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Abstract: To determine the number of clusters in the clustering analysis that has a broad range of applied
sciences, such as physics, chemistry, biology, engineering, economics etc., many methods have been
proposed in the literature. The aim of this paper is to determine the number of clusters of a dataset in
a model-based clustering by using an Analytic Hierarchy Process (AHP). In this study, the AHP model
has been created by using the information criteria Akaike’s Information Criterion (AIC), Approximate
Weight of Evidence (AWE), Bayesian Information Criterion (BIC), Classification Likelihood Criterion
(CLC), and Kullback Information Criterion (KIC). The achievement of the proposed approach has been
tested on common real and synthetic datasets. The proposed approach based on the corresponding
information criteria has produced accurate results. The currently produced results have been seen to
be more accurate than those corresponding to the information criteria.

Keywords: model-based clustering; cluster analysis; information criteria; analytic hierarchy process

1. Introduction

Many clustering algorithms have been encountered in the literature. The clustering algorithms can
be categorized into centroid-based clustering, connectivity-based clustering, model-based clustering,
and so on [1]. Since each one of the clustering algorithms is of great importance in its own application
area, and thus model-based clustering has a very large application field, the present study focuses on
the use of the model-based clustering one with the combination of the Analytic Hierarchy Process
(AHP). Since the AHP is one of the most important multi-criteria decision making (MCDM) [2]
and determining the number of clusters can be modeled as the MCDM problem [3,4], this work
pays its attention to the consideration of the AHP in deciding the number of clusters of datasets in
a combination way with model-based clustering.

Pearson [5] first introduced the idea of the mixture distribution model by studying a mixture
of two univariate normal distributions with different means and variances. Later on, many related
works [6–8] have been carried out. Model-based clustering based on a mixture of distributions has
commonly been used in the clustering of datasets. Some of those who used the mixture of multivariate
normal distributions in the cluster analysis are Wolfe [9,10], Day [11], and Binder [12]. To estimate
parameters in the mixture distribution model, the Expectation-Maximization (EM) algorithm suggested
by Dempster et al. [13] has been widely used [14,15].

Model-based clustering based on finite normal mixture models is the most commonly used
approach [16–31]. In estimating the number of clusters in model-based clustering, the information
criteria have widely been used [32–42]. Some of the common criteria in the literature are Akaike’s
Information Criterion (AIC) [32], Approximate Weight of Evidence (AWE) [37], Bayesian Information
Criterion (BIC) [33], Classification Likelihood Criterion (CLC) [39], Kullback Information Criterion
(KIC) [40], etc. These information criteria may give different results in estimating the number of
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clusters of a dataset. For example, while the number of clusters in the Iris dataset [43] is 3, according to
AIC, AWE, BIC, CLC, and KIC, the number of clusters in the set has been seen to be 4, 2, 2, 4, and 3,
respectively (Table 7). The Iris is a multivariate dataset introduced by Ronald Fisher [43] and the
dataset consists of 50 samples from each of three species: setosa, virginica, and versicolor. Each one
of the criteria has been seen to possibly produce a different number of clusters for the same dataset.
To overcome this problem, model-based clustering and the AHP have been combined. The AHP model
has been created by using the information criteria AIC, AWE, BIC, CLC and KIC. For the first time,
to the best of authors’ knowledge, the number of clusters of a dataset in a model-based clustering has
been determined by using the AHP. Thus, the common influence of those information criteria has been
benefited. Satisfactory results have been obtained in terms of the suggested model.

The rest of the paper is organized as follows. Section 2 describes the model-based clustering,
the AHP model, and the proposed approach. Section 3 presents details of the experimental study and
analyses the results. Finally, Section 4 presents our conclusions and recommendation.

