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Abstract: Let (S1,i, S2,i) ∼ i.i.d p(s1, s2), i = 1, 2, . . . be a memoryless, correlated partial side

information sequence. In this work, we study channel coding and source coding problems where

the partial side information (S1, S2) is available at the encoder and the decoder, respectively, and,

additionally, either the encoder’s or the decoder’s side information is increased by a limited-rate

description of the other’s partial side information. We derive six special cases of channel coding and

source coding problems and we characterize the capacity and the rate-distortion functions for the

different cases. We present a duality between the channel capacity and the rate-distortion cases we

study. In order to find numerical solutions for our channel capacity and rate-distortion problems,

we use the Blahut-Arimoto algorithm and convex optimization tools. Finally, we provide several

examples corresponding to the channel capacity and the rate-distortion cases we presented.

Keywords: Blahut–Arimoto algorithm; channel capacity; channel coding; duality; Gelfand–Pinsker

channel coding; partial side information; rate-distortion; source coding; Wyner-Ziv source coding

1. Introduction

In this paper, we investigate point-to-point channel models and rate-distortion problem models

where both users have different and correlated partial side information and where, in addition,

a rate-limited description of one of the user’s side information is delivered to the other user.

We then show the duality between the channel models and the rate-distortion models we investigate.

For the convenience of the reader, we refer to the state information as the side information, to the

partial side information that is available to the encoder as the encoder’s side information (ESI) and to

the partial side information that is available to the decoder as the decoder’s side information (DSI).

We refer ro the rate-limited description of the other user’s side information as the increase in the side

information. For example, if the decoder is informed with its DSI and, in addition, with a rate-limited

description of the ESI, then we would say that the decoder is informed with increased DSI.

To make the motivation for this paper clear, let us look at the simple example depicted in Figure 1.

In this setup, the communication between the Tx-Rx pair (the encoder-decoder) is interrupted by

an undesired signal, S. The encoder and the decoder do not know S perfectly, but they each possess

a version of S; the encoder knows S1 (the ESI) and the decoder knows S2 (the DSI). For this example,

let us assume that the source of the interruption is physically located in close proximity to the encoder

(potentially, both signal sources are co-located). Thus, we assume that the encoder “knows more

on S” then the decoder; i.e., H(S|S1) < H(S|S2). We assume also that the transmitter can provide

a rate-limited description of the ESI, S1, to the decoder, thus increasing his DSI. In these circumstances,

we pose the question; what is the capacity of the channel between the encoder and the decoder?

This question is of practical importance. Knowing the channel capacity allows one to analyze

its communication system better, answering questions such as “how close is the communication
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system’s performance to the capacity?” and “how important is the quality of the side information

to the throughput?”. Moreover, it allows one to design better practical codes, like polar codes and

LDPC codes.

Enc
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p(s1|s) p(s2|s)

Rate

S

S1 S2

p(y|x, s1, s2)
W ŴX Y

Figure 1. Increased partial side information example. The encoder wants to send a message to the

decoder over an interrupted channel in the presence of side information. The encoder is provided

with the ESI and the decoder is provided with increased DSI. i.e., the decoder is informed with

a rate-limited description of the ESI, in addition to the DSI.

1.1. Channel Capacity in the Presence of State Information

The three problems of channel capacity in the presence of state information that we address in

this paper are presented in Figure 2a. We make the assumption that the encoder is informed with

partial state information, the ESI (S1), and the decoder is informed with different, but correlated,

partial state information, which is the DSI (S2). The channel capacity problem cases are:

• Case 1: The decoder is provided with increased DSI; i.e., in addition to the DSI, the decoder is

also informed with a rate-limited description of the ESI.

• Case 2: The encoder is informed with increased ESI.

• Case 2C: Similar to Case 2, with the exception that the ESI is known to the encoder in

a causal manner. Notice that the rate-limited description of the DSI is still known to the

encoder noncausally.

We will subsequently provide the capacity of Case 1 and Case 2C and characterize the lower and

the upper bounds on Case 2, which differ only by a Markov relation. The results for the first case

under discussion, Case 1, can be concluded from Steinberg’s problem [1]. In [1], Steinberg introduced

and solved the case in which the encoder is fully informed with the ESI and the decoder is informed

with a rate-limited description of the ESI. Therefore, the innovation in Case 1 is that the decoder is

also informed with the DSI. The solution for this problem can be derived by considering the DSI

to be a part of the channel’s output in Steinberg’s solution. In the proof of the converse in his

paper, Steinberg uses a new technique that involves using the Csiszár sum twice in order to get to

a single-letter bound on the rate. We shall use this technique to present a duality in the converse of

the Gelfand–Pinsker [2] and the Wyner-Ziv [3] problems, which, by themselves, constitute the basis

for most of the results in this paper. In [3], Wyner and Ziv presented the rate-distortion function

for data compression problems with side information at the decoder. We make use of their coding

scheme in the achievability proof of the lower bound of Case 2 for describing the ESI with a limited

rate at the decoder. In [2], Gelfand and Pinsker presented the capacity for a channel with noncausal

channel state information (CSI) at the encoder. We use their coding scheme in the achievability proof

of Case 1 and the lower bound of Case 2 for transmitting information over a channel where the ESI

is the state information at the encoder. Therefore, we combine in our problems the Gelfand–Pinsker
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and the Wyner-Ziv problems. Another related paper is [4], in which Shannon presented the capacity

of a channel with causal CSI at the transmitter. We make use of Shannon’s result in the achievability

proof of Case 2C for communicating over a channel with causal ESI at the encoder. We also use

Shannon’s strategies [4], for developing an iterative algorithm to calculate the capacity of the cases

we present in this paper.
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Figure 2. Channel coding and source coding cases. (a) Channel coding with state information. Case 1:

Rate-limited ESI at the decoder. Case 2: Rate-limited DSI at the encoder. Case 2C: Causal ESI and

rate-limited DSI at the encoder; (b) Source coding with side information. Case 2: Rate-limited DSI at

the encoder. Case 1: Rate-limited ESI at the decoder. Case 1C: Causal DSI and rate-limited ESI at the

decoder. The cases are presented in this order to allow each source coding case to be paralel to the

dual channel coding case.

Some related papers that can be found in the literature are mentioned herein. Heegard and

El Gamal [5] presented a model of a state-dependent channel, where the transmitter is informed

with the CSI at a rate limited to Re and the receiver is informed with the CSI at a rate limited to

Rd. This result relates to Case 1, Case 2 and Case 2C since we consider the rate-limited description

of the ESI or the DSI as side information known at both the encoder and the decoder. Cover and

Chiang [6] extended the Gelfand–Pinsker problem and the Wyner-Ziv problem to the case where

both the encoder and the decoder are provided with different, but correlated, partial side information.

They also showed a duality between the two cases, which is a topic that will be discussed later in

this paper. Rozenzweig et al. [7] and Cemal and Steinberg [8] studied channels with partial state

information at the transmitter. A detailed subject review on channel coding with state information

was given by Keshet et al. in [9].

In addition to these three cases, we also present a more general case, where both the encoder and

the decoder are informed with increased partial side information. i.e., the encoder and the decoder

are each informed with partial side information, and, in addition, with a rate-limited description

of the other’s side information. We provide a lower bound on the capacity for this case; however,

this bound does not necessarily coincide with the capacity and, therefore, this problem remains open.

1.2. Rate-Distortion with Side Information

In this paper, we address three problems of rate-distortion with side information, as presented in

Figure 2b. In common with the channel capacity problems, we assume that the encoder is informed

with the ESI (S1) and the decoder is informed with the DSI (S2), where the source, X, the ESI and the

DSI are correlated. The rate-distortion problem cases we investigate in this paper are:

• Case 1: The decoder is provided with increased DSI.
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• Case 1C: Similar to Case 1, with the exception that the ESI is known to the encoder in a causal

manner. The rate-limited description of the ESI is still known to the decoder noncausally.

• Case 2: The encoder is informed with increased ESI.

Case 2 is a special case of Kaspi’s [10] two-way source coding for K = 1. In [10], Kaspi introduced

a model of multistage communication between two users, where each user may transmit up to K

messages to the other user, dependent on the source and the previous received messages. For Case 2,

we can consider sending the rate-limited description of the DSI as the first transmission and then,

sending a function of the source, the ESI and the rate-limited description of the DSI as the second

transmission. This fits into Kaspi’s problem for K = 1 and thus Kaspi’s theorem also applies to Case 2.

Kaspi’s problem was later extended by Permuter et al. [11] to the case where a common rate-limited

side information message is being conveyed to both users. Another strongly related paper is Wyner

and Ziv’s paper [3]. In the achievability of Case 1, we use the Wyner-Ziv coding scheme twice;

once for describing the ESI at the decoder where the DSI is the side information and once for the

main source and the ESI where the DSI is the side information. The rate-limited description of the ESI

is the side information provided to both the encoder and the decoder. In [6] there is an extension to the

Wyner-Ziv problem to the case where both the encoder and the decoder are provided with correlated

partial side information. Weissman and El Gamal [12] and Weissman and Merhav [13] presented

source coding with causal side information at the decoder, which relates to Case 1C. In addition,

we present a generalized case of rate-distortion with two-sided increased partial side information.

In this problem setup the encoder and the decoder are each informed with partial side information,

and, in addition, with a rate-limited description of the other’s side information. We present an upper

bound on the optimal rate; however, this bound does not necessarily coincide with the optimal rate

and, therefore, this problem remains open.

1.3. Duality

Within the scope of this work, we point out a duality relation between the channel capacity

and the rate-distortion cases we discuss. The operational duality between channel coding and

source coding was first mentioned by Shannon [14]. Pradhan et al. [15] and Pradhan and

Ramchandran [16] studied the functional duality between some cases of channel coding and

source coding, including the duality between the Gelfand–Pinsker problem and the Wyner-Ziv

problem. This duality was also described by Cover and Chiang in [6], where they provided

a transformation that makes duality between channel coding and source coding with two-sided

state information apparent. Zamir et al. [17] and Su et al. [18] utilized the duality between channel

coding and source coding with side information to develop coding schemes for the dual problems.

Goldfeld, Permuter and Kramer [19] studied the duality between a two-encoder source coding

with one-sided, rate-limited coordination and a semi-deterministic broadcast channel with one-sided

decoder cooperation. More related works on the topic of duality can be found in the papers of

Asnani et al. [20] and Gupta and Verdu [21].

In our paper, we show that the channel capacity cases and the rate-distortion cases we discuss

are operational duals in a way that strongly relates to the Wyner-Ziv and Gelfand–Pinsker duality.

We also provide a transformation scheme that shows this duality in a clear way. Moreover, we show

a duality relation between Kaspi’s problem and Steinberg’s [1] problem by showing a duality relation

between Case 2 source coding and Case 1 channel coding. Also, we show duality in the converse

parts of the Gelfand–Pinsker and the Wyner-Ziv problems. We show that both converse parts can be

proven in a perfectly dual way by using the Csiszár sum twice.

1.4. Computational Algorithms

Calculating channel capacity and rate-distortion problems, in general, and the Gelfand–Pinsker

and the Wyner-Ziv problems, in particular, is not straightforward. Blahut [22] and Arimoto [23]

suggested an iterative algorithm (to be referred to as the B-A algorithm) for numerically computing
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the channel capacity and the rate-distortion problems. Willems [24] and Dupuis et al. [25] presented

iterative algorithms based on the B-A algorithm for computing the Gelfand–Pinsker and the

Wyner-Ziv functions. We use principles from Willems’ algorithms to develop an algorithm to

numerically calculate the capacity for the cases we presented. More B-A based iterative algorithms

for computing channel capacity and rate-distortion with side information can be found in [26,27].

