
entropy

Article

A Numerical Study on Entropy Generation in
Two-Dimensional Rayleigh-Bénard Convection at
Different Prandtl Number

Yikun Wei 1,*,†, Zhengdao Wang 2,*,† and Yuehong Qian 2

1 Faculty of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China
2 Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University,

Shanghai 200072, China; qian@shu.edu.cn
* Correspondence: ykun_wei@sina.com (Y.W.); dao527@126.com (Z.W.)
† These authors contributed equally to this work.

Received: 2 July 2017; Accepted: 21 August 2017; Published: 30 August 2017

Abstract: Entropy generation in two-dimensional Rayleigh-Bénard convection at different Prandtl
number (Pr) are investigated in the present paper by using the lattice Boltzmann Method.
The major concern of the present paper is to explore the effects of Pr on the detailed information of
local distributions of entropy generation in virtue of frictional and heat transfer irreversibility and
the overall entropy generation in the whole flow field. The results of this work indicate that the
significant viscous entropy generation rates (Su) gradually expand to bulk contributions of cavity
with the increase of Pr, thermal entropy generation rates (Sθ) and total entropy generation rates
(S) mainly concentrate in the steepest temperature gradient, the entropy generation in the flow is
dominated by heat transfer irreversibility and for the same Rayleigh number, the amplitudes of Su,
Sθ and S decrease with increasing Pr. It is found that that the amplitudes of the horizontally averaged
viscous entropy generation rates, thermal entropy generation rates and total entropy generation rates
decrease with increasing Pr. The probability density functions of Su, Sθ and S also indicate that a
much thinner tail while the tails for large entropy generation values seem to fit the log-normal curve
well with increasing Pr. The distribution and the departure from log-normality become robust with
decreasing Pr.
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1. Introduction

Natural convection heat transfer is widely applied in some important processes in engineering
such as thermal storage, environmental comfort, grain drying, electronic cooling and other
areas [1,2]. Rayleigh-Bénard (RB) convection is one of most classical natural convection in engineering.
Several works with experimental [3–11] and numerical approaches [12–18] in various areas are
available.Various Prandtl (Pr) numbers that range from 0(10−2) for mercury and molten metals to
0(104) for silicon oils have raised concern in various applications convection. The Pr values of 1023

in the viscous rocky part of the Earth’s mantle further emerges in convection of planetary interiors.
Thus, a systematic investigation of the dependence of the efficiency loss on the Prandtl number is
worth performing. The process efficiency loss in all real processes can be closely related with the
friction, mass transference, thermal gradients, chemical reactions, etc. Previous studies of entropy
had emphasized potential advantages to evaluation of loss in engineering applications [13,14,19–22].
De reported the entropy generations due to heat and flow transport in the cavity and minimizing the
entropy generation by using the second law of thermodynamics [13]. An optimal configuration with
minimum loss of available energy may be gained using this method.
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The importance of thermal boundary conditions in heat transfer processes and entropy generation
characteristics inside a porous enclosure was investigated by Zahmatkesh [14]. To do this, a wide
range of Darcy-modified Rayleigh numbers was analyzed by simulating the natural convection
processes in a porous enclosure. Nayak [19] reported that combination of entropy generation with
nanofluid-filled cavity block insertion. The thermodynamic optimization of the mixed convection
were demonstrated by evaluating entropy generation and Bejan number. It is showed that the heat
transfer rate increases remarkably by the addition of nanoparticles. The natural convection and entropy
generation of nanofluid-filled cavities having different shaped obstacles with magnetic field effect was
studied by Oztop [20]. It should be mentioned to this end the very good review paper on entropy
generation in nanofluid flow by Mahian et al. [21]. A critical review of contributions to the theory
and application of entropy generation analysis to different types of engineering systems was reported
by Sciacovelli et al. [22]. The focus of the work is only on contributions oriented toward the use of
entropy generation analysis as a tool for the design and optimization of engineering systems [22].

The main aim of the present work is the study of entropy generation in RB convection processes at
different Prandtl numbers based on the minimal entropy generation principle by numerical simulation.
The minimal entropy generation principle is that entropy generation in flow systems is associated
with a loss of exergy. This is important, when exergy is used in a subsequent process and therefore its
loss has to be minimized. The detailed information of local distributions of entropy generation due to
frictional and heat transfer irreversibility at different Prandtl numbers as well as the overall entropy
generation in the whole flow field are analyzed separately. All the numerical simulations have been
implemented using a lattice Boltzmann scheme. Previous studies of the lattice Boltzmann method had
emphasized potential advantages in a variety of single, multiphase and thermal fluid hydrodynamic
problems [23–29]. Governing equations and numerical methods will be briefly described first in
the following section. After that, the detailed numerical results and discussions are presented.
Finally, some concluding remarks are provided.