2. Materials and methods

2.1. The Model-Based Clustering

The model-based clustering assumes that a dataset to be clustered consists of various clusters with
different distributions. The entire dataset is modeled by a mixture of these distributions. The clustering
assumes a set of n p-dimensional vectors y1, . . . , yn of observations from a multivariate mixture of
a finite number of g components or clusters each with some unknown mixing proportions or weights
π1, . . . , πg [44]. The probability density function (PDF) of finite mixture distribution models can be
given by

f
(
yj; Ψ

)
=

g

∑
i=1

πi fi
(
yj; θi

)
(1)

where fi(yj; θi) is the PDF of the components. Here 0 ≤ πi ≤ 1 and ∑
g
i=1 πi = 1 (i = 1, . . . , g and

j = 1, 2, . . . , n). The parameter vector Ψ = (π, θ) contains all of the parameters of the mixture models.
Here θ = (θ1, θ2, . . . , θg) denotes the unknown parameters of the PDF of the i-th components in the
mixture models [17].

In the model-based clustering, the cluster analysis based on the mixture of multivariate normal
distributions is the most commonly used. In this case, in Equation (1), fi(yj; θi)’s are assumed to be
multivariate normal distribution function of the form

fi(yj; θi) =
1

(2π)
p
2 |Σi|

1
2

e{−
1
2 (xj−µi)

TΣ−1
k (xj−µi)} (2)

where µi and Σi stand for the mean vector and the covariance matrix, respectively (i = 1, 2, . . . , g).
Here, θi stems from the mean compound vectors µ = (µ1, µ2, . . . , µg) and the compound covariance
matrices Σ = (Σ1, Σ2, . . . , Σg) of the parameters of the compound PDF in the mixture distribution
model [17].

The mixture likelihood approach has been used for estimating the parameters in the mixture
models. This approach assumes that the PDF is the sum of the weighted component densities. If the
mixture likelihood approach is used for clustering, the clustering problem comes out to be a problem
of estimating the parameters of the assumed mixture distribution model. The maximum-likelihood
function can then be given as follows [45],

L(Ψ) =
n

∏
j=1

g

∑
i=1

πi fi
(
yj
∣∣ θi
)
. (3)

The most widely used approach for parameter estimation is the EM algorithm [17].
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Determination of the number of clusters is one of the most important problems in the cluster
analysis. The information criteria for the number of clusters have often been used in model-based
clustering. The criteria to be used in this study are given in Table 1.

Table 1. The information criteria for the model selection.

Criteria Formula Reference

AIC −2logL(Ψ̂) + 2d Akaike [32]
AWE −2logLc + 2d(3/2 + logn) Banfierd and Raftery [37]
BIC −2logL(Ψ̂) + dlog(n) Schwarz [33]
CLC −2logL(Ψ̂) + 2EN(τ̂) Biernacki and Gnvaert [39]
KIC −2logL(Ψ̂) + 3(d + 1) Cavanaugh [40]

n: The number of observations; d: The number of parameters in the model.

A model that gives the minimum of the values of the criteria AIC, AWE, BIC, CLC, and KIC are
selected to be the best model. In Table 1, the log-likelihood function for the completed data is shown
as logLc (Ψ) = logL (Ψ) + EN(τ). Here, EN (τ) = −∑

g
i=1 ∑n

j=1 τijlogτij is the entropy of the related
classification matrix [46].

2.2. The Analytic Hierarchy Process (AHP)

The AHP was developed by Saaty [2]. The AHP is one of the most widely used multiple criteria
decision-making tools. The AHP is a method for structuring, measurement, and synthesis [47].
The AHP is a hierarchical structure consisting of goal, criteria, and alternatives [48]. The AHP chooses
the best one among the alternatives, taking into account the goal and the criteria [49]. In addition,
the AHP is a mathematical approach that evaluates qualitative and quantitative variables together.
The literature [50] tells us that the AHP has been implemented in various fields of science such as
selecting a best alternative, planning, optimization, etc. To solve decision-making problems using the
AHP, the following steps are applied [48–52]:

Structuring: Initially goal, criteria, and alternatives are determined. Then, the hierarchy model
is constructed at different levels according to the structure of the problem. A three level-hierarchy,
that has k criteria and m alternatives, can be given in Figure 1.

Figure 1. A three-level hierarchy.