A Blahut-Arimoto based algorithm for maximizing the directed-information can be found in [28].

1.5. Organization of the Paper and Main Contributions

To summarize, the main contributions of this paper are:

• We characterize the capacity and the rate-distortion functions of new channel and source coding

problems with increased partial side information. We quantify the gain in the rate that can be

achieved by having the parties involved share their partial side information with each other over

a rate-limited secondary channel.

• We show a duality relationship between the channel capacity cases and the rate-distortion cases

that we discuss.

• We provide a B-A based algorithm to solve the channel capacity problems we describe.

• We show a duality between the Gelfand–Pinsker capacity converse and the Wyner-Ziv

rate-distortion converse.

The reminder of this paper is organized as follows. In Section 2 we introduce some notations

for this paper and provide the settings of three channel coding and three source coding cases with

increased partial side information. In Section 3 we present the main results for coding with increased

partial side information; we provide the capacity and the rate-distortion for the cases we introduced

in Section 2 and we point out the duality between the cases we examined. Section 4 contains

illuminating examples for the cases discussed in the paper. In Section 5 we describe the B-A based

algorithm we used in order to solve the capacity examples. We conclude the paper in Section 6 and

we highlight two open problems; channel capacity and rate-distortion with two-sided rate-limited

partial side information. Appendix A contains the duality derivation for the converse proofs of the

Gelfand–Pinsker and the Wyner-Ziv problems and Appendices B, C, D and E contain the proofs for

our theorems and lemmas.

2. Problem Setting and Definitions

In this section, we describe and formally define three cases of channel coding problems and three

cases of source coding problems. All six cases are presented in Figure 2a,b.

Notations. We use subscripts and superscripts to denote vectors in the following ways:

x j = (x1, . . . , xj) and x
j
i = (xi, . . . , xj) for i ≤ j. Moreover, we use the lower case x to denote sample

value, the upper case X to denote a random variable, the calligraphic letter X to denote the alphabet

of X, |X | to denote the cardinality of the alphabet of X and p(x) to denote the probability Pr{X = x}.

We use the notation T
(n)

ǫ (X) to denote the strongly typical set of the random variable X, as defined

in [29] (Chapter 11).

2.1. Definitions and Problem Formulation—Channel Coding with State Information

Definition 1. A discrete channel is defined by the set {X ,S1,S2, p(s1, s2), p(y|x, s1, s2),Y}. The channel’s

input sequence, {Xi ∈ X , i = 1, 2, . . . }, the ESI sequence, {S1,i ∈ S1, i = 1, 2, . . . }, the DSI sequence,

{S2,i ∈ S2, i = 1, 2, . . . }, and the channel’s output sequence, {Yi ∈ Y , i = 1, 2, . . . }, are discrete random

variables drawn from the finite alphabets X ,S1,S2,Y , respectively. Denote the message and the message space

as W ∈ {1, 2, . . . , 2nR} and let Ŵ be the reconstruction of the message W. The random variables (S1,i, S2,i) are

i.i.d. ∼ p(s1, s2) and the channel is memoryless, i.e., at time i, the output, Yi, has a conditional distribution of

p(yi|x
i, si

1, si
2, yi−1) = p(yi|xi, s1,i, s2,i). (1)
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In the remainder of the paper, unless specifically mentioned otherwise, we refer to the ESI and

the DSI as if they are known to the encoder and the decoder, respectively, in a noncausal manner. Also,

as noted before, we use the term increased side information to indicate that the user’s side information

also includes a rate-limited description of the other user’s partial side information. For example,

when the decoder is informed with the DSI and with a rate-limited description of the ESI we would

say that the decoder is informed with increased DSI.

Problem Formulation. For the channel p(y|x, s1, s2), consider the following channel coding

problem cases:

• Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI.

• Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI.

• Case 2C: The encoder is informed with increased causal ESI (Si
1 at time i) and the decoder is

informed with DSI. This case is the same as Case 2, except for the causal ESI.

All cases are presented in Figure 2a.

Definition 2. A (n, 2nR, 2
nR′j) code, {j ∈ 1, 2}, for a channel with increased partial side information,

as illustrated in Figure 2a, consists of two encoders and one decoder. The encoders are f and fv, where f is the

encoder for the channel’s input and fv is the encoder for the side information, and the decoder is g, as described

for each case:

Case 1: Two encoders

fv : Sn
1 → {1, 2, . . . , 2nR′1},

f : {1, 2, . . . , 2nR} × Sn
1 × {1, 2, . . . , 2nR′1} → X n,

and a decoder

g : Yn ×Sn
2 × {1, 2, . . . , 2nR′1} → {1, 2, . . . , 2nR}. (2)

Case 2: Two encoders

fv : Sn
2 → {1, 2, . . . , 2nR′2},

f : {1, 2, . . . , 2nR} × Sn
1 × {1, 2, . . . , 2nR′2} → X n,

and a decoder

g : Yn ×Sn
2 × {1, 2, . . . , 2nR′2} → {1, 2, . . . , 2nR}. (3)

Case 2C: Two encoders

fv : Sn
2 → {1, 2, . . . , 2nR′2},

fi : {1, 2, . . . , 2nR} × S i
1 × {1, 2, . . . , 2nR′2} → Xi,

and a decoder

g : Yn ×Sn
2 × {1, 2, . . . , 2nR′2} → {1, 2, . . . , 2nR}. (4)

The average probability of error, P
(n)
e , for a (n, 2nR, 2

nR′j) code is defined as

P
(n)
e =

1

2nR

2nR

∑
w=1

Pr
{

Ŵ 6= W |W = w
}

, (5)
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where the index W is chosen according to a uniform distribution over the set {1, 2, . . . , 2nR}. A rate pair

(R, R′) is said to be achievable if there exists a sequence of (n, 2nR, 2nR′) codes such that the average probability

of error P
(n)
e → 0 as n→ ∞.

Definition 3. The capacity of the channel, C(R′), is the supremum of all R such that the rate pair (R, R′)

is achievable.

2.2. Definitions and Problem Formulation—Source Coding with Side Information

Throughout this article we use the common definitions of rate-distortion as presented in [29].

Definition 4. The source sequence {Xi ∈ X , i = 1, 2, . . . }, the ESI sequence {S1,i ∈ S1, i = 1, 2, . . . } and

the DSI sequence {S2,i ∈ S2, i = 1, 2, . . . } are discrete random variables drawn from the finite alphabets

X ,S1 and S2 respectively. The random variables (Xi, S1,i, S2,i) are i.i.d ∼ p(x, s1, s2). Let X̂ be the

reconstruction alphabet and dx : X × X̂ → [0, ∞) be the distortion measure. The distortion between sequences

is defined in the usual way:

d(xn, x̂n) =
1

n

n

∑
i=1

d(xi, x̂i). (6)

Problem Formulation. For the source, X, the ESI, S1, and the DSI, S2, consider the following source

coding problem cases:

• Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI.

• Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI.

• Case 1C: The encoder is informed with ESI and the decoder is informed with increased causal

DSI (Si
2 at time i). This case is the same as Case 1, except for the causal DSI.

All cases are presented in Figure 2b.

Definition 5. A (n, 2nR, 2
nR′j , D) code, {j ∈ 1, 2}, for the source X with increased partial side information,

as illustrated in Figure 2b, consists of two encoders, one decoder and a distortion constraint. The encoders are

f and fv, where f is the encoder for the source and fv is the encoder for the side information, and the decoder is

g, as described for each case:

Case 1: Two encoders

fv : Sn
1 → {1, 2, . . . , 2nR′1},

f : X n × Sn
1 × {1, 2, . . . , 2nR′1} → {1, 2, . . . , 2nR},

and a decoder

g : {1, 2, . . . , 2nR} × Sn
2 × {1, 2, . . . , 2nR′1} → X̂ n. (7)

Case 2: Two encoders

fv : Sn
2 → {1, 2, . . . , 2nR′2},

f : X n × Sn
1 × {1, 2, . . . , 2nR′2} → {1, 2, . . . , 2nR},

and a decoder

g : {1, 2, . . . , 2nR} × Sn
2 × {1, 2, . . . , 2nR′2} → X̂ n. (8)
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Case 1C: Two encoders

fv : Sn
1 → {1, 2, . . . , 2nR′1},

f : X n × Sn
1 × {1, 2, . . . , 2nR′1} → {1, 2, . . . , 2nR},

and a decoder

gi : {1, 2, . . . , 2nR} × S i
2 × {1, 2, . . . , 2nR′1} → X̂i. (9)

The distortion constraint for all three cases is:

E

[ 1

n

n

∑
i=1

d(Xi, X̂i)
]

≤ D. (10)

For a given distortion, D, and for any ǫ > 0, the rate pair (R, R′) is said to be achievable if there exists

a (n, 2nR, 2nR′ , D + ǫ) code for the rate-distortion problem.

Definition 6. For a given R′ and distortion D, the operational rate R∗(R′, D) is the infimum of all R, such that

the rate pair (R, R′) is achievable.

3. Results

In this section, we present the main results of this paper. We will first present the results for the

channel coding cases, then the main results for the source coding cases and, finally, we will present

the duality between them.

3.1. Channel Coding with Side Information

For a channel with two-sided state information as presented in Figure 2a, where (S1,i, S2,i) ∼

p(s1, s2), the capacity is as follows

Theorem 1 (The capacity for the cases in Figure 2a). For the memoryless channel p(y|x, s1, s2), where S1

is the ESI and S2 is the DSI and the side information (S1,i, S2,i) ∼ p(s1, s2), the channel capacity is
Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI,

C∗1 = max
p(v1|s1)p(u|s1,v1)p(x|u,s1,v1)
s.t. R′≥I(V1;S1)−I(V1;Y,S2)

I(U; Y, S2|V1)− I(U; S1|V1). (11)

Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI;
Lower bounded by

Clb∗
2 = max

p(v2|s2)p(u|s1,v2)p(x|u,s1,v2)
s.t. R′≥I(V2;S2 |S1)

I(U; Y, S2|V2)− I(U; S1|V2). (12)

Upper bounded by

Cub1∗
2 = max

p(v2|s1,s2)p(u|s1,v2)p(x|u,s1,v2)
s.t. R′≥I(V2;S2)−I(V2;S1)

I(U; Y, S2|V2)− I(U; S1|V2) (13)

and by

Cub2∗
2 = max

p(v2|s2)p(u|s1,s2,v2)p(x|u,s1,v2)
s.t. R′≥I(V2;S2 |S1)

I(U; Y, S2|V2)− I(U; S1|V2). (14)
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Case 2C: The encoder is informed with increased causal ESI (Si
1 at time i) and the decoder is informed

with DSI,

C∗2C = max
p(v2|s2)p(u|v2)p(x|u,s1,v2)

R′≥I(V2;S2)

I(U; Y, S2|V2). (15)

For case j, j ∈ {1, 2}, some joint distribution, p(s1, s2, vj, u, x, y), and (U, Vj) being some auxiliary

random variables with bounded cardinality.

Appendix B contains the proof.

Lemma 1. For all three channel coding cases described in this section and for j ∈ {1, 2}, the following

statements hold,

1. The function Cj(R′) is a concave function of R′.

2. It is enough to take X to be a deterministic function of (U, S1, Vj) to evaluate Cj.

3. The auxiliary alphabets U and Vj satisfy

for Case 1: |V1| ≤ |X ||S1||S2|+ 1 and

|U | ≤ |X ||S1||S2|
(

|X ||S1||S2|+ 1
)

,

for Case 2: |V2| ≤ |S1||S2|+ 1 and

|U | ≤ |X ||S1||S2|
(

|S1||S2|+ 1
)

,

for Case 2C: |V2| ≤ |S2|+ 1 and

|U | ≤ |X ||S2|
(

|S2|+ 1
)

.