2. Governing Equations and Numerical Method

2.1. Governing Equations

To study the dynamics of the fluid, the classical Oberbeck-Boussinesq (Ahlers et al. [8]; Lohse and
Xia [6]) equations are adopted in this paper:

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂(ρu)
∂t

+∇ · (ρuu) = −∇p +∇ · (2ρνS)− gβ∆θ (2)

∂θ

∂t
+ u · ∇θ = κ∇2θ (3)

where ν and κ represent the kinematic viscosity and the diffusivity, respectively.

2.2. Entropy Generation

The amount of phenomenological information contained in the local entropy generation rates
are studied by many researchers. As discussed in Bejan [30], Iandoli [31], Magherbi [32], Rejane [33],
Mahian [21], Sheremet [34], Bhatt [35,36], Abbas [37] and Qing [38], etc., it is possible to derive an
exact formula for both the viscous and the thermal components of the local entropy generation rates.
In Cartesian notation of two-dimensional, the expressions are as follows:
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Sθ =
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∂y
)

2
]

(5)

and the total entropy generation rates can be given by:

S = Su + Sθ (6)

Previous studies of the Bejan number (Be) had emphasized potential advantages to the importance
of heat transfer irreversibility in the domain [39]. Be is proposed by Paoletti et al. [39]. Paoletti et al.
investigated he contribution of heat transfer entropy generation on over all entropy generation by
using the Be. Be is defined as:

Be =
Sθ

S
(7)

The range of Be is from 0 to 1. When Be is equal to 0, the irreversibility is dominated by fluid
friction. Correspondingly, the irreversibility is dominated by heat transfer when Be is equal to 1. The
irreversibility due to heat transfer dominates in the flow when Be is greater than 1/2. Correspondingly,
Be < 1/2 implies that the irreversibilities due to the viscous effects dominate the processes. Meanwhile,
it is also noted that the heat transfer and fluid friction entropy generation are equal in Be = 0.5 [39].

2.3. Numerical Method

Two simple lattice Bhatnagar-Gross-Krook (LBGK) collision operator are introduced. Specially,
the evolution of LBGK is described by the following equation [27–29]:

fi(x + ci∆t, t + ∆t) = fi(x, t) + ( f eq
i (x, t)− fi(x, t))/τν + Fi (8)

gi(x + ci∆t, t + ∆t) = gi(x, t) + (geq
i (x, t)− gi(x, t))/τθ (9)

where fi(x, t), gi(x, t) stand for the probability density functions to find at (x, t) a particle velocity
belongs to a discrete and limited set ci (with i = 0, · · · , 8 in the D2Q9 adopted here).Fi is the discrete
mesoscopic force corresponding with buoyant body force of Equation (2), τν and τθ are the relaxation
times for flow and temperature in lattice Boltzmann equations, respectively. The equilibrium function
for the density distribution function is given as [28]:

f eq
i = ρwi[1 +

ci · u
c2

s
+

(ci · u)2

c4
s
− u2

2c2
s
] (10)

geq
i = θwi[1 +

ci · u
c2

s
+

(ci · u)2

c4
s
− u2

2c2
s
] (11)

where wi is the associated weighting coefficient [23]. The kinematic viscosity ν and the diffusivity κ

are given by:

ν =
2τν − 1

6
(∆x)2

∆t
, κ =

2τθ − 1
6

(∆x)2

∆t
(12)

Density, momentum, and temperature are defined as coarse-grained (in velocity space) fields of
the distribution functions:

ρ =
8

∑
i=0

fi, ρu =
8

∑
i=0

ci fi, θ =
8

∑
i=0

gi, (13)

A Chapman-Enskog expansion leads to the equations for density, momentum, and temperature
from (8) and (9). To derive the classical Oberbeck-Boussinesq equations (Equations (1)–(3)),
Two macroscopic time scales (t1 = εt, t2 = εt) and a macroscopic length scale (x1 = εx) are introduced.
As for the FHP model two time scales and one spatial scale with ∂t = ε∂t1 + ε2∂t2 and ∂x = ε∂α will be
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introduced. According to the above Chapman-Enskog expansion, the streaming step on the left-hand
side reproduces the inertial terms in the classical Oberbeck-Boussinesq equations (Equations (1)–(3)).

Two important dimensionless parameters in RB convection are introducted in the following
section. Ra is defined as Ra = β∆θgH3/νκ. The enhancement of the heat transfer can be calculated
by the Nusselt number Nu = 1 +

〈
uyθ
〉
/κ∆θH in the numerical results of LBM, where ∆θ is the

temperature difference between the bottom and top walls, H is the channel height, uy is the vertical
velocity, and 〈.〉 represents the average over the whole flow domain.