Measurement: Firstly, a decision matrix is formed. The decision matrix involves the assessments of
each alternative with respect to the decision criteria. The decision matrix has been given in Table 2.
Here, element dij indicates the importance level of the i-th alternative with respect to the j-th criterion
(i = 1, 2, . . . , m; j = 1, 2, . . . , k).
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Table 2. The decision matrix.

Criterion 1 Criterion 2 . . . Criterion k

Alternative 1 d11 d12 . . . d1k
Alternative 2 d21 d22 . . . d2k

...
...

...
...

...
Alternative m dm1 dm2 . . . dmk

Secondly, the pairwise comparison matrices of the criteria and alternatives for each criterion have
been produced. In general, the pairwise comparison matrix is constructed as in Table 3. Here, aij stands
for the degree of preference of the i-th criterion/alternative over j-th criterion/alternative (aii = 1;
aij = 1/aji), and Sumt is summation of the t-th column the pairwise comparison matrix.

Table 3. The pairwise comparison matrix.

X1 X2 . . .

X1 a11 a12 . . .
X2 a21 a22 . . .
. . . . . . . . . . . .

Sum Sum1 Sum2 . . .

Xt: t-th criterion (t = 1, 2, . . . , k)/t-th alternative (t = 1, 2, . . . , m).

Synthesis: To find the maximum eigenvalue (λmax), consistency index (CI), consistency ratio (CR),
and normalized eigenvector of each pairwise comparison matrix, the necessary calculations are
performed. Note that CR = (CI/RI) is calculated for all pairwise comparison matrices. Here,
CI = (λmax − r)/(r − 1) is the consistency index and RI is the random consistency index.
As well-known from the literature [2,49,51,52], the average RI is calculated in terms of the dimension
of the matrix, r. If the CR value is less than 0.10, it indicates that the matrices are consistent. As given
in reference [49], if λmax = r, then the pairwise comparison matrix is considered to be consistent.

After the consistency test, the following calculations are made. Firstly, the relative importance
vector (RIV) of the criteria is determined using the pairwise comparison matrix. The row averages
of the normalized matrix are represented by RIV = [Avg1, Avg2, ...]T . To obtain the normalized
matrix, the element of each column in the pairwise comparison matrix is divided by the column sum.
The normalized matrix is then given in Table 4. The RIV of the alternatives for each criterion and the
RIV of the criteria are calculated separately using the normalized matrices.

Table 4. The normalized matrix.

X1 X2 . . . Average

X1 a11/Sum1 a12/Sum2 . . . Avg1
X2 a21/Sum1 a22/Sum2 . . . Avg2
. . . . . . . . . . . . . . .

Finally, to calculate the composite relative importance vector (C-RIV), the matrix formed by the
RIV of the alternatives for each criterion is multiplied by the RIV of the criteria. Thus, the C-RIV
determines the overall ranking of the alternatives.

2.3. The Proposed Approach for the AHP Model and the Pairwise Comparison Matrix

The model-based clustering is currently a very popular statistical-model. The information criteria
for determining the number of clusters in the model-based clustering have commonly been used [42].
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A number of criteria have been proposed to determine the number of clusters in a dataset. The current
study has proposed an approach for determining the number of clusters by using the combination of
the model-based clustering with the AHP. The AHP model has been created by using the information
criteria AIC, AWE, BIC, CLC, and KIC. In Figure 2, the proposed approach has been described for
determining the number of clusters of a dataset in the model-based clustering.

Figure 2. The proposed approach for determining the number of clusters.

The proposed approach is summarized in the following steps:

• Step 1. The hierarchical structure of the AHP has been created in Figure 3. In the figure, determination
of the number of clusters is the goal, the AIC, AWE, BIC, CLC, KIC are the criteria, and 2, 3, 4, 5 are
the alternatives.

• Step 2. The dataset has been modeled as the mixture of a multivariate normal distribution for
the different number of clusters in the model-based clustering. The mean vectors, the covariance
matrices, the mixture proportions, and the likelihood function have been estimated by the
EM algorithm.