Appendix D contains the proof for the above lemma.

Remark 1. Please notice that in Equation (14), the rate of the side information, I(V2; S2|S1), can be written as

I(V2; S2)− I(V2|S1). This is true since the Markov relation V2 − S2 − S1 holds. Therefore, the only difference

between the two upper bounds of Case 2, Cub1∗
2 (13) and Cub2∗

2 (14), is in the distribution over which we

maximize. While for Cub1∗
2 we restrict the maximization to distributions which maintain the Markov chain

U − (S1, V2) − S2, for the second upper bound, Cub2∗
2 , we restrict the maximization to distributions which

maintain V2 − S2 − S1. We should note that we cannot state with certainty that one of the bounds is tighter

than the other for all distributions p(y, x, s1, s2) and for all values of R′. Notwithstanding, one bound may be

tighter than the other for all distributions.

3.2. Source Coding with Side Information

For the problem of source coding with side information as presented in Figure 2b,

the rate-distortion function is as follows:

Theorem 2 (The rate-distortion function for the cases in Figure 2b). For a bounded distortion measure

d(x, x̂), a source, X, and side information, S1, S2, where (Xi, S1,i, S2,i) ∼ p(x, s1, s2), the rate-distortion

function is
Case 1: The encoder is informed with ESI and the decoder is informed with increased DSI,

R∗1(D) = min
p(v1|s1)p(u|x,s1,v1)p(x̂|u,s2,v1)

s.t. R′≥I(V1;S1|S2)

I(U; X, S1|V1)− I(U; S2|V1). (16)

Case 1C: The encoder is informed with ESI and the decoder is informed with increased causal DSI (Si
2 at

time i),

R∗1C(D) = min
p(v1|s1)p(u|x,s1,v1)p(x̂|u,s2,v1)

s.t. R′≥I(V1;S1)

I(U; X, S1|V1). (17)
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Case 2: The encoder is informed with increased ESI and the decoder is informed with DSI,

R∗2(D) = min
p(v2|s2)p(u|x,s1,v2)p(x̂|u,s2,v2)
s.t. R′≥I(V2;S2)−I(V2;X,S1)

I(U; X, S1|V2)− I(U; S2|V2). (18)

For case j, j ∈ {1, 2}, some joint distribution, p(x, s1, s2, vj, u, x̂), where E
[

1
n ∑

n
i=1 d(Xi, X̂i)

]

≤ D and

(U, Vj) being some auxiliary random variables with bounded cardinality.

Appendix C contains the proof.

Lemma 2. For all cases of rate-distortion problems in this section and for j ∈ {1, 2}, the following

statements hold.

1. The function Rj(R′, D) is a convex function of R′ and D.

2. It is enough to take X̂ to be a deterministic function of (U, S2, Vj) to evaluate Rj.

3. The auxiliary alphabets U and Vj satisfy

for Case 1: |V1| ≤ |S1||S2|+ 1 and

|U | ≤ |X ||S1||S2|
(

|S1||S2|+ 1
)

,

for Case 1C: |V1| ≤ |S1|+ 1 and

|U | ≤ |X ||S1|
(

|S1|+ 1
)

,

for Case 2: |V2| ≤ |X ||S1||S2|+ 1 and

|U | ≤ |X ||S1||S2|
(

|X ||S1||S2|+ 1
)

.

Appendix D contains the proof for the above lemma.

3.3. Duality

We now investigate the duality between the channel coding and the source coding for the cases

in Figure 2a,b. The following transformation makes the duality between the channel coding cases 1, 2,

2C and the source coding cases 2, 1, 1C, respectively, evident. The left column corresponds to channel

coding and the right column to source coding. For cases j and j̄, where j, j̄ ∈ {1, 2} and j̄ 6= j,

consider the transformation:

channel coding←→ source coding

C←→ R(D)

maximization←→ minimization

Cj ←→ R j̄(D)

X ←→ X̂

Y ←→ X

Sj ←→ S j̄

Vj ←→ Vj̄

U ←→ U

R′ ←→ R′. (19)

This transformation is an extension of the transformation provided in [6,15]. Note that while the

channel capacity formula in Case j and the rate-distortion function in Case j̄ are dual to one another

in the sense of maximization-minimization, the corresponding rates R′ are not dual to each other in

this sense; i.e., one would expect to see an opposite inequality (≥ ↔ ≤) for dual cases, where we
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have an inequality that is in the same direction (≤ ↔ ≤) in the R′ formulas. The duality in the side

information rates, R′, is then in the sense that the arguments in the formulas for the dual R′ are dual.

This exception is due to the fact that while the Gelfand–Pinsker and the Wyner-Ziv problems for

the main channel or the main rate-distortion problems are dual, the Wyner-Ziv problem for the side

information stays the same; the only difference is the input and the output.

4. Examples

In this section, we provide examples for Case 2 of the channel coding theorem and for Case 1

of the source coding theorem. The numerical iterative algorithm, which we used to numerically

calculate the lower bound, Clb
2 , is provided in the next section.

Example 1 (Case 2 channel coding for a binary channel).

Consider the binary channel illustrated in Figure 3. The alphabet of the input, the output and

the two states is binary X = Y = S1 = S2 = {0, 1} with (S1, S2) ∼ PS1S2
being a joint probability

mass function (PMF) matrix. The channel is dependent on the states S1 and S2, where the encoder is

fully informed with S1 and with S2 with a rate limited to R′ and the decoder is fully informed with

S2. The dependence of the channel on the states is illustrated in Figure 3. If (S1 = 1, S2 = 0) then the

channel is the Z channel with transition probability ǫ, if (S1 = 1, S2 = 1) then the channel has no error,

if (S1 = 0, S2 = 0) then the channel is the X-channel and if (S1 = 0, S2 = 1) then the channel is the

S-channel with transition probability of ǫ. The side information’s joint PMF is

PS1S2
=

(

0.1 0.4

0.4 0.1

)

.

The expressions for the lower bound on the capacity Clb
2 (R′) and for R′ are brought in Case 2 of

Theorem 1.

Encoder Channel DecoderM Xn Yn
M̂

Sn
1 Sn

2

R′

0 0 000 000

1 1 111 111

(1, 0) (1, 1) (0, 0) (0, 1)(S1, S2)

The
Channel

Figure 3. Example 1 Channel coding Case 2—channel topology.

In Figure 4, we provide the graph from of the computation of the lower bound on the capacity for

the binary channel we are testing. In the graph, we present the lower bound, Clb
2 (R′), as a function of

R′. We also provide the Cover & Chiang [6] capacity (where R′ = 0) and the Gelfand and Pinsker [2]

capacity (where R′ = 0 and the decoder is not informed with S2).

Discussion:

1. The algorithm that we used to calculate Clb
2 (R′) and R′ combines a grid-search and

a Blahut-Arimoto-like algorithms. We first construct a grid of probabilities of the random

variable V2 given S2, namely, w(v2|s2). Then, for every probability w(v2|s2) such that I(V2; S2|S1)

is close enough to R′ we calculate the maximum of I(U; Y, S2|V2)− I(U; S1|V2) using the iterative
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algorithm described in the next section. We then choose the maximum over those maximums

and declare it to be Clb
2 . By taking a fine grid of the probabilities w(v2|s2) the operation’s result

can be arbitrarily close to Clb
2 .

2. For a given joint PMF matrix PS1S2
, we can see that Clb

2 (R′) is non-decreasing in R′. Furthermore,

since the expression I(V2; S2|S1) is bounded by Rmax = maxp(v2|s2)
I(V2; S2|S1) = H(S2|S1),

allowing R′ to be greater than Rmax cannot improve Clb
2 any more. i.e., Clb

2 (R′ = Rmax) =

Clb
2 (R′ > Rmax). Therefore, it is enough to allow R′ = Rmax to achieve Clb

2 , as if the encoder is

fully informed with S2.

3. Although Clb
2 is a lower bound on the capacity, it can be significantly greater than the

Cover-Chiang and the Gelfand–Pinsker rates for some channel models, as can be seen in this

example. Moreover, we can actually state that Clb
2 is always greater than or equal to the

Gelfand–Pinsker and the Cover-Chiang rates. This is due to the fact that when R′ = 0, Clb
2

coincides with the Cover-Chiang rate, which, in its turn, is always greater than or equal to the

Gelfand–Pinsker rate; since Clb
2 is also non-decreasing in R′, it is obvious that our assertion holds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 

Clb
2 (R′)

C-C rate

G-P rate

R′ [bits]

R
at

e
[b

it
s]

H(S2|S1)

Figure 4. Example 1. Channel coding Case 2 for the channel depicted in Figure 3, where the side

information is distributed S1 ∼ Bernoulli(0.5), and Pr{S2 6= S1} = 0.8. Clb
2 (R

′) is the lower bound

on the capacity of this channel, C-C rate is the Cover-Chiang rate (R′ = 0) and G-P rate is the

Gelfand–Pinsker rate (R′ = 0 and the decoder has no side information available at all). Notice that at

the encoder the maximal uncertainty about S2 is H(S2|S1) = 0.7219 bit. Therefore, for any R′ ≥ 0.7219

Clb
2 reaches its maximal value.

Example 2 (Source coding Case 1 for a binary-symmetric source and Hamming distortion).

Consider the source X = S1 ⊕ S2, where S1, S2 ∼ i.i.d. Bernoulli(0.5), and consider the problem

setting depicted in Case 1 of the source coding problems. It is sufficient for the decoder to reconstruct

S1 with distortion E
[

d(S1, Ŝ1)
]

≤ D in order to reconstruct X with the same distortion. Furthermore,

the two rate-distortion problem settings illustrated in Figure 5 are equivalent.

For every achievable rate in Setting 1, E
[

d(S1, Ŝ1)
]

≤ D. Denote X̂ , Ŝ1 ⊕ S2, then, d(S1, Ŝ1) =

S1 ⊕ Ŝ1 = (S1 ⊕ S2) ⊕ (Ŝ1 ⊕ S2) = X ⊕ X̂ = d(X, X̂) and, therefore, E
[

d(S1, Ŝ1)
]

≤ D in Setting

1 ⇒ E

[

d(X, X̂)
]

≤ D in Setting 2. In the same way, for Setting 2, denote Ŝ1 , X̂ ⊕ S2. Then,

d(X, X̂) = X ⊕ X̂ = S1 ⊕ Ŝ1 and, therefore, E
[

d(X, X̂)
]

≤ D in Setting 2 ⇒ E

[

d(S1, Ŝ1)
]

≤ D in
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Setting 1. Hence, we can conclude that the two settings are equivalent and, for any given 0 ≤ D and

0 ≤ R′, the rate-distortion function is

R(D) =

{

1− H(D)− R′ 1− H(D)− R′ ≥ 0

0 1− H(D)− R′ < 0
. (20)

Setting 1 Setting 2

DecDec EncEnc

S1

S1

S2

Ŝ1 XR + R′ R

R′

X̂

Figure 5. The equivalent rate-distortion problem for Case 1 for the source X = S1⊕ S2 where S1, S2 ∼

i.i.d. Bernoulli(0.5).

In Figure 6 we present the plot resulting for this example. It is easy to verify that the Wyner and

Ziv rate and the Cover and Chiang rate for this setting are RWZ(D) = RCC(D) = max
{

1− H(D), 0
}

.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

R′ = 0

R′ = 0.1

R′ = 0.3

0.1 bit

0.1 bit

D

R
[b

it
s]

Figure 6. Example 2. Source coding Case 1 for binary-symmetric source and Hamming distortion. The source

is given by X = S1 ⊕ S2, where S1, S2 ∼ Bernoulli(0.5). The graph shows the rate-distortion function

for different values of R′.

