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Abstract: Through Monte Carlo simulations, we studied the critical properties of kinetic models of
continuous opinion dynamics on (3, 4, 6, 4) and (34, 6) Archimedean lattices. We obtain pc and the
critical exponents’ ratio from extensive Monte Carlo studies and finite size scaling. The calculated
values of the critical points and Binder cumulant are pc = 0.085(6) and O∗4 = 0.605(9); and
pc = 0.146(5) and O∗4 = 0.606(3) for (3, 4, 6, 4) and (34, 6) lattices, respectively, while the exponent
ratios β/ν, γ/ν and 1/ν are, respectively: 0.126(1), 1.50(7), and 0.90(5) for (3, 4, 6, 4); and 0.125(3),
1.54(6), and 0.99(3) for (34, 6) lattices. Our new results agree with majority-vote model on previously
studied regular lattices and disagree with the Ising model on square-lattice.
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1. Introduction

The study of the behavior of individuals in a society by physicists is known as sociophysics,
having as the main contributor in this new research area Serge Galam who introduced the use of local
majority rules to study voting systems as bottom-up democratic voting in hierarchical structures [1–4].
Although sociophysics was rejected by some physicists in the eighties [5], it has today become an active
field of research among physicists all over the world [3,6,7].

In this same context and based on the criterion of Grinstein et al. [8] (where a nonequilibrium
model presenting up–down symmetry in two-state dynamic systems implies the same critical behavior
(same universality class) as the equilibrium Ising model), Oliveira [9] proposed a nonequilibrium
version of Ising model called majority vote model (MVM). On two-dimensional regular lattices, this
presents a second-order phase transition with critical exponents β, γ, ν, as for [10,11] the equilibrium
Ising model [12,13].

Lima and Malarz [14] studied the MVM on (3, 4, 6, 4) and (34, 6) Archimedean lattices (ALs).
On these lattices, they found a second-order phase transition with exponent ratios β/ν = 0.103(6),
γ/ν = 1.596(54), 1/ν = 0.872(85) for (3, 4, 6, 4) and β/ν = 0.114(3), γ/ν = 1.632(35), 1/ν = 0.98(10)
for (34, 6), see Table 1.

A multiagent model for opinion formation in society by modifying kinetic exchange dynamics
studied in the context of income, money, or wealth distributions in a society where a spontaneous
symmetry-breaking transition to polarized opinion states starting from nonpolarized opinion states
was proposed by M. Lallouache et al. [15].

A model of continuous opinion dynamics (KCOD) was proposed by Biswas et al. [16] in 2012.
In the KCOD model, the mutual interactions can be both positive and negative and a single parameter
p denoting the fraction of negative interactions was considered in order to characterize the different
types of distributions for the mutual interactions. Numerical simulations of the continuous version of
this model indicate the existence of a universal continuous phase transition at p = pc with exponents
of mean field (νd = 2.00(1), β = 0.50(1), and γ = 1.00(1)) (see also [17]).
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Table 1. Critical parameter (pc), exponents, and effective dimension for majority vote model (MVM)
on (3, 4, 6, 4) and (34, 6) [14]. For completeness, we cite data for Ising model on (44) as well [18].

MVM (3, 4, 6, 4) (34, 6) (44) Ising

Tc 0.651(3) 0.667(2) ≈2.269
O∗4 0.603(9) 0.608(4) 0.61
β/ν 0.105(8) 0.113(2) 0.125

γ/νT=Tc 1.48(11) 1.60(4) 1.75
γ/νT=T∗ 1.44(4) 1.66(2) 1.75

1/ν 1.16(5) 0.84(6) 1
Deff. 1.78(7) 1.83(6) 2

The KCOD model on square and cubic lattices (2D and 3D) was studied by Mukherjee and
Chatterjee [19]. Their numerical results indicate that the critical behavior of the KCOD model is the
same as that of the Ising model in the corresponding dimensions.

Recently, C. Anteneodo and N. Crokidakis [20] studied a model of like KCOD model in the
presence of a social temperature. The critical behavior of this model showed three different kinds of
collective states (symmetric, asymmetric, and neutral) and nonequilibrium transitions between them
(see also [21,22]).

