1 + SNR1 +

SNRr1
1+∆1

)
in (A57) is within 1/2 bit of the outer bound 1

2 log(1 + SNR1 +

SNRr1) in (84).
• b2 + (C2 − ξ2)

+ = 1
2 log(1 + INR2) + (C2 − ξ2)

+ in (A81) is within 1/2 bit of the outer bound
1
2 log(1 + INR2) + C2 in (85).

• b′2 = 1
2 log

(
1 + INR2 +

INRr2
1+∆2

)
in (A81) is within 1/2 bit of the outer bound 1

2 log(INR2 + INRr2)

in (85).

Therefore we conclude the active inner bound on R1 is within 1/2 bit of some outer bound.
By symmetry we obtain the same result for R2.

Sum rate constraints.

• d1 +(C1− ξ1)
+ = 1

2 log(1+SNR1 + INR1)+ (C1− ξ1)
+ in (A59) is within 1/2 bit of the outer bound

1
2

log(1 + SNR1 + INR1) + C1,
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in (88).

• d′1 = 1
2 log

(
1 + SNR1 + INR1 +

SNRr1+INRr1+SNR1INR1η2
1

1+∆1

)
in (A59) is within 1/2 bit of the outer

bound
1
2

log
(

1 + SNR1 + INR1 + SNRr1 + INRr1 + SNR1INR1η2
1

)
,

in (90).

Similarly we obtain the same gaps for the two remaining bounds on R1 + R2. Accordingly we
conclude that the active inner bound on sum rate is within 1/2 bit of some outer bound.

Finally, since the inner bound is within 1/2 bit of the outer bound, the inner bound is within 1/2
bit of the capacity region of the channel.
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