5. Semi-Iterative Algorithm

In this section, we provide algorithms that numerically calculate the lower bound on the capacity

of Case 2 of the channel coding problems. The calculation of the Gelfand–Pinsker and the Wyner-Ziv

problems has been addressed in many papers in the past, including [5,24–26]. All these algorithms

are based on Arimoto’s [23] and Blahut’s [22] algorithms and on the fact that the Wyner-Ziv and

the Gelfand–Pinsker problems can be presented as convex optimization problems. On the contrary,

our problems are not convex in all of their optimization variables and, therefore, cannot be presented

as convex optimization problems. In order to solve our problems we devised a different approach

which combines a grid-search and a Blauhut-Arimoto-like algorithm. In this section, we provide the

mathematical justification for those two algorithms. Other algorithms to numerically compute the

channel capacity or the rate-distortion of the rest of the cases presented in this paper can be derived

using the principles that we describe in this section.
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5.1. An Algorithm for Computing the Lower Bound on the Capacity of Case 2

Consider the channel in Figure 7 described by p(y|x, s1, s2) and consider the joint PMF

p(s1, s2). The capacity of this channel is lower bounded by max I(U; Y, S2|V2) − I(U; S1|V2),

where the maximization is over all PMFs p(s1, s2)w(v2|s2)p(u|s1, v2)p(x|s1, v2, u)p
(

y|x, s1, s2

)

such

that R′ ≥ I(V2; S2|S1). Notice that the lower bound expression is not concave in w(v2|s2), which is the

main difficulty with the computation of it. We first present an outline of the semi-iterative algorithm

we developed, then we present the mathematical background and justification for the algorithm and,

finally, we present the detailed algorithm.

Encoder Channel Decoder
W ŴXn Yn

Sn
1 Sn

2
R′

Figure 7. Channel coding: Case 2. Clb
2 = max I(U; Y, S2|V2)− I(U; S1|V2), where the maximization is

over all PMFs w(v2|s2)p(u|s1, v2)p(x|s1, v2, u) such that R′ ≥ I(V2; S2|S1).

For any fixed PMF w(v2|s2) denote

Rw , I(V2; S2|S1), (21)

Clb
2,w , max

p(u|s1,v2)p(x|u,s1,v2)
I(U; Y, S2|V2)− I(U; S1|V2). (22)

Then, the lower bound on the capacity , Clb
2 (R′), can be expressed as

Clb
2 (R′) = max

w(v2|s2)
s.t. R′≥Rw

max
p(u|s1,v2)p(x|u,s1,v2)

[I(U; Y, S2|V2)− I(U; S1|V2)] , max
w(v2|s2)

s.t. R′≥Rw

Clb
2,w. (23)

The outline of the algorithm is as follows: for any given rate R′ ≤ H(S2|S1), ǫ > 0 and δ > 0,

1. Establish a fine and uniformly spaced grid of legal PMFs, w(v2|s2), and denote the set of all of

those PMFs asW .

2. Establish the setW∗ :=
{

w(v2|s2) | w(v2|s2) ∈ W and R′ − ǫ ≤ Rw ≤ R′
}

. This set is the set of

all PMFs w(v2|s2) such that Rw is ǫ-close to R′ from below. IfW∗ is empty, go back to step 1 and

make the grid finer. Otherwise, continue.

3. For every w(v2|s2) ∈ W
∗, perform a Blahut-Arimoto-like optimization to find Clb

2,w with accuracy

of δ.

4. Declare Clb
2 (R′) = maxw(v2|s2)∈W∗

C
lb(ǫ,δ,W)
2 (R′).

Remark 2. 1. We considered only those R′s such that R′ ≤ H(S2|S1) since H(S2|S1) is the maximal value

that I(V2; S2|S1) takes. The interpretation of this is that if the encoder is informed with S1, we cannot

increase its side information about S2 in more than H(S2|S1). Therefore, for any H(S2|S1) ≤ R′, we can

limit R′ to be equal to H(S2|S1) in order to compute the capacity;

2. Since Clb
2,w(R′) is continuous in w(v2|s2) and bounded (for example, by I(X; Y|S1, S2) from above and by

I(X; Y) from below), C
(ǫ,δ,W)
2 (R′) can be arbitrarily close to Clb

2 (R′) for ǫ→ 0, δ→ 0 and |W| → ∞.

5.1.1. Mathematical background and justification

Here we focus on finding the lower bound on the capacity of the channel for a fixed distribution

w(v2|s2), i.e., finding Clb
2,w. Note that the mutual information expression I(U; Y, S2|V2)− I(U; S1|V2)

is concave in p(u|s1, v2) and convex in p(x|u, s1, v2). Therefore, a standard convex maximization

technique is not applicable for this problem. However, according to Dupuis, Yu and Willems [25],
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we can write the expression for the lower bound as Clb
2,w = maxq(t|s1,v2)

I(T; Y, S2|V2) − I(T; S1|V2),

where q(t|s1, v2) is a probability distribution over the set of all possible strategies t : S1 × V2 → X ,

the input symbol X is selected using x = t(s1, v2) and p(y|x, s1, s2) = p(y|x, s1, s2, v2) =

p
(

y|t(s1, v2), s1, s2, v2

)

. Now, since I(T; Y, S2|V2) − I(T; S1|V2) is concave in q(t|s1, v2), we can use

convex optimization methods to derive Clb
2,w.

Denote the PMF

p(s1, s2, v2, t, y) , p(s1, s2)w(v2|s2)q(t|s1, v2)p(y|t, s1, s2, v2), (24)

and denote also

Jw(q, Q) , ∑
s1,s2,v2,t,y

p(s1, s2, v2, t, y) log
Q(t|y, s2, v2)

q(t|s1, v2)
, (25)

Q∗(t|y, s2, v2) ,
∑s1

p(s1, s2, v2, t, y)

∑s1,t′ p(s1, s2, v2, t′, y)
. (26)

Notice that Q∗(t|y, s2, v2) is a marginal distribution of p(s1, s2, v2, t, y) and that Jw(q, Q∗) =

I(T; Y, S2|V2)− I(T; S1|V2) for the joint PMF p(s1, s2, v2, t, y).

The following lemma is the key for the iterative algorithm.

Lemma 3.

Clb
2,w = sup

q′(t|s1,v2)

max
Q′(t|y,s2,v2)

Jw(q
′, Q′). (27)

The proof for this is brought by Yeung in [30]. In addition, Yeung shows that the

two-step alternating optimization procedure converges monotonically to the global optimum if the

optimization function is concave. Hence, if we show that Jw(q, Q) is concave, we can maximize it

using an alternating maximization algorithm over q and Q.

Lemma 4. The function Jw(q, Q) is concave in q and Q simultaneously.

We can now proceed to calculate the steps in the iterative algorithm.

Lemma 5. For a fixed q, Jw(q, Q) is maximized for Q = Q∗.

Proof. The above follows from the fact that Q∗ is a marginal distribution of p(s1, s2)w(v2|s2)q(t|s1, v2)

p(y|t, s1, s2, v2) and the property of the K-L divergence D(Q∗‖Q′) ≥ 0.

Lemma 6. For a fixed Q, Jw(q, Q) is maximized for q = q∗, where q∗ is defined by

q∗(t|s1, v2) =
∏s2,y Q(t|y, s2, v2)

p(s2|s1,v2)p(y|t,s1,s2,v2)

∑t′ ∏s2,y Q(t|y, s2, v2)p(s2|s1,v2)p(y|t′,s1,s2,v2)
, (28)

and

p(s2|s1, v2) =
p(s1, s2)w(v2|s2)

∑s′2
p(s1, s′2)w(v2|s′2)

. (29)

Define Uw(q) in the following way

Uw(q) = ∑
s1,v2

p(s1, v2)max
t

∑
s2,y

p(s2|s1, v2)p(y|t, s1, s2, v2) log
Q∗(t|y, s2, v2)

q(t|s1, v2)
, (30)



Entropy 2017, 19, 467 16 of 41

where Q∗ is given in (26), p(s1, v2) and p(s2|s1, v2) are marginal distributions of the joint PMF

p(s1, s2, v2, t, y) = p(s1, s2)w(v2|s2)q(t|s1, v2)p(y|t, s1, s2, v2). The following lemma will help us to

define a termination condition for the algorithm.

Lemma 7. For every q(t|s1, v2) the function Uw(q) is an upper bound on Clb
w,2 and converges to Clb

2,w for

a large enough number of iterations.

5.2. Semi-Iterative Algorithm

The the algorithm for finding Clb
2 (R′) is brought in Algorithm 1. Notice that the result of this

algorithm, C
(ǫ,δ,W)
2 (R′), can be arbitrarily close to Clb

2 (R′) for ǫ→ 0, δ → 0 and |W| → ∞.

Algorithm 1 Numerically calculating Clb
2 (R′)

1: Chose ǫ > 0, δ > 0
2: Set R′ ← min{R′, H(S2|S1)} {the amount of information needed for the encoder to know S2 given

S1}
3: Set C← −∞
4: Establish a fine and uniformly spaced grid of legal PMFs w(v2|s2) and name itW
5: for all w inW do
6: Compute Rw using

Rw = I(V2; S2)− I(V2; S1)

7: if R′ − ǫ ≤ Rw ≤ R′ then
8: Set Q(t|y, s2, v2) to be a uniform distribution over {1, 2, . . . , |T |}, where T is the alphabet of t.

i.e., Q(t|y, s2, v2) =
1
|T |

, ∀t, y, s2, v2
9: repeat

10: Set q(t|s1, v2)← q∗(t|s1, v2) using

q∗(t|s1, v2) =
∏s2,y Q(t|y, s2, v2)

p(s2|s1,v2)p(y|t,s1,s2,v2)

∑t′ ∏s2,y Q(t′|y, s2, v2)p(s2|s1,v2)p(y|t′,s1,s2,v2)

11: Set (Q(t|y, s2, v2)← Q∗(t|y, s2, v2) using

Q∗(t|y, s2, v2) =
∑s1

p(s1, s2, v2, t, y)

∑s1,t′ p(s1, s2, v2, t′, y)

12: Compute Jw(q, Q) using

Jw(q, Q) = ∑
s1,s2,v2,t,y

p(s1, s2, v2, t, y) log
Q(t|y, s2, v2)

q(t|s1, v2)

13: Compute Uw(q) using

Uw(q) = ∑
s1,v2

p(s1, v2)max
t

∑
s2,y

p(s2|s1, v2)p(y|t, s1, s2, v2) log
Q∗(t|y, s2, v2)

q(t|s1, v2)

14: until Uw(q)− J(q, Q) < δ

15: if C ≤ Jw(q, Q) then
16: Set C← Jw(q, Q)
17: end if
18: end if
19: end for
20: if C < 0 then {there is no PMF w(v2|s2) ∈ W such that Rw is ǫ-close to R′ from below}
21: go to line 4 and make the grid finer
22: end if
23: Declare C

lb(ǫ,δ,W)
2 (R′) = C
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6. Open Problems

In this section, we discuss the generalization of the channel capacity and the rate-distortion

problems that we presented in Section 3. We now consider the cases where the encoder and the

decoder are simultaneously informed with a rate-limited description of both the ESI and the DSI,

as illustrated in Figure 8. A lower bound on the capacity and an upper bound on the rate-distortion

are suggested. Achievability schemes for the presented bounds can be easily derived using the same

techniques that we used in the proofs for Theorems 1 and 2, and, hence, are omitted. We were unable

to prove that the suggested bounds are tight, nor did we encounter any other such proofs in the

published literature; therefore, we believe these problems to be open.