• Step 3. For each number of clusters, the values of the information criteria have been calculated.
The decision matrix has been constructed using those values. Although a model that gives the
lowest value of the information criteria in the model-based clustering is selected as the best model,
in the AHP, the preferred case is the one with the highest value of the C-RIV. Therefore, the value
of the information criteria has been reversed in the decision matrix; for example, the AIC is taken
to be 1/AIC.

• Step 4. The pairwise comparison matrices have been obtained by using the decision matrix.
• Step 5. For each alternative, the C-RIV has been calculated.
• Step 6. The alternative having the highest C-RIV value is the optimal number of clusters for

the dataset.

Figure 3. The hierarchical structure of the AHP for the proposed approach.

To form the pairwise comparison matrix of the criteria, the study of Akogul and Erisoglu [53]
has been used. In their study [53], the efficiency of the information criteria was examined. They also
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analyzed real datasets that are commonly used in clustering analysis. Those datasets have different
characteristics such as sample size (i.e., 75, 150, 178, 345, 846, 2310 and 6435), number of clusters
(i.e., 2, 3, 4, 6 and 7), and number of variables (i.e., 2, 4, 6, 13, 18, 19 and 36). The synthetic datasets
were generated from the multivariate normal distribution by using the mean and covariance vectors
of each dataset. Then, the number of clusters of the synthetic datasets were estimated by using the
information criteria. This process was repeated 1000 times. Thus, the success of finding the right
number of clusters in the dataset was computed for each information criterion. For all the synthetic
datasets, in the corresponding study, the average of successes of the information criteria was given [53]
as 43.6, 21.2, 47.4, 17.3, and 58.2 for AIC, AWE, BIC, CLC, and KIC, respectively.

In the work of Akogul and Erisoglu [53], the effectiveness of the information criteria was
determined according to the success of finding right number of clusters. In the current study,
those successes have been used to determine the importance level of the criteria in the AHP model.
To produce the pairwise comparison matrix of the criteria, the average of the successes of the
information criteria is considered. The average success is taken to be the degree of preference of
a criterion over other criteria. The proposed pairwise comparison matrix of the criteria and the RIV of
the criteria have been given in Table 5. For example, in Table 5, value 2.0566 can be interpreted as the
degree of preference of the AIC over the AWE. The average of successes of the AIC is 43.6, while the
AWE is of 21.2. Thus, the AIC is about two times more successful than the AWE.

Table 5. The proposed pairwise comparison matrix of the criteria and the RIV of the criteria.

Criteria AIC AWE BIC CLC KIC RIVcriteria *

AIC 1 2.0566 0.9198 2.5202 0.7491 0.2323
AWE 0.4862 1 0.4473 1.2254 0.3643 0.1129
BIC 1.0872 2.2358 1 2.7399 0.8144 0.2525
CLC 0.3968 0.8160 0.3650 1 0.2973 0.0922
KIC 1.3349 2.7453 1.2278 3.3642 1 0.3101

Sum 4.3050 8.8538 3.9599 10.8497 3.2251

* The relative importance vector (RIV) of the criteria.

3. Application and Results

3.1. Testing of the Proposed Approach for the Real Datasets

The achievement of the proposed approach has been tested on common real datasets, namely,
Chemical Diabetes [54], Crab [55], Liver Disorders [56], Ionosphere [57], Iris [43], Wine [58],
Ruspini [59], E.coli [60] and Vehicle Silhouettes [61]. They have been provided by the UCI machine
learning repository [62] and the GitHub [63]. Their characteristics have been exhibited in Table 6.

Table 6. Descriptions of the real datasets.

Datasets Sample Size Number of Variables Number of Clusters

Crab 200 5 2
Liver Disorders 345 6 2

Ionosphere 351 34 2
Chemical Diabetes 145 4 3

Iris 150 4 3
Wine 178 13 3

Ruspini 75 2 4
E.coli 336 8 4

Vehicle Silhouettes 846 18 4
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In this section, to determine the number of clusters in the Iris dataset, all calculations have been
produced step by step. For the other datasets, only the final results have been presented and the
decision matrices have been represented in the Appendix. Their pairwise comparison matrices can be
obtained by using the decision matrices.