In this work, we studied the KCOD on two Archimedean lattices—namely, (3, 4, 6, 4) and
(34, 6)—through extensive Monte Carlo simulations. The topologies of (3, 4, 6, 4), and (34, 6) AL
are presented in Figure 1. The AL are vertex transitive graphs that can be embedded in a plane such
that every face is a regular polygon. Kepler showed that there are exactly eleven such graphs. The AL
are labeled according to the sizes of faces incident to a given vertex. The face sizes are sorted, starting
from the face for which the list is the smallest in lexicographical order. In this way, the square lattice
gets the name (4, 4, 4, 4) (abbreviated to (44)), honeycomb is called (63), and Kagome is (3, 6, 3, 6).
Here, we also compared our results with those of the MVM made on (3, 4, 6, 4) and (34, 6) AL.

Figure 1. Picture of the (3, 4, 6, 4) (left) and (34, 6) (right) AL.

2. Model and Simulations

The KCOD [16] model is defined as follows: A set of agents (individuals) with continuous
opinion variables oi(t) is situated on every node of the (3, 4, 6, 4) and (34, 6) AL with N = 6L2 sites.
The opinion of an individual i at time t takes the values in the range [−1,+1], in a system of N agents.
Here, the opinions change out of pair-wise interactions via mutual influences/couplings µij as:

oi(t + 1) = oi(t) + µijoj(t), (1)
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where the i, j interactions are pair-wise interactions between nearest neighbors, which implies no
sum over the index j, and µij = µji are real random variables. In the above dynamics (Equation (1)),
an agent i updates his opinion by interacting with agent j and is influenced by the mutual influence
term µij . Here, j is selected randomly from one of the nearest neighbors. Unlike other models (such as
Ising model and MVM) that present up–down symmetry [23], in the KCOD model the opinions
are bounded (i.e., −1 ≤ oi(t) ≤ 1). If the opinion value of an agent becomes higher (lower) than +1
(−1), then it is made equal to +1 (−1) to preserve this bound. This bound, along with Equation (1),
defines the dynamics of the model. Here, µij is a continuous random variable defined in the range
[−1, +1]. The ordering in the system is measured by the quantity O = |∑i oi|/N , the average opinion.
Changing the fraction p of negative interactions, one can observe a symmetry breaking transition
between an ordered and a disordered phase below a particular value pc of the parameter p, the system
orders (giving a non-zero, finite value of the order parameter O (opinion), defined in the following),
while a disordered phase exists above pc (O = 0).

To study the critical behavior of the model, we are interested in the average opinion O,
order parameter fluctuations OF, and the reduced fourth-order cumulant of the O (herein named
as O4), defined as

O(p) ≡ 〈O〉, (2a)

OF(p) ≡ N
(
〈O2〉 − 〈o〉2

)
, (2b)

O4(p) ≡ 1− 〈O4〉
3〈O2〉2 , (2c)

where 〈· · · 〉 stands for time averages, computed at the steady states. The results are averaged over the
Nrun independent simulations.

The above-mentioned quantities are functions of the disorder parameter p, and obey the finite-size
scaling relations

O = L−β/ν fo(x), (3a)

OF = Lγ/ν fo f (x), (3b)

dO4

dp
= L1/ν fo4(x), (3c)

where ν, β, and γ are the usual critical exponents, fo, fo f , fo4(x) are the finite-size scaling functions with

x = (p− pc)L1/ν (3d)

being the scaling variable. Therefore, from the size dependence of O and OF, we obtained the
exponent ratios β/ν (O) and γ/ν (OF). The maximum value of susceptibility also scales as Lγ/ν.
Moreover, the value of p∗ for which OF has a maximum is expected to scale with the system size as

p∗ = pc + bL−1/ν with b ≈ 1. (4)

Therefore, the relations (3c) and (4) may be used to get the exponent 1/ν. We also evaluate the
effective dimensionality, Deff, from the hyperscaling hypothesis