3. Simulation Results and Discussions

3.1. Analysis of Su and Sθ

The entropy generation problem due to RB convection with various Pr in rectangular cavities
is investigated. The incompressible, the Boussinesq approximation and the two-dimensional flow
characteristics are implemented in the present paper. Schematic view of cavity is indicated in Figure 1.
The grid verification of the results is inspected before the comparison. One example of the Rayleigh
number of 5.4 × 109 is presented in Table 1. The number of grid points is taken the same in both the x
and y directions in the present study. The size of grid points is taken as N × N, in which N is the grid
number in each spatial direction. It is shown that the calculated Nusselt number (Nu) changes with N.
It is seen that when N increases, the Nu quickly approaches the benchmark result at Table 1. When N
further increases from 2012 to 2400, not much improvement occurs for the result. So we can say that
2012 × 2012 lattices can give very accurate results for Ra = 5.4 × 109.
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Figure 1. Schematic view of cavity.

Table 1. Grid verification for RB convection in a square cavity at Ra = 5.4 × 109.

Mesh 600 × 600 1200 × 1200 2012 × 2012 2200 × 2200 2400 × 2400

Nu 683.23 693.08 697.35 697.36 697.36

Numerical simulations of two-dimensional RB convection at Pr = 6, 20, 100 and 106 are
implemented by using LBM at Ra = 5.4 × 109 in the present study. All two-dimensional simulations
at different Pr are performed on 2012 × 2012 lattices. The no-slip boundary conditions are executed
for top and bottom plates, which is same as left and right boundary condition in all simulations.
The dimensionless initial temperature of bottom plates is equal to 1, and the dimensionless initial
temperature of top plates is equal to 0. And the initial temperature between top and bottom plates is
linear distribution from 0 to 1. When the heat flow about 2012 × 2012 lattice domain reaches steady
state, CPU time of one case is 10 h by using the CPU of 16 cores.

Figure 2a–d show flow field and typical snapshots of the instantaneous temperature field obtained
at four Prandtl number (Pr = 6, 20, 100, 106 and Ra = 5.4 × 109). Blue (red) regions correspond to
cold (hot) fluid. Large-scale circulations of the fluid are shaped, which develop mainly in the regions
among the center of cavity at Figure 2a. And small vortex are emerged in four corners of square cavity,
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respectively. Large-scale circulations of the fluid in cavity are dissolved gradually with increasing Pr,
which is similar to visualization of experiment for large Pr [6,11]. Large-scale structures of smaller
thermal plumes gradually develop into rise and fall with increasing Pr from the bottom to top walls.
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Figure 2. Flow field and temperature distributions at various Prandtl numbers from (a–d) (Pr = 6, 20,
100, 106 and Ra = 5.4 × 109).

The corresponding logarithmic fields of viscous entropy generation rates Su at four Prandtl
number are shown in Figure 3a–d. From Figure 3a, it can be seen that the significant Su concentrates in
the narrow region adjacent to the walls at Pr = 6, which is resulted from the steepest velocity gradient
in the near-wall regions. It is observed that with the increase of Pr, the significant Su gradually expands
to bulk contributions of cavity from Figure 3b to Figure 3d, which is resulted from the steepest velocity
gradient in the bulk of cavity.
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and Ra = 5.4 × 109).

The distributions of thermal entropy generation rates Sθ for the four cases are shown in Figure 4.
It is observed that the significant Sθ concentrates in the narrow region adjacent to the walls at Pr = 6
in Figure 4a, which is resulted from the steepest temperature gradient in the near-wall regions.
From Figure 4b to Figure 4d, it is can be seen that the significant Sθ gradually expands to bulk
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contributions of cavity, which is resulted from the steepest temperature gradient in the bulk of
the cavity.
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The corresponding logarithmic fields of the total entropy generation rates S are shown in Figure 5.
Respectively, S is similar to the visualization of Sθ at the same Pr, which shows that the heat transfer
dominates in the flow of cavity. Comparing Figures 3 and 4, it is noted that Sθ is much larger than
Su. This also indicates the entropy generation in the flow is dominated by heat transfer irreversibility.
Moreover, one sees that the amplitudes of both Su and Sθ decrease with increasing Pr.
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Figure 6 shows the distribution of Be at different Pr. For all cases, the values of Be in the region
distributes in cavity, the region with Be greater than 0.5 distributes in the boundary layer and bulk
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contributions of cavity, which also indicates the entropy generation in the region is dominated by the
heat transfer irreversibility.
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3.2. Vertical Profiles of Su and Sθ

Figure 7 displays the vertical profiles of the horizontally averaged viscous entropy generation
rates 〈Su〉x at various Pr. From Figure 7, it can be seen that the the horizontally averaged viscous
entropy generation rates 〈Su〉x of the top boundary layer and the bottom boundary layer is greater
than the bulk contributions of cavity at various Pr, which is resulted from the steepest velocity gradient
in the near-wall regions. Moreover, one sees that the amplitudes of the horizontally averaged viscous
entropy generation rates 〈Su〉x decrease with increasing Pr.
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at various Prandtl numbers.