The results of the information criteria in determining the number of clusters for the Iris dataset
have been presented in Table 7. According to AIC, AWE, BIC, CLC, and KIC, the number of clusters in
the Iris dataset has been estimated to be 4, 2, 2, 4, and 3, respectively.

Table 7. The results in determining the number of clusters for the Iris dataset.

Alternatives AIC AWE BIC CLC KIC

2 487.11 806.74 * 574.42 * 429.12 519.11
3 449.15 944.15 581.61 371.21 496.15 *
4 448.86 * 1126.55 626.49 358.29 * 510.86
5 474.12 1378.81 696.90 415.24 551.12

* The minimum value of the information criteria.

To form the decision matrix, the values of the information criteria have been reversed (for example,
AIC = 1/AIC). The decision matrix of the Iris dataset can be given in Table 8.

Table 8. The decision matrix for the Iris dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.2053 0.1240 0.1741 0.2330 0.1926
3 0.2226 0.1059 0.1719 0.2694 0.2016
4 0.2228 0.8877 0.1596 0.2791 0.1957
5 0.2109 0.7253 0.1435 0.2408 0.1814

The pairwise comparison matrix and the RIV of each criterion, which are obtained by using the
decision matrix, have been seen in Table 9.

Table 9. The pairwise comparison matrix and the RIV of each criterion for the Iris dataset.

AIC 2 3 4 5 RIVAIC

2 1 0.9221 0.9215 0.9733 0.2383
3 1.0845 1 0.9994 1.0556 0.2584
4 1.0852 1.0006 1 1.0563 0.2586
5 1.0274 0.9473 0.9467 1 0.2448

Sum 4.1972 3.8700 3.8676 4.0852

AWE 2 3 4 5 RIVAWE

2 1 1.1703 1.3964 1.7091 0.3169
3 0.8545 1 1.1932 1.4604 0.2708
4 0.7161 0.8381 1 1.2239 0.2269
5 0.5851 0.6848 0.8170 1 0.1854

Sum 3.1557 3.6932 4.4066 5.3934

BIC 2 3 4 5 RIVBIC

2 1 1.0125 1.0906 1.2132 0.2682
3 0.9876 1 1.0772 1.1982 0.2649
4 0.9169 0.9284 1 1.1124 0.2459
5 0.8242 0.8346 0.8990 1 0.2211

Sum 3.7288 3.7755 4.0667 4.5239
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Table 9. Cont.

CLC 2 3 4 5 RIVCLC

2 1 0.8651 0.8349 0.9676 0.2279
3 1.1560 1 0.9652 1.1186 0.2635
4 1.1977 1.0361 1 1.1589 0.2730
5 1.0334 0.8940 0.8629 1 0.2356

Sum 4.3871 3.7951 3.6630 4.2452

KIC 2 3 4 5 RIVKIC

2 1 0.9558 0.9841 1.0617 0.2497
3 1.0463 1 1.0297 1.1108 0.2613
4 1.0162 0.9712 1 1.0788 0.2538
5 0.9419 0.9003 0.9270 1 0.2352

Sum 4.0044 3.8272 3.9407 4.2512

The C-RIV has been presented in Table 10. In the table, the alternative value three is the best
alternative because it has the maximum value of 0.2628 for the C-RIV. Thus, the number of clusters for
the Iris dataset has been seen to be determined correctly.

Table 10. The C-RIV for the Iris dataset.

Alternatives RIVAIC RIVAWE RIVBIC RIVCLC RIVKIC C-RIV

2 0.2383 0.3169 0.2682 0.2279 0.2497 0.2573
3 0.2584 0.2708 0.2649 0.2635 0.2613 0.2628 *
4 0.2586 0.2269 0.2459 0.2730 0.2538 0.2516
5 0.2448 0.1854 0.2211 0.2356 0.2352 0.2283

RIVcriteria 0.2323 0.1129 0.2525 0.0922 0.3101

* The maximum value of the C-RIV.