2β/ν + γ/ν = Deff. (5)

Monte Carlo simulations were performed on (3, 4, 6, 4) and (34, 6) AL with various systems of
size N = 384, 1536, 6144, 24, 576, and 98, 304 for (3, 4, 6, 4) and (34, 6) AL. It takes 2× 105 Monte
Carlo steps (MCS) to let the system reach the steady state, and then the time averages are calculated
over the next 3× 105 MCS. One MCS is accomplished after N attempts to update the opinions of
agents i and j, considering the evolution Equations (1) and (2). The results are averaged over Nrun
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(1000 ≤ Nrun ≤ 2000) independent simulation runs for each lattice and for given set of parameters
(p, N).

3. Results and Discussion

In all simulations described in the previous section, we used sequential Monte Carlo steps and
considered continuous µij values within the interval [−1,+1]. Here, we only discuss the case when µij
are annealed (i.e., they change with time).

Figure 2 displays the dependence of the opinion O, OF, and O4 on the disorder parameter p,
obtained from simulations on (3, 4, 6, 4) and (34, 6) AL with L ranging from L = 8 to L = 128. The shape
of O(p), OF, and O4 curves for a given value of L indicate the occurrence of a second-order phase
transition in the system. The phase transition occurs at the value of the critical disorder parameter pc.
This critical disorder parameter pc is estimated as the point where the curves of the Binder cumulant
O4 for different system sizes N intercept each other [24]. The corresponding value of O4 is represented
by O∗4 . Then, we obtained pc = 0.085(6) and O∗4 = 0.605(9); pc = 0.146(5) and O∗4 = 0.606(4)
for (3, 4, 6, 4), and (34, 6) AL, respectively.
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Figure 2. (Color online). The opinion O, OF, and O4, as a function of the parameter p, for lattice
size L = 8, 16, 32, 64, and 128, and N = 6L2 sites for (3, 4, 6, 4) (a–c) and (34, 6) Archimedean lattice
(AL) (d–f).

To make the critical point on the x-axis more qualitatively visible than the traditional plot of O4

(y-axis), Figure 3 displays the dependence of − ln(1− 3
2O4) instead dependence of O4 of the disorder

parameter p, obtained from simulations on (3, 4, 6, 4) and (34, 6) AL.
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Figure 3. (Color online). The − ln(1− 3
2 O4) as a function of the parameter p, for L = 8, 16, 32, 64, and

128 lattice sizes, and N = 6L2 for (3, 4, 6, 4) and (34, 6) AL.

In Figure 4, we plot the opinion O∗ = Opc vs. L. The fits of the curves correspond to the exponent
ratio β/ν according to relation Equation (3a); see Table 2.
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Figure 4. Log–log plot of the dependence of the opinion O∗ = O(pc) on the linear system size L.
Fitting data, we obtained the estimate for the critical ratio β/ν.

Table 2. Critical parameter (pc), exponents, and effective dimension for continuous opinion dynamic
(KCOD) model on (3, 4, 6, 4) and (34, 6). For completeness, we cite data for KCOD model on (44) as
well [16].

KCOD (3, 4, 6, 4) (34, 6) (44)

pc 0.085(6) 0.146(5) 0.2266(1)
O∗4 0.605(9) 0.606(4) 0.559(1)
β/ν 0.126(1) 0.125(3) 0.125(1)

γ/νp=pc 1.50(7) 1.54(6) 1.75(1)
γ/νp=p∗ 1.50(5) 1.55(5)

1/ν 0.90(5) 0.99(3) 1.01(1)
Deff 1.75(6) 1.80(7)

The Figure 5 displays the log-log plot of the OF∗ = OFpc at pc as a function of the lattice size L.
The slopes of curves correspond to the exponent ratio γ/ν according to Equation (3b). The numerical
estimates are γ/ν = 1.50(7) for (3, 4, 6, 4) and γ/ν = 1.54(6) for (34, 6) AL.
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Figure 5. Log–log plot of the OF∗ = OFpc at pc versus L for (3, 4, 6, 4), and (34, 6) AL. Fitting data, we
obtained the estimate for the critical ratio γ/ν.