The vertical profiles of the horizontally averaged thermal entropy generation rates 〈Sθ〉x is shown
in Figure 8. Comparing Figures 7 and 8, it is noted that the horizontally averaged thermal entropy
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generation rates 〈Sθ〉x is similar to the horizontally averaged viscous entropy generation rates 〈Su〉x.
This also indicates that the horizontally averaged thermal entropy generation rates 〈Sθ〉x of the top
boundary layer and the bottom boundary layer is greater than bulk contributions of cavity at various
Pr. Figure 9 shows the horizontally averaged total entropy generation rates 〈S〉x, which is also
similar to the horizontally averaged viscous entropy generation rates. Moreover, it is observed that the
amplitudes of the horizontally averaged total entropy generation rates also decrease with increasing Pr.
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Figure 10 shows that the mean values of Su, Sθ and S in the whole area versus Pr. It is observed
that the mean values of Su, Sθ and S in the whole area decrease with increasing Pr for the same
Rayleigh number. It is also observed that the value of the thermal entropy generation is the two order
of magnitude of viscous entropy generation, which also indicates the entropy generation in the flow is
dominated by heat transfer irreversibility.
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3.3. Probability Density Functions (PDFs) of Su and Sθ

Figures 11–13 plot the probability density functions (PDFs) of Su, Sθ and S normalized

by their respective rms value (Su)rms =
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[Su − 〈Su〉V ]
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at various Pr. Self-similarity of viscous entropy generation rates,

thermal entropy generation rates and total entropy generation rates fluctuations is revealed by the
observations that the PDFs obtained at distinct times collapse well on top of each other for Su, Sθ and S.
In addition, strong fluctuations for Su, Sθ and S are revealed by the observations that the long tail of the
calculated PDFs. In correspondence with the cases of both passive [40] and active scalars, a stretched
exponential function is used to fit to the fraction of the PDF that extends from the most probable (mp)
amplitude to the end of the tail. A stretched exponential function is given as:

p(Y) =
C√
Y

exp(−mYα) (14)

where C, m, and α are fitting parameters, and Y = X − Xmp with X = Su/(Su)rms, Sθ/(Sθ)rms , S/(S)rms

and Xmp being the abscissa of the most probable amplitude. The best fit of Equation (14) to the data
yields m = 0.86 and α = 0.72 for Su, m = 1.15 and α = 0.69 for Sθ and m = 1.06 and α = 0.72 for S.
To highlight the differences in our present case for various Pr, we plot in Figure 11 the PDFs of Su,
in Figure 12 the PDFs of Sθ and in Figure 13 the PDFs of S in a log-log scale.
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The dashed lines in in Figures 11–13 indicate the log-normal distribution for comparison at
various Pr. It is seen that for viscous entropy generation rates, thermal entropy generation rates and
total entropy generation rates, small entropy generation values show a much thinner tail while the
tails for large entropy generation values seem to fit the log-normal curve well with increasing Pr.
The distribution and the departure from log-normality become robust within the self-similarity range
with decreasing Pr.

4. Conclusions

The entropy generation for two-dimensional thermal convection at different Pr are investigated
in the present study with LBM. Special attention is paid to analyze separately the detailed information
of local distributions of entropy generation in virtue of frictional and heat transfer irreversibility and
the overall entropy generation in the whole flow field. Several conclusions can be summarized.

Firstly, the significant Su gradually expands to bulk contributions of cavity with the increase of Pr,
which is resulted from the steepest velocity gradient in the bulk of cavity. Sθ and S mainly concentrate
in the steepest temperature gradient in cavity.

In addition, the entropy generation in the flow heat transfer irreversibility plays an important
role, frictional irreversibility can be neglected.
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Thirdly, the amplitudes of Su, Sθ and S decrease with increasing Pr for the same Rayleigh number.
Further, the amplitudes of the horizontally averaged Su, Sθ and S decrease with increasing Pr.

Finally, the PDFs of Su, Sθ and S obtained at various Pr indicate that with increase of Pr, the tails
for large entropy generation values seem to fit the log-normal curve well while a much thinner tail.
The distribution and the departure from log-normality become robust with decreasing Pr.

In this study it was possible to observe that the thermal and hydrodynamic problem is highly
coupled. For a thermophysical configuration involving thermal convection, the larger Pr are the
better option. Increasing Pr increase the systems efficiency. This different Pr and thermophysical
configuration could be applied, for example, in technical applications convection is characterized by
very different Pr, ranging from 0(10−2) for mercury and molten metals to 0(104) for silicon oils.
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