6.1. A Lower Bound on the Capacity of a Channel with Two-Sided Increased Partial Side Information

Consider the channel illustrated in Figure 8, where (S1,i, S2,i) i.i.d. ∼ p(s1, s2). The encoder

is informed with the ESI (Sn
1 ) and rate-limited DSI and the decoder is informed with the DSI (Sn

2 )

and rate-limited ESI. An (n, 2nR, 2nR′1 , 2nR′2) code for the discussed channel consists of three encoding

maps:

fv1 : Sn
1 → {1, 2, . . . , 2nR′1},

fv2 : Sn
2 → {1, 2, . . . , 2nR′2},

f : {1, 2, . . . , 2nR} × Sn
1 × {1, 2, . . . , 2nR′2} → X n,

and a decoding map:

g : Yn × Sn
2 × {1, 2, . . . , 2nR′1} → {1, 2, . . . , 2nR}.

Fact 1: The channel capacity, C∗12, of this channel coding setup is bounded from below as follows:

C∗12 ≥ max
p(v1|s1)p(v2|s2)p(u|s1,v1,v2)p(x|u,s1,v1,v2)

s.t. R′1≥I(V1;S1)−I(V1;Y,S2,V2)
R′2≥I(V2;S2)−I(V2;S1)

I(U; Y, S2|V1, V2)− I(U; S1|V1, V2), (31)

for some joint distribution p(s1, s2, v1, v2, u, x, y) and U, V1 and V2 are some auxiliary random

variables.

The proof for the achievability follows closely the proofs given in Appendix B and, therefore,

is omitted.

Encoder Channel Decoder
W ŴXn Yn

Sn
1 Sn

2R′1 R′2

Figure 8. Channel coding with two-sided increased partial side information.

6.2. An Upper Bound on the Rate-Distortion with Two-Sided Increased Partial Side Information

Consider the rate-distortion problem illustrated in Figure 9, where the source X and the side

information S1, S2 are distributed (Xi, S1,i, S2,i) ∼ i.i.d. p(x, s1, s2). The encoder is informed with

the ESI (Sn
1 ) and rate-limited DSI and the decoder is informed with the DSI (Sn

2 ) and rate-limited

ESI. An (n, 2nR, 2nR′1 , 2nR′2 , D) code for the discussed rate-distortion problem consists of three

encoding maps:

fv1 : Sn
1 → {1, 2, . . . , 2nR′1},
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fv2 : Sn
2 → {1, 2, . . . , 2nR′2},

f : X n × Sn
1 × {1, 2, . . . , 2nR′2} → {1, 2, . . . , 2nR},

and a decoding map:

g : {1, 2, . . . , 2nR} × Sn
2 × {1, 2, . . . , 2nR′1} → X̂ n.

Fact 2: For a given distortion, D, and a given distortion measure, d(X, X̂) : X × X̂ → R
+,

the rate-distortion function R∗12(D) of this setup is bounded from above as follows:

R∗12(D) ≤ min
p(v1|s1)p(v2|s2)p(u|x,s1,v1,v2)p(x̂|u,s2,v1,v2)

s.t. R′1≥I(V1;S1)−I(V1;S2,V2)
R′2≥I(V2;S2)−I(V2;X,S1,V1)

I(U; X, S1|V1, V2)− I(U; S2|V1, V2), (32)

for some joint distribution p(x, s1, s2, v1, v2, u, x̂) where E

[

1
n ∑

n
i=1 d(Xi, X̂i)

]

≤ D and U, V1 and V2 are

some auxiliary random variables.

The proof for the achievability follows closely the proofs given in Appendix C and, therefore,

is omitted.

Encoder Decoder
Xn X̂n

Sn
1 Sn

2R′2R′1

Figure 9. Source coding with two-sided increased partial side information.
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Appendix A. Duality of the Converse of the Gelfand–Pinsker Theorem and the
Wyner-Ziv Theorem

In this appendix, we provide proofs of the converse of the Gelfand–Pinsker capacity and the

converse of the Wyner-Ziv rate in a dual way.
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Channel capacity Rate-distortion

1 nR = H(W) nR = H(T)

2
(a)
≤ I(W; Yn)− I(W; Sn) + nǫn

(a)
≥ I(T; Xn)− I(T; Sn)

3 = ∑
n
i=1

[

I(W; Yi|Y
i−1) = ∑

n
i=1

[

I(T; Xi|X
i−1)

−I(W; Si|S
n
i+1)

]

+ nǫn −I(T; Si|S
n
i+1)

]

4 = ∑
n
i=1

[

I(W, Sn
i+1; Yi|Y

i−1) = ∑
n
i=1

[

I(T, Sn
i+1; Xi|X

i−1)

−I(W, Yi−1; Si|S
n
i+1)

]

+ ∆− ∆∗ + nǫn −I(W, Xi−1; Si|S
n
i+1)

]

+ ∆− ∆∗

5
(b)
≤ ∑

n
i=1

[

I(W, , Yi−1, Sn
i+1; Yi)

(b)
≥ ∑

n
i=1

[

I(T, , Xi−1, Sn
i+1; Xi)

−I(W, Yi−1, Sn
i+1; Si)

]

+ nǫn −I(T, Xi−1, Sn
i+1; Si)

]

6 = ∑
n
i=1

[

I(Ui; Yi)− I(Ui; Si)
]

+ nǫn, = ∑
n
i=1

[

I(Ui; Xi)− I(Ui; Si)
]

,

(A1)

where

∆ = ∑
n
i=1 I(Yi−1; Si|W, Sn

i+1), ∆ = ∑
n
i=1 I(Xi−1; Si|T, Sn

i+1),

∆∗ = ∑
n
i=1 I(Sn

i+1; Yi|W, Yi−1), ∆∗ = ∑
n
i=1 I(Sn

i+1; Xi|T, Xi−1),

(a) follows from Fano’s inequality (a) follows from Fano’s inequality

and from that fact that W is and from the fact that T is

independent of Sn, independent of Sn,

(b) follows from the fact that Si is (b) follows from the fact that Si is

independent of Sn
i+1. independent of Sn

i+1 and that Xi

is independent of Xi−1.

(A2)

By substituting the output Y and the input X in the channel capacity theorem with the input X

and the output X̂ in the rate-distortion theorem, respectively, we can observe duality in the converse

proofs of the two theorems.

Appendix B. Proof of Theorem 1

In this section, we provide the proofs for Theorem 1, Cases 2 and 2C. The results for Case 1,

where the encoder is informed with ESI and the decoder is informed with increased DSI, can be

derived directly from [1] (Section IV). In [1], Steinberg considered the case where the encoder is

fully informed with the ESI and the decoder is informed with a rate-limited description of the ESI.

Therefore, by considering the DSI, Sn
2 , to be a part of the channel’s output, we can apply Steinberg’s

result on the channel depicted in Case 1. For this reason, the proof for this case is omitted.

Appendix B.1. Proof of Theorem 1, Case 2

Channel capacity Case 2 is presented in Figure A1. The proof of the lower bound, Clb
2 ,

is performed in the following way: for the description of the DSI, S2, at a rate R′ we use a Wyner-Ziv

coding scheme where the source is S2 and the side information is S1. Then, for the channel coding,

we use a Gelfand–Pinsker coding scheme where the state information at the encoder is S1, S2 is a part

of the channel’s output and the rate-limited description of S2 is side information at both the encoder

and the decoder. Notice that I(U; Y, S2|V2) − I(U; S1, |V2) = I(U; Y, S2, V2) − I(U; S1, V2) and that,

since the Markov chain V2 − S2 − S1 holds, we can also write R′ ≥ I(V2; S2)− I(V2; S1). We make use

of these expressions in the following proof.
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Encoder Channel Decoder
W ŴXn Yn

Sn
1 Sn

2
R′

Figure A1. Channel capacity: Case 2. Lower bound: Clb
2 = max I(U; Y, S2|V2) − I(U; S1|V2),

where the maximization is over all joint PMFs p(s1, s2, v2, u, x, y) that maintain the Markov relations

U − (S1, V2)− S2 and V2 − S2 − S1 and the constraint R′ ≥ I(V2; S2|S1). Upper bounds: Cub1
2 is the

result of the same expressions as for the lower bound, except that the maximization is taken over all

PMFs that maintain the Markov chain U− (S1, V2)− S2, and Cub2
2 is the result of the same expressions

as for the lower bound, except that this time the maximization is taken over all PMFs that maintain

V2 − S2 − S1.

Achievability: (Channel capacity Case 2—Lower bound). Given (S1,i, S2,i) ∼

i.i.d. p(s1, s2) and the memoryless channel p(y|x, s1, s2), fix p(s1, s2, v2, u, x, y) =

p(s1, s2)p(v2|s2)p(u|s1, v2)p(x|u, s1, v2)p(y|x, s1, s2), where x = f (u, s1, v2) (i.e., p(x|u, s1, v2)

can get the values 0 or 1).

Codebook generation and random binning

1. Generate a codebook Cv of 2n(I(V2;S2))+2ǫ sequences Vn
2 independently using i.i.d. ∼ p(v2).

Label them vn
2(k), where k ∈

{

1, 2, . . . , 2n(I(V2;S2)+2ǫ)
}

, and randomly assign each sequence vn
2(k)

a bin number bv
(

vn
2(k)

)

in the set
{

1, 2, . . . , 2nR′
}

.

2. Generate a codebook Cu of 2n(I(U;Y,S2,V2)−2ǫ) sequences Un independently using i.i.d. ∼ p(u).

Label them un(l), l ∈
{

1, 2, . . . , 2n(I(U;Y,S2,V2)−2ǫ)
}

, and randomly assign each sequence a bin

number bu
(

un(l)
)

in the set
{

1, 2, . . . , 2nR
}

.

Reveal the codebooks and the content of the bins to all encoders and decoders.

Encoding

1. State Encoder: Given the sequence Sn
2 , search the codebook Cv and identify an index k such that

(

vn
2(k), Sn

2

)

∈ T
(n)

ǫ (V2, S2). If such a k is found, stop searching and send the bin number j =

bv

(

vn
2 (k)

)

. If no such k is found, declare an error.

2. Encoder: Given the message W, the sequence Sn
1 and the index j, search the codebook Cv and

identify an index k such that
(

vn
2 (k), Sn

1

)

∈ T
(n)

ǫ (V2, S1). If no such k is found or there is more

than one such index, declare an error. If a unique k, as defined, is found, search the codebook

Cu and identify an index l such that
(

un(l), Sn
1 , vn

2(k)
)

∈ T
(n)

ǫ (U, S1, V2) and bu
(

un(l)
)

= W.

If a unique l, as defined, is found, transmit xi = f
(

ui(l), S1,i, v2,i(k)
)

, i = 1, 2, . . . , n. Otherwise,

if there is no such l or there is more than one, declare an error.

Decoding

Given the sequences Yn, Sn
2 and the index k, search the codebook Cu and identify an index l such

that
(

un(l), Yn, Sn
2 , vn

2(k)
)

∈ T
(n)

ǫ (U, Y, S2, V2). If a unique l, as defined, is found, declare the message

Ŵ to be the bin index where un(l) is located, i.e., Ŵ = bu
(

un(l)
)

. Otherwise, if no such l is found or

there is more than one, declare an error.