The C-RIV for the real datasets has also been presented in Table 11. In the table, the number of
clusters for the real datasets has been estimated correctly by using the proposed approach.

Table 11. The C-RIV of the real datasets for the proposed approach.

C-RIV

Crab Liver Ionosphere Diabetes Iris Wine Ruspini E.coli Vehicle

2 0.2517 * 0.2507 * 0.2841 * 0.2490 0.2573 0.2476 0.2436 0.0709 0.2451
3 0.2491 0.2502 0.2449 0.2513 * 0.2628 * 0.2578 * 0.2486 0.2989 0.2513
4 0.2481 0.2504 0.2559 0.2502 0.2516 0.2524 0.2541 * 0.3325 * 0.2534 *
5 0.2511 0.2487 0.2151 0.2496 0.2283 0.2421 0.2537 0.2977 0.2502

* The maximum value of the C-RIV for each dataset.

3.2. Testing of the Proposed Approach for the Synthetic Datasets

For the synthetic-1 dataset, we generate 1000 samples from a two-component bivariate normal
mixture with the mixing proportions π1 = π2 = 1/2, the mean vectors µ1 = [2, 4]T , µ2 = [5, 6]T ,
and the covariance matrices Σ1 = [1, 0; 0, 1], Σ2 = [2, 0; 0, 0.5]. Figure 4 shows the scatter plot and the
PDF of the mixture model of the synthetic-1 dataset. The decision matrix of the synthetic-1 dataset has
been presented in Table 12.



Entropy 2017, 19, 452 9 of 15

Figure 4. Synthetic-1 dataset: (a) the scatter plot; (b) the PDF of the mixture model.

Table 12. The decision matrix for the synthetic-1 dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.1460 0.1373 0.1449 0.1408 0.1457
3 0.1461 0.1254 0.1443 0.1301 0.1456
4 0.1457 0.1188 0.1434 0.1245 0.1452
5 0.1458 0.1118 0.1428 0.1182 0.1451

The RIV of the alternatives for each criterion and the RIV of the criteria have been given in
Table 13. To identify the best alternative, the C-RIV has been calculated using the corresponding
values. In the table, the alternative value two is the best alternative because it has the maximum value,
0.2561, for the C-RIV. That is, the number of clusters has been seen to be determined correctly for the
synthetic-1 dataset.

Moreover, this operation has been repeated 1000 times. The success of finding right number of
clusters in the synthetic-1 dataset has been computed for each information criterion. The proposed
approach (100%) has been seen to be more accurate than the AIC (92%), the AWE (27%), the BIC (99%),
the CLC (93%), and the KIC (98%).

Table 13. The C-RIV for the synthetic-1 dataset.

Alternatives RIVAIC RIVAWE RIVBIC RIVCLC RIVKIC C-RIV

2 0.2502 0.2782 0.2518 0.2741 0.2505 0.2561 *
3 0.2503 0.2543 0.2508 0.2533 0.2504 0.2512
4 0.2497 0.2409 0.2492 0.2424 0.2496 0.2479
5 0.2498 0.2266 0.2482 0.2302 0.2495 0.2449

RIVcriteria 0.2323 0.1129 0.2525 0.0922 0.3101

* The maximum value of the C-RIV.

For the synthetic-2 dataset, we generate 1000 samples from a three-component bivariate
normal mixture with the mixing proportions π1 = π2 = π3 = 1/3, the mean vectors µ1 = [−1, 2]T ,
µ2 = [1, 1]T , µ3 = [0,−4]T , and the covariance matrices Σ1 = [1, 0; 0, 1], Σ2 = [0.5,−0.7;−0.7, 1.5],
and Σ3 = [2, 0; 0, 2]. Figure 5 shows the scatter plot and the PDF of the mixture model of the
synthetic-2 dataset.