In Figure 6 we present the exponent ratios γ/ν at OFmax = OFpOFmax
(N) as γ/ν = 1.50(5) for

(3, 4, 6, 4) and γ/ν = 1.55(5) for (34, 6) AL.
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Figure 6. OFmax = OFpOFmax
(N) at pOFmax (N) versus L for (3, 4, 6, 4) and (34, 6), AL. Fitting data,

we obtained another estimate for the critical ratio γ/ν .

In Figure 7, we used the scaling relation Equation (4) and obtained the exponent ratio 1/ν.
The calculated values of the exponent 1/ν are in Table 2.
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Figure 7. Plot of ln |pc(L)− pc| versus the linear system size L for (3, 4, 6, 4) and (34, 6) AL. Fitting
data, we obtained the estimate for the critical ratio 1/ν.
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In Figure 8a,d we plot OLβ/ν versus (p− pc)L1/ν using the critical exponent ratios β/ν = 0.126(1),
0.125(3), and 1/ν = 0.90(5) and 0.99(3) for (3, 4, 6, 4) and (34, 6). In Figure 8b,e we plot OFL−γ/ν

versus (p− pc)L1/ν using the critical exponent ratios γ/ν = 1.50(7) and 1.54(6) and 1/ν = 0.90(5)
and 0.99(3) for (3, 4, 6, 4) and (34, 6). In Figure 8c,f we plot O4 versus (p− pc)L1/ν using the critical
exponent 1/ν = 0.90(5) and 0.99(3) for (3, 4, 6, 4) and (34, 6). The excellent curve collapse for distinct
system sizes corroborates our estimated values for pc and exponent ratios β/ν, γ/ν, and 1/ν.
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Figure 8. (Color online) Data collapse of the opinion O, OF, and O4 shown in Figure 3 for L = 32,
64, and 128 (3, 4, 6, 4) (a–f) and (34, 6) (d–f) AL. The exponent ratios used here were β/ν = 0.126(1)),
γ/ν = 1.50(7), and 1/ν = 0.90(5) for (3, 4, 6, 4), and β/ν = 0.125(3), γ/ν = 1.54(6), and 1/ν = 0.99(3)
for (34, 6) AL.

The resulting critical exponents and disorder parameters are collected in Table 2. One can also
see that the exponent ratios β/ν, γ/ν, 1/ν are very close to MVM (Table 1), as expected by Grinstein
criterion for regular lattices [8]. They are different from γ/ν = 1.75 obtained for a regular d = 2
Ising model, but obey hyperscaling relation (within the error bars). Equation (5) yields effective
dimensionality of systems Deff = 1.75(6) for (3, 4, 6, 4) and Deff = 1.80(7) for (34, 6). The KCOD on
those two AL has the effective dimensionality close to MVM for (3, 4, 6, 4) (Deff = 1.78(7)) and for
(34, 6) (Deff = 1.83(6)) AL (see Tables 1 and 2). The results of simulations are collected in Table 2.

4. Conclusions

We studied a nonequilibrium KCOD model through extensive Monte Carlo simulations on
(3, 4, 6, 4) and (34, 6) AL. On these lattices, the KCOD shows a second-order phase transition. Our
Monte Carlo simulations suggest that the effective dimensionality Deff is close to two; i.e., that
hyperscaling relation 2β/ν + γ/ν = 2 may be valid.

Finally, we remark that the critical exponents γ/ν, β/ν, and 1/ν for KCOD on (3, 4, 6, 4) and (34, 6)
AL are very close to the MVM model on (3, 4, 6, 4) and (34, 6) AL [14] (see Tables 1 and 2). Therefore,
the exponent ratio γ/ν = 1.50(7) and 1.54(6) differs from 2D Ising model while β/ν = 0.126(1) and
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0.125(3) for MVM is a weak indication and β/ν for KCOD is a strong indication for Ising. Therefore,
the KCOD model does not belong to the Ising universality class [12,18]. Thus, our results agree partially
with Grinstein.
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