Analysis of the probability of error

Without loss of generality, let us assume that the message W = 1 was sent and the indexes that

correspond with the given W = 1, Sn
1 , Sn

2 are (k = 1, l = 1 and j = 1); i.e., vn
2(1) corresponds with Sn

2 ,

bv

(

vn
2 (1)

)

= 1, un(1) is chosen according to
(

W = 1, Sn
1 , vn

2(1)
)

and bu

(

un(1)
)

= 1.
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Define the following events:

E1 :=
{

∀vn
2(k) ∈ Cv,

(

vn
2(k), Sn

2

)

/∈ T
(n)

ǫ (V2, S2)
}

E2 :=
{

(

vn
2(1), Sn

1

)

/∈ T
(n)

ǫ (V2, S1)
}

E3 :=
{

∃k′ 6= 1 such that bv

(

vn
2 (k
′)
)

= 1 and
(

vn
2 (k
′), Sn

1

)

∈ T
(n)

ǫ (V2, S1)
}

E4 :=
{

∀un(l) ∈ Cu such that bu
(

un(l)
)

= 1,
(

un(l), Sn
1 , vn

2(1)
)

/∈ T
(n)

ǫ (U, S1, V2)
}

E5 :=
{

(

un(1), Yn, Sn
2 , vn

2(1)
)

/∈ T
(n)

ǫ (U, Y, S2, V2)
}

E6 :=
{

∃l′ 6= 1 such that
(

un(l′), Yn, Sn
2 , vn

2(1)
)

∈ T
(n)

ǫ (U, Y, S2, V2)
}

The probability of error P
(n)
e is upper bounded by Pn

e ≤ P(E1) + P(E2|E
c
1) + P(E3|E

c
1, Ec

2) +

P(E4|E
c
1, Ec

2, Ec
3) + P(E5|E

c
1, . . . , Ec

4) + P(E6|E
c
1, . . . , Ec

5). Using standard arguments, and assuming that

(Sn
1 , Sn

2 ) ∈ T
(n)

ǫ (S1, S2) and that n is large enough, we can state that

1.

P(E1) =Pr
{

⋂

vn
2 (k)∈Cv

(

vn
2(k), Sn

2

)

/∈ T
(n)

ǫ (V2, S2)
}

=
2n(I(V2;S2 )+2ǫ)

∏
k=1

Pr
{(

vn
2(k), Sn

2

)

/∈ T
(n)

ǫ (V2, S2)
}

=
2n(I(V2;S2 )+2ǫ)

∏
k=1

(

1− Pr
{(

vn
2 (k), Sn

2

)

∈ T
(n)

ǫ (V2, S2)
}

)

≤
(

1− 2−n(I(V2;S2)+ǫ)
)2n(I(V2;S2 )+2ǫ)

≤e−2−n(I(V2;S2 )+ǫ)2n(I(V2;S2 )+2ǫ)

=e−2nǫ

. (A3)

The probability that there is no vn
2(k) in Cv such that

(

vn
2(k), Sn

2

)

is strongly jointly typical

is exponentially small provided that |Cv| ≥ 2n(I(V2;S2)+ǫ). This follows from the standard

rate-distortion argument that 2nI(V2;S2) vn
2 ’s “cover” Sn

2 , therefore P(E1)→ 0.

2. By the Markov lemma [31], since (Sn
1 , Sn

2 ) are strongly jointly typical,
(

Sn
2 , vn

2(1)
)

are strongly

jointly typical and the Markov chain S1 − S2 −V2 holds, then
(

Sn
1 , Sn

2 , vn
2(1)

)

are strongly jointly

typical with high probability. Therefore, P(E2|E
c
1)→ 0.

3.

P(E3|E
c
1, Ec

2) = Pr
{

⋃

vn
2 (k′ 6=1)∈Cv

bv

(

vn
2 (k′)

)

=1

(

vn
2(k
′), Sn

1

)

∈ T
(n)

ǫ (V2, S1)
}

(A4)

≤ ∑
vn

2 (k′ 6=1)∈Cv

bv

(

vn
2 (k′)

)

=1

Pr
{(

vn
2(k
′), Sn

1

)

∈ T
(n)

ǫ (V2, S1)
}

(A5)

≤ ∑
vn

2 (k′ 6=1)∈Cv

bv

(

vn
2 (k′)

)

=1

2−n(I(V2;S1)−ǫ) (A6)

= 2n(I(V2;S2)+2ǫ−R′)2−n(I(V2;S1)−ǫ) (A7)
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= 2n(I(V2;S2)−I(V2;S1)+3ǫ−R′). (A8)

The probability that there is another index k′, k′ 6= 1, such that vn
2 (k
′) is in bin number 1 and

that is strongly jointly typical with Sn
1 is bounded by the number of vn

2 (k
′)’s in the bin times the

probability of joint typicality. Therefore, if the number of bins R′ > I(V2; S2) − I(V2; S1) + 3ǫ

then P(E3|E
c
1, Ec

2)→ 0.

4. We use here the same argument we used for P(E1); by the covering lemma, we can state that the

probability that there is no un(l) in bin number 1 that is strongly jointly typical with
(

Sn
1 , vn

2(1)
)

tends to zero for large enough n if the average number of un(l)’s in each bin is greater than

2n(I(U;S1,V2)+ǫ); i.e., |Cu|/2nR
> 2n(I(U;S1,V2)+ǫ). This also implies that in order to avoid an error

the number of words one should use is R < I(U; Y, S2, V2) − I(U; S1, V2) − 3ǫ, where the last

expression also equals I(U; Y, S2|V2)− I(U; S1|V2)− 3ǫ.

5. As we argued for P(E2|E
c
1), since

(

Xn, un(1), Sn
1 , vn

2(1)
)

is strongly jointly typical,
(

Yn, Xn, Sn
1 , Sn

2

)

is strongly jointly typical and the Markov chain (U, V2) − (X, S1, S2) − Y holds, then, by

the Markov lemma,
(

un(1), Yn, Sn
2 , vn

2(1)
)

is strongly jointly typical with high probability, i.e.,

P(E5|E
c
1, . . . , Ec

4)→ 0.

6.

P(E6|E
c
1, . . . , Ec

5) = Pr
{

⋃

un(l ′ 6=1)∈Cu

(

un(l′), Yn, Sn
2 , vn

2(1)
)

∈ T
(n)

ǫ (U, Y, S2, V2)
}

≤
2n(I(U;Y,S2,V2)−2ǫ)

∑
l ′=2

Pr
{(

un(l′), Yn, Sn
2 , Vn

2

)

∈ T
(n)

ǫ (U, Y, S2, V2)
}

≤
2n(I(U;Y,S2,V2)−2ǫ)

∑
l ′=2

2−n(I(U;Y,S2,V2)−ǫ)

≤ 2n(I(U;Y,S2,V2)−2ǫ)2−n(I(U;Y,S2,V2)−ǫ)

= 2−nǫ. (A9)

The probability that there is another index l′, l′ 6= 1, such that un(l′) is strongly jointly

typical with
(

Yn, Sn
2 , vn

2(1)
)

is bounded by the total number of un’s times the probability of

joint typicality. Therefore, taking |Cu| ≤ 2n(I(U;Y,S2,V2)−2ǫ) assures us that P(E6|E
c
1, . . . , Ec

5) →

0. This follows the standard channel capacity argument that one can distinguish at most

2nI(U;Y,S2,V2) different un(l)’s given any typical member of Yn × Sn
2 ×V

n
2 .

This shows that for rates R and R′ as described and for large enough n, the error events are of

arbitrarily small probability. This concludes the proof of the achievability and the lower bound on the

capacity of Case 2.

Converse: (Channel capacity Case 2—Upper bound). We first prove that it is possible to bound the

capacity from above by using two random variables, U and V, that maintain the Markov chain

U − (S1, V2)− S2 (that is Cub1
2 ). Then, we prove that it is also possible to upper-bound the capacity

by using U and V that maintain the Markov relation V2 − S2 − S1 (that is Cub2
2 ).

Fix the rates R and R′ and a sequence of codes (n, 2nR, 2nR′) that achieve the capacity. By Fano’s
inequality, H(W|Yn, Sn

2 ) ≤ nǫn, where ǫn → 0 as n → ∞. Let T2 = fv(Sn
2 ), and define

V2,i = (T2, Yi−1, Sn
1,i+1, Si−1

2 ), Ui = W; hence, the Markov chain Ui − (S1,i, V2,i)− S2,i is maintained.
The proof for this follows.

p(ui|s1,i, v2,i, s2,i) =p(w|s1,i, t2, yi−1, sn
1,i+1, si−1

2 , s2,i)

= ∑
xi−1,si−1

1

p(w, xi−1, si−1
1 |s1,i, t2, yi−1, sn

1,i+1, si−1
2 , s2,i)

= ∑
xi−1,si−1

1

p(si−1
1 |t2, yi−1, sn

1,i, si−1
2 )p(xi−1|t2, yi−1, sn

1 , si−1
2 )p(w|xi−1, t2, yi−1, sn

1 , si−1
2 )
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=p(w|t2, yi−1, sn
1,i+1, si−1

2 , s1,i). (A10)

Next, consider

nR′ ≥H(T2)

≥H(T2|S
n
1 )− H(T2|S

n
1 , Sn

2 )

=I(T2; Sn
2 |S

n
1 )

=H(Sn
2 |S

n
1 )− H(Sn

2 |T2, Sn
1 )

=
n

∑
i=1

[

H(S2,i|S
n
1 , Si−1

2 )− H(S2,i|T2, Sn
1 , Si−1

2 )
]

(a)
=

n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|T2, Sn
1 , Si−1

2 , Yi−1)
]

(b)
=

n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|T2, Sn
1,i+1, Si−1

2 , Yi−1, S1,i)
]

=
n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|V2,i, S1,i)
]

=
n

∑
i=1

I(S2,i; V2,i|S1,i), (A11)

where (a) follows from the fact that S2,i is independent of (Si−1
1 , Sn

1,i+1, Si−1
2 ) given S1,i, and the fact

that Yi−1 is independent of S2,i given (T2, Sn
1 , Si−1

2 ) (the proof for this follows) and (b) follows from

the fact that conditioning reduces entropy.

p(yi−1|t2, sn
1 , si−1

2 , s2,i) = ∑
xn,w

p(yi−1, xn, w|t2, sn
1 , si−1

2 , s2,i)

= ∑
xn,w

p(w)p(xn|w, t2, sn
1 )p(yi−1|xi−1, si−1

1 , si−1
2 )

=p(yi−1|t2, sn
1 , si−1

2 ), (A12)

where we used the facts that W is independent of (T2, Sn
1 , Sn

2,i), Xn is a function of (W, T2, Sn
1 ) and

that the channel is memoryless; i.e., Yi−1 is independent of (W, T2, Sn
1,i, Sn

2,i) given (Xi−1, Si−1
1 , Si−1

2 ).

We continue the proof of the converse by considering the following set of inequalities:

nR =H(W)

≤H(W|T2)− H(W|T2, Yn, Sn
2 ) + nǫn

=I(W; Yn, Sn
2 |T2) + nǫn

=
n

∑
i=1

I(W; Yi, S2,i|T2, Yi−1, Si−1
2 ) + nǫn

(b)
=

n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(Sn
1,i+1; Yi, S2,i|W, T2, Yi−1, Si−1

2 )
]

+ nǫn

(c)
=

n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(S1,i; Yi−1, Si−1
2 |W, T2, Sn

1,i+1)
]

+ nǫn
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=
n

∑
i=1

[

I(W; Yi, S2,i|T2, Yi−1, Sn
1,i+1, Si−1

2 )

− I(S1,i; W|T2, Yi−1, Sn
1,i+1, Si−1

2 )
]

+ ∆− ∆∗ + nǫn, (A13)

where

∆ =
n

∑
i=1

I(Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 ), (A14)

∆∗ =
n

∑
i=1

I(S1,i; Yi−1, Si−1
2 |T2, Sn

1,i+1), (A15)

(b) follows from the mutual information properties and (c) follows from the Csiszár sum identity.