The decision matrix and the C-RIV of the synthetic-2 dataset have been given in Tables 14 and 15.
In Table 15, the alternative value three is the best alternative. Namely, the number of clusters for the
synthetic-2 dataset has been determined correctly. Similar to previous calculations, this operation has
been repeated 1000 times. The success of finding right number of clusters in the synthetic-2 dataset
has been computed for each information criterion. The proposed approach (93%) has been seen to be
better than the AIC (74%), the AWE (10%), the BIC (92%), the CLC (31%), and the KIC (86%).
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Figure 5. Synthetic-2 dataset: (a) the scatter plot; (b) the PDF of the mixture model.

Table 14. The decision matrix for the synthetic-2 dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.1275 0.1234 0.1266 0.1263 0.1273
3 0.1316 0.1226 0.1302 0.1270 0.1313
4 0.1316 0.1154 0.1296 0.1208 0.1311
5 0.1319 0.1170 0.1295 0.1241 0.1313

Table 15. The C-RIV for the synthetic-2 dataset.

Alternatives RIVAIC RIVAWE RIVBIC RIVCLC RIVKIC C-RIV

2 0.2440 0.2579 0.2455 0.2535 0.2443 0.2469
3 0.2519 0.2562 0.2524 0.2550 0.2520 0.2528 *
4 0.2518 0.2412 0.2513 0.2424 0.2517 0.2496
5 0.2524 0.2446 0.2509 0.2491 0.2521 0.2507

RIVcriteria 0.2323 0.1129 0.2525 0.0922 0.3101

* The maximum value of the C-RIV.

For the synthetic-3 dataset, we generate again 1000 samples from a four-component bivariate
normal mixture with the mixing proportions π1 = π2 = π3 = π4 = 0.25, the mean vectors µ1 = µ2 =

[−2,−2]T, µ3 = [3, 1]T , µ4 = [1,−3]T , and the covariance matrices Σ1 = [0.2, 0; 0, 0.2], Σ2 = [3, 2; 2, 7],
Σ3 = [1, 0; 0, 4], and Σ4 = [1, 0; 0, 1]. Figure 6 shows the scatter plot and the PDF of the mixture model
of the synthetic-3 dataset.

Figure 6. Synthetic-3 dataset: (a) the scatter plot; (b) the PDF of the mixture model.

The decision matrix and the C-RIV of the synthetic-3 dataset have been seen in Tables 16 and 17.
In Table 17, the alternative value four is the best alternative because it has the maximum value, 0.2526,
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of the C-RIV. The number of clusters for the synthetic-3 dataset has been determined correctly. Similarly,
this operation has been repeated 1000 times. The success of finding the right number of clusters in the
synthetic-3 dataset has been computed for each information criterion. The proposed approach (92%)
has been seen to be better than the AIC (80%), the AWE (4%), the BIC (89%), the CLC (65%), and the
KIC (89%).

Table 16. The decision matrix for the synthetic-3 dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.1204 0.1146 0.1196 0.1171 0.1202
3 0.1223 0.1106 0.1211 0.1142 0.1220
4 0.1244 0.1114 0.1227 0.1164 0.1240
5 0.1245 0.1080 0.1223 0.1140 0.1240

Table 17. The C-RIV for the synthetic-3 dataset.

Alternatives RIVAIC RIVAWE RIVBIC RIVCLC RIVKIC C-RIV

2 0.2449 0.2578 0.2463 0.2536 0.2452 0.2476
3 0.2488 0.2487 0.2493 0.2473 0.2489 0.2488
4 0.2531 0.2506 0.2527 0.2522 0.2530 0.2526 *
5 0.2532 0.2429 0.2518 0.2469 0.2529 0.2510

RIVcriteria 0.2323 0.1129 0.2525 0.0922 0.3101

* The maximum value of the C-RIV.

Table 18 summarizes the estimations of the number of clusters for all datasets produced by the
information criteria and the proposed approach. The bottommost column has given the correct number
of clusters for each dataset determined by the information criteria and the proposed approach.

Table 18. Results summary.