By using the Csiszár sum on (A14) and (A15), we get

∆ = ∆∗, (A16)

and, therefore, from (A11) and (A13)

R′ ≥
1

n

n

∑
i=1

I(S2,i; V2,i|S1,i) (A17)

R− ǫn ≤
1

n

n

∑
i=1

[

I(Ui; Yi, S2,i|V2,i)− I(Ui; S1,i|V2,i)
]

. (A18)

Using the convexity of R′ and Jensen’s inequality, the standard time sharing argument for R and

the fact that ǫn → 0 as n→ ∞, we can conclude that

R′ ≥I(V2; S2|S1), (A19)

R ≤I(U; Y, S2|V2)− I(U; S1|V2), (A20)

where U and V maintain the Markov chain U − (S1, V2)− S2.

We now proceed to prove that it is possible to upper-bound the capacity of Case 2 by using two

random variables, U and V, that maintain the Markov chain V2 − S2 − S1. Fix the rates R and R′ and

a sequence of codes (n, 2nR, 2nR′) that achieve the capacity. By Fano’s inequality, H(W|Yn, Sn
2 ) ≤ nǫn,

where ǫn → 0 as n → ∞. Let T2 = fv(Sn
2 ) and define V2,i = (T2, Si−1

2 ), Ui = (W, Yi−1, Sn
1,i+1).

The Markov chain V2,i − S2,i − S1,i is maintained. Then,

nR′ ≥H(T2)

(a)
=

n

∑
i=1

[

H(S2,i|S
n
1 , Si−1

2 )− H(S2,i|T2, Sn
1 , Si−1

2 )
]

(b)
=

n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|T2, S1,i, Sn
1,i+1, Si−1

2 )
]

≥
n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|T2, S1,i, Si−1
2 )

]
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=
n

∑
i=1

[

H(S2,i|S1,i)− H(S2,i|V2,i, S1,i)
]

=
n

∑
i=1

I(S2,i; V2,i|S1,i), (A21)

where (a) follows from the same reasoning as in (A11), and (b) follows from the fact that S2,i is

independent of (Si−1
1 , Sn

1,i+1, Si−1
2 ) given S1,i, and the fact that (Yi−1, Si−1

1 ) is independent of S2,i given

(T2, Sn
1,i, Si−1

2 ); the proof for this follows.

p(yi−1, si−1
1 |t2, sn

1,i, si−1
2 , s2,i) = ∑

xn,w

p(yi−1, si−1
1 , xn, w|t2, sn

1,i, si−1
2 , s2,i)

= ∑
xn,w

p(w)p(si−1
1 |s

i−1
2 )p(xn|w, t2, sn

1 )p(yi−1|xi−1, si−1
1 , si−1

2 )

=p(yi−1, si−1
1 |t2, sn

1,i, si−1
2 ), (A22)

where we used the facts that W is independent of (T2, Sn
1,i, Sn

2,i), Si−1
1 is independent of (T2, Sn

1,i, Sn
2,i)

given Si−1
2 , Xn is a function of (W, T2, Sn

1 ) and that the channel is memoryless; i.e., Yi−1 is independent

of (W, T2, Sn
1,i, Sn

2,i) given (Xi−1, Si−1
1 , Si−1

2 ).

In order to complete our proof, we need the following lemma.

Lemma A1. The following inequality holds:

n

∑
i=1

I(S1,i; W, Yi−1, Sn
1,i+1|T2, Si−1

2 ) ≤
n

∑
i=1

I(S1,i; W, Yi−1, Si−1
2 |T2, Sn

1,i+1). (A23)

Proof. Notice that

n

∑
i=1

I(S1,i; W, Yi−1, Sn
1,i+1|T2, Si−1

2 ) =
n

∑
i=1

I(S1,i; W, Yi−1, Sn
1,i+1, Si−1

2 |T2)− I(S1,i; Si−1
2 |T2) (A24)

and that

n

∑
i=1

I(S1,i; W, Yi−1, Si−1
2 |T2, Sn

1,i+1) =
n

∑
i=1

I(S1,i; W, Yi−1, Sn
1,i+1, Si−1

2 |T2)− I(S1,i; Sn
1,i+1|T2). (A25)

Therefore, it is enough to show that ∑
n
i=1−I(S1,i; Si−1

2 |T2) ≤ ∑
n
i=1−I(S1,i; Sn

1,i+1|T2) holds in

order to prove the lemma. Consider

n

∑
i=1

−I(S1,i; Sn
1,i+1|T2)−

(

n

∑
i=1

−I(S1,i; Si−1
2 |T2)

)

=
n

∑
i=1

H(S1,i|T2, Sn
1,i+1)− H(S1,i|T2, Si−1

2 )

=
n

∑
i=1

H(Sn
1 |T2)− H(S1,i|T2, Si−1

2 )

=
n

∑
i=1

H(S1,i|T2, Si−1
1 )− H(S1,i|T2, Si−1

2 )

(a)
≥ 0, (A26)

where (a) follows from the fact that the Markov chain S1,i− (T2, Si−1
2 )− (T2, Si−1

1 ) holds and from the

data processing inequality. This completes the proof of the lemma.
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We continue the proof of the converse by considering the following set of inequalities:

nR =H(W)

≤H(W|T2)− H(W|T2, Yn, Sn
2 ) + nǫn

=I(W; Yn, Sn
2 |T2) + nǫn

=
n

∑
i=1

I(W; Yi, S2,i|T2, Yi−1, Si−1
2 ) + nǫn

(a)
=

n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(Sn
1,i+1; Yi, S2,i|W, T2, Yi−1, Si−1

2 )
]

+ nǫn

(b)
=

n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(S1,i; Yi−1, Si−1
2 |W, T2, Sn

1,i+1)
]

+ nǫn

=
n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(S1,i; W, Yi−1, Si−1
2 |T2, Sn

1,i+1)
]

+ nǫn

(c)
≤

n

∑
i=1

[

I(W, Sn
1,i+1; Yi, S2,i|T2, Yi−1, Si−1

2 )

− I(S1,i; W, Yi−1, Sn
1,i+1|T2, Si−1

2 )
]

+ nǫn

≤
n

∑
i=1

[

I(W, Yi−1, Sn
1,i+1; Yi, S2,i|T2, Si−1

2 )

− I(S1,i; W, Yi−1, Sn
1,i+1|T2, Si−1

2 )
]

+ nǫn

=
n

∑
i=1

I(Ui; Yi, Sn
1,i+1|V2,i)− I(Ui; S1,i|V2,i), (A27)

where (a) follows from the mutual information properties, (b) follows from the Csiszár sum identity

and (c) follows from Lemma A1. Therefore,

R′ ≥
1

n

n

∑
i=1

I(S2,i; V2,i|S1,i) (A28)

R− ǫn ≤
1

n

n

∑
i=1

[

I(Ui; Yi, S2,i|V2,i)− I(Ui; S1,i|V2,i)
]

. (A29)

Using the convexity of R′ and Jensen’s inequality, the standard time sharing argument for R and

the fact that ǫn → 0 as n→ ∞, we can conclude that

R′ ≥I(V2; S2|S1), (A30)

R ≤I(U; Y, S2|V2)− I(U; S1|V2), (A31)

where the Markov chain V2 − S2 − S1 holds. Therefore, we can conclude that the expression given

in (12) is an upper-bound to any achievable rate. This concludes the proof of the upper-bound and

the proof of Theorem 1 Case 2.
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Appendix B.2. Proof of Theorem 1, Case 2C

Channel capacity Case 2C is illustrated in Figure A2. For describing the DSI, S2, with a rate R′

we use the standard rate-distortion coding scheme. Then, for the channel coding we use the Shannon

strategy [4] coding scheme where the channel’s causal state information at the encoder is S1, S2 is

a part of the channel’s output and the rate-limited description of S2 is the side information at both the

encoder and the decoder.

Encoder Channel Decoder
W ŴXi Yi

S1,i Sn
2

R′

Figure A2. Channel capacity: Case 2 with causal ESI. C2C = max I(U; Y, S2|V2), where the

maximization is over all PMFs p(v2|s2)p(u|v2)p(x|u, s1, v2) such that R′ ≥ I(V2; S2).

Achievability: (Channel capacity Case 2C). Given (S1,i, S2,i) ∼ i.i.d. p(s1, s2), where the

ESI is known in a causal way (Si
1 at time i), and the memoryless channel p(y|x, s1, s2),

fix p(s1, s2, v2, u, x, y) = p(s1, s2)p(v2|s2)p(u|v2)p(x|u, s1, v2)p(y|x, s1, s2), where x = f (u, s1, v2)

(i.e., p(x|u, s1, v2) can get the values 0 or 1).

Codebook generation and random binning

1. Generate a codebook Cv of 2n
(

I(V2;S2)+2ǫ

)

sequences Vn
2 independently using i.i.d. ∼ p(v2).

Label them vn
2(k) where k ∈

{

1, 2, . . . , 2n(I(V2;S2)+2ǫ)
}

.

2. For each vn
2 (k) generate a codebook Cu(k) of 2n

(

I(U;Y,S2|V2)−2ǫ

)

sequences Un distributed

independently according to i.i.d. ∼ p(u|v2). Label them un(w, k), where w ∈
{

1, 2, . . . , 2n(I(U;Y,S2|V2)−2ǫ)
}

, and associate the sequences un(w, ·) with the message W = w.

Reveal the codebooks and the content of the bins to all encoders and decoders.

Encoding

1. State Encoder: Given the sequence Sn
2 , search the codebook Cv and identify an index k such that

(

vn
2(k), Sn

2

)

∈ T
(n)

ǫ (V2, S2). If such a k is found, stop searching and send it. Otherwise, if no such

k is found, declare an error.

2. Encoder: Given the message W ∈
{

1, 2, . . . , 2n(I(U;Y,S2|V2)−2ǫ)
}

, the index k and Si
1 at time

i, identify un(W, k) in the codebook Cu(k) and transmit xi = f
(

ui(W, k), S1,i, v2,i(k)
)

at any

time i ∈ {1, 2, . . . , n}. The element xi is the result of a multiplexer with an input signal
(

ui(W, k), v2,i(k)
)

and a control signal S1,i.

Decoding

Given Yn, Sn
2 and k, look for a unique index Ŵ, associated with the sequence un(Ŵ, k) ∈ Cu(k),

such that
(

Yn, Sn
2 , un(Ŵ, k)

)

∈ T
(n)

ǫ (Y, U, S2|v
n
2 (k)). If a unique such Ŵ is found, declare that the sent

message was Ŵ. Otherwise, if no unique index Ŵ exists, declare an error.

Analysis of the probability of error

Without loss of generality, let us assume that the message W = 1 was sent and the index k

that correspond with Sn
2 is k = 1; i.e., vn

2(1) corresponds to Sn
2 and un(1, 1) is chosen according to

(

W = 1, vn
2(1)

)

.

Define the following events:

E1 :=
{

∀vn
2(k) ∈ Cv,

(

Sn
2 , vn

2(k)
)

/∈ T
(n)

ǫ (S2, V2)
}
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E2 :=
{

(un(1, 1), Yn, Sn
2 ) /∈ T

(n)
ǫ (U, Y, S2|v

n
2 (1))

}

E3 :=
{

∃w′ 6= 1 : un(w′, 1) ∈ Cu(1) and
(

un(w′, 1), Yn, Sn
2

)

∈ T
(n)

ǫ (U, Y, S2|v
n
2 (1))

}

.

The probability of error P
(n)
e is upper bounded by Pn

e ≤ P(E1) + P(E2|E
c
1) + P(E3|E

c
1, Ec

2).