Datasets #Cluster AIC AWE BIC CLC KIC Proposed Approach

Crab 2 5 2 2 5 5 2
Liver 2 4 2 2 5 4 2

Ionosphere 2 4 2 2 4 2 2
Diabetes 3 5 2 3 5 3 3

Iris 3 4 2 2 4 3 3
Wine 3 4 2 3 5 3 3

Ruspini 4 5 2 4 5 5 4
E.coli 4 4 3 3 5 4 4

Vehicle 4 4 2 4 4 4 4
Synthetic-1 2 3 2 2 2 2 2
Synthetic-2 3 5 2 3 3 5 3
Synthetic-3 4 5 2 4 2 4 4

Correct number 2 4 10 3 8 12

4. Conclusions and Recommendation

This paper has proposed to combine the AHP and some information criteria, namely AIC, AWE,
BIC, CLC, and KIC, in determining the number of clusters of a dataset in model-based clustering. It has
been concluded that the proposed approach has been seen to be more accurate than the corresponding
information criteria. The approach has thus been realized to be capable of application to a widespread
number of clustering algorithms. To carry out this study, the decision matrix has been created by
using the information criteria values for each case. To increase the successes of the information criteria,
a pairwise comparison matrix has been suggested in this study. Note that the proposed method is
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strongly expected to be very effective in analyzing data come out in various of fields science such as
economics, biology, engineering etc. For further studies, researchers can pay their attention to produce
different decision and pairwise comparison matrices to deal with their problems.
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Appendix A

The decision matrices of the real datasets are given in Tables A1–A8. Their pairwise comparison
matrices can easily be obtained by using the decision matrices.

Table A1. The decision matrix for the Crab dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.3414 0.2878 0.3263 0.3428 0.3363
3 0.3424 0.2710 0.3200 0.3512 0.3349
4 0.3463 0.2554 0.3163 0.3588 0.3362
5 0.3550 0.2459 0.3165 0.3771 0.3420

Table A2. The decision matrix for the Liver dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.0678 0.0645 0.0668 0.0680 0.0675
3 0.0681 0.0630 0.0666 0.0683 0.0677
4 0.0685 0.0618 0.0665 0.0687 0.0679
5 0.0683 0.0603 0.0659 0.0688 0.0676

Table A3. The decision matrix for the Ionosphere dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.0816 0.0354 0.0584 0.1026 0.0739
3 0.0741 0.0267 0.0481 0.1030 0.0650
4 0.0829 0.0227 0.0459 0.1423 0.0686
5 0.0702 0.0184 0.0379 0.1260 0.0575

Table A4. The decision matrix for the Diabetes dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.1579 0.1501 0.1558 0.1591 0.1571
3 0.1602 0.1483 0.1569 0.1620 0.1590
4 0.1604 0.1444 0.1560 0.1623 0.1588
5 0.1607 0.1415 0.1552 0.1638 0.1587
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Table A5. The decision matrix for the Wine dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.1915 0.1316 0.1699 0.2081 0.1840
3 0.2082 0.1193 0.1724 0.2389 0.1953
4 0.2104 0.1051 0.1643 0.2552 0.1932
5 0.2066 0.0926 0.1536 0.2635 0.1863

Table A6. The decision matrix for the Ruspini dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.7096 0.6600 0.6970 0.7209 0.7026
3 0.7300 0.6519 0.7096 0.7484 0.7195
4 0.7519 0.6442 0.7230 0.7784 0.7375
5 0.7562 0.6242 0.7196 0.7907 0.7383

Table A7. The decision matrix for the E.coli dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.2961 0.2335 0.2741 0.3082 0.2897
3 1.7566 0.5182 1.0228 2.7483 1.4721
4 2.1498 0.4388 0.9891 5.3666 1.6362
5 1.9438 0.3589 0.8349 6.0067 1.4359

Table A8. The decision matrix for the Vehicle dataset (×10−3).

Alternatives AIC AWE BIC CLC KIC

2 0.0124 0.0116 0.0121 0.0125 0.0123
3 0.0128 0.0116 0.0124 0.0130 0.0127
4 0.0130 0.0114 0.0124 0.0132 0.0129
5 0.0129 0.0110 0.0122 0.0132 0.0127
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