Using standard arguments and assuming that (Sn
1 , Sn

2 ) ∈ T
(n)

ǫ (S1, S2) and that n is large enough,

we can state that

1. For each sequence vn
2 ∈ Cv, the probability that vn

2 is not jointly typical with Sn
2 is at most

(

1−

2−n(I(V2;S2)+ǫ)
)

. Therefore, having 2n(I(V2;S2)+2ǫ) i.i.d. sequences in Cv, the probability that none

of those sequences is jointly typical with Sn
2 is bounded by

P(E1) ≤
(

1− 2−n(I(V2;S2)+ǫ)
)2n(I(V2;S2 )+2ǫ)

≤ e−2n(I(V2;S2 )+2ǫ)2−n(I(V2;S2 )+ǫ)

= e−2nǫ

, (A32)

where, for every ǫ > 0, the last line goes to zero as n goes to infinity.

2. The random variable Yn is distributed according to p(y|x, s1, s2) = p(y|x, s1, s2, v2), therefore,

having (Sn
2 , vn

2(1)) ∈ T
(n)

ǫ (S2, V2) implies that (Yn, Sn
2 , vn

2(1)) ∈ T
(n)

ǫ (Y, S2, V2). Recall that

xi = f
(

ui(1, 1), S1,i, v2(1)
)

and that Un is generated according to p(u|v2); therefore,

(Xn, Sn
1 , un(1, 1), vn

2(1)) is jointly typical. Thus, by the Markov lemma [31], we can state that

(Yn, Sn
2 , un(1, 1), vn

2(1)) ∈ T
(n)

ǫ (Y, S2, U, V2) with high probability for a large enough n.

3. Now, the probability for a random Un, such that (Un, vn
2(1)) ∈ T

(n)
ǫ (U, V2), to be also jointly

typical with (Yn, Sn
2 , vn

2(1)) is upper bounded by 2−n(I(U,Y,S2|V2)−ǫ), hence

P(E3|E
c
1, Ec

2) ≤
|Cu(1)|

∑
1<w′

Pr
{(

un(w′, 1), Yn, Sn
2

)

∈ T
(n)

ǫ (U, Y, S2|v
n
2(1))

}

≤
|Cu(1)|

∑
1<w′

2−n(I(U,Y,S2|V2)−ǫ)

≤2n(I(U,Y,S2|V2)−2ǫ)2−n(I(U,Y,S2|V2)−ǫ)

=2−nǫ, (A33)

which goes to zero exponentially fast with n for every ǫ > 0.

Therefore, P
(n)
ǫ = P(Ŵ 6= W) goes to zero as n→ ∞.

Converse: (Channel capacity case 2c). Fix the rates R and R′ and a sequence of codes (n, 2nR, 2nR′)

that achieve capacity. By Fano’s inequality, H(W|Yn, Sn
2 ) ≤ nǫn, where ǫn → 0 as n → ∞.

Let T2 = fv(Sn
2 ), and define V2,i = (T2, Yi−1, Si−1

2 ), Ui = W. Then,

nR′ ≥H(T2)

≥H(T2)− H(T2|S
n
2 )

=I(T2; Sn
2 )

=H(Sn
2 )− H(Sn

2 |T2)

=
n

∑
i=1

[

H(S2,i|S
i−1
2 )− H(S2,i|T2, Si−1

2 )
]

(a)
=

n

∑
i=1

[

H(S2,i)− H(S2,i|T2, Si−1
2 , Yi−1)

]
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=
n

∑
i=1

I(S2,i; T2, Yi−1, Si−1
2 )

=
n

∑
i=1

I(S2,i; V2,i), (A34)

where (a) follows from the fact that S2,i is independent of Si−1
2 and the fact that S2,i is independent of

Yi−1 given (T2, Si−1
2 ). The proof for this follows.

p(yi−1|t2, si−1
2 , s2,i) = ∑

w,xi−1,si−1
1

p(yi−1, w, xi−1, si−1
1 |t2, si−1

2 , s2,i)

= ∑
w,xi−1,si−1

1

p(w)p(si−1
1 |s

i−1
2 )p(xi−1|w, t2, si−1

1 )p(yi−1|xi−1, si−1
1 , si−1

2 )

=p(yi−1|t2, si−1
2 ), (A35)

where we used the fact that W is independent of (T2, Si−1
2 , S2,i), Si−1

1 is independent of (T2, S2,i)

given Si−1
2 , Xi−1 is a function of (W, T2, Si−1

1 ) and that Yi−1 is independent of (W, T2, S2,i) given

(Xi−1, Si−1
1 , Si−1

2 ). We now continue with the proof of the converse.

nR ≤H(W)

≤H(W|T2)− H(W|T2, Yn, Sn
2 ) + nǫn

=I(W; Yn, Sn
2 |T2) + nǫn

=
n

∑
i=1

I(W; Yi, S2,i|T2, Yi−1, Si−1
2 ) + nǫn

=
n

∑
i=1

I(Ui; Yi, S2,i|V2,i) + nǫn (A36)

and therefore, from (A34) and (A36)

R′ ≥
1

n

n

∑
i=1

I(S2,i; V2,i) (A37)

R− ǫn ≤
1

n

n

∑
i=1

I(Ui; Yi, S2,i|V2,i). (A38)

Using the convexity of R′ and Jensen’s inequality, the standard time-sharing argument for R and

the fact that ǫn → 0 as n→ ∞, we can conclude that

R′ ≥I(V2; S2), (A39)

R ≤I(U; Y, S2|V2). (A40)

Notice that the Markov chain V2,i − S2,i − S1,i holds since (Yi−1, Si−1
2 ) is independent of S1,i and

T2(S
n
2 ) is dependent on S1,i only through S2,i. Notice also that the Markov chain Ui −V2,i − (S1,i, S2,i)

holds since

p(w|t2, yi−1, si−1
2 , s1,i, s2,i) = ∑

xi−1,si−1
1

p(w, xi−1, si−1
1 |t2, yi−1, si−1

2 , s1,i, s2,i)

= ∑
xi−1,si−1

1

p(si−1
1 |t2, yi−1, si−1

2 )p(xi−1|t2, yi−1, si−1
1 , si−1

2 )p(w|t2, xi−1, si−1
1 )

=p(w|t2, yi−1, si−1
2 ). (A41)
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This concludes the converse, and the proof of Theorem 1 Case 2C.

Appendix C. Proof of Theorem 2

In this section, we provide the proof of Theorem 2, Cases 1 and 1C. Case 2, where the encoder

is informed with increased ESI and the decoder is informed with DSI is a special case of [10] for

K = 1 and, therefore, the proof for this case is omitted. Following Kaspi’s scheme (Figure A3)

for K = 1, at the first stage, node W sends a description of W with a rate limited to Rw, then,

after reconstructing Ŵ at the Z node, it sends a function of Z and Ŵ over to node W with a rate limited

to Rz. Let S2 be W in Kaspi’s scheme and (X, S1) be Z in Kaspi’s scheme. Consider Dz = d(Zi, Ẑi) =

d
(

(X, S1,i), (X̂i, Ŝ1,i)
)

= d(Xi, X̂i) = D. Then, it is apparent that Case 2 of the rate-distortion problems

is a special case of Kaspi’s two-way problem for K = 1.

W CODEC Z CODEC

Binary data at rate Rz

Binary data at rate Rw

{Wi} {Zi}

{Ŵi}{Ẑi}

Figure A3. Kaspi’s two-way source coding scheme. The total rates are Rw = ∑
K
k=1 Rk

w and

Rz = ∑
K
k=1 Rk

z and the expected per-letter distortions are Dw = E

[

1
n ∑

n
i=1 d(Wi, Ŵi)

]

and Dz =

E

[

1
n ∑

n
i=1 d(Zi, Ẑi)

]

.

Appendix C.1. Proof of Theorem 2, Case 1

Rate-distortion Case 1 is presented in Figure A4. We use the Wyner-Ziv coding scheme for the

description of the ESI, S1, at a rate R′, where the source is S1 and the side information at the decoder is

S2. Then, to describe the main source, X, with distortion less than or equal to D we use the Wyner-Ziv

coding scheme again, where this time, S2 is the side information at the decoder, S1 is a part of the

source and the rate-limited description of S1 is the side information at both the encoder and the

decoder. Notice that I(U; X, S1|V1) − I(U; S2|V1) = I(U; X, S1, V1) − I(U; S1, V1) and that since the

Markov chain V1 − S1 − S2 holds, it is also possible to write R′ ≥ I(V1; S1)− I(V1; S2); we use these

expressions in the following proof.

Encoder Decoder
Xn X̂n

Sn
1 Sn

2

R′

Figure A4. Rate-distortion: Case 1. R1(D) = min I(U; X, S1|V1) − I(U; S2|V1), where the

minimization is over all PMFs p(v1|s1)p(u|x, s1, v1)p(x̂|u, s2, v1) such that R′ ≥ I(V1; S1|S2) and

E

[

d(X, X̂)
]

≤ D.

Achievability: (Rate-distortion Case 1). Given (Xi, S1,i, S2,i) i.i.d. ∼ p(x, s1, s2) and the

distortion measure D, fix p(x, s1, s2, v1, u, x̂) = p(x, s1, s2)p(v1|s1)p(u|x, s1, v1)p(x̂|u, s2, v1) that

satisfies E
[

d(X, X̂)
]

= D and x̂ = f (u, s2, v1).

Codebook generation and random binning

1. Generate a codebook, Cv, of 2n
(

I(V1;S1)+2ǫ

)

sequences, Vn
1 , independently using i.i.d. ∼ p(v1).

Label them vn
1(k), where k ∈

{

1, 2, . . . , 2n(I(V1;S1)+2ǫ)
}

and randomly assign each sequence vn
1(k)

a bin number bv
(

vn
1(k)

)

in the set
{

1, 2, . . . , 2nR′
}

.
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2. Generate a codebook Cu of 2n
(

I(U;X,S1,V1)+2ǫ

)

sequences Un independently using i.i.d. ∼ p(u).

Label them un(l), where l ∈
{

1, 2, . . . , 2n(I(U;X,S1,V1)+2ǫ)
}

, and randomly and assign each un(l)

a bin number bu
(

un(l)
)

in the set
{

1, 2, . . . , 2nR
}

.

Reveal the codebooks and the content of the bins to all encoders and decoders.

Encoding

1. State Encoder: Given the sequence Sn
1 , search the codebook Cv and identify an index k such that

(

Sn
1 , vn

1(k)
)

∈ T
(n)

ǫ (S, V1). If such a k is found, stop searching and send the bin number j =

bv
(

vn
1 (k)

)

. If no such k is found, declare an error.

2. Encoder: Given the sequences Xn, Sn
1 and vn

1 (k), search the codebook Cu and identify an index

l such that
(

Xn, Sn
1 , vn

1(k), un(l)
)

∈ T
(n)

ǫ (X, S1, V1, U). If such an l is found, stop searching and

send the bin number w = bu

(

un(l)
)

. If no such l is found, declare an error.

Decoding

Given the bins indices w and j and the sequence Sn
2 , search the codebook Cv and identify an index

k such that
(

Sn
2 , vn

1(k)
)

∈ T
(n)

ǫ (S2, V1) and bv

(

vn
1(k)

)

= j. If no such k is found or there is more than

one such index, declare an error. If a unique k, as defined, is found, search the codebook Cu and

identify an index l such that
(

Sn
2 , vn

1(k), un(l)
)

∈ T
(n)

ǫ (S2, V1, U) and bu
(

un(l)
)

= w. If a unique l,

as defined, is found, declare X̂i = fi(u
n
i (l), S2,i, v1,i(k)), i = 1, 2, . . . , n. Otherwise, if there is no such l

or there is more than one, declare an error.

Analysis of the probability of error

Without loss of generality, for the following events E2, E3, E4, E5 and E6, assume that vn
1 (k =

1) and bv

(

vn
1 (k = 1)

)

= 1 correspond to the sequences (Xn, Sn
1 , Sn

2 ) and for the events E5 and E6

assume that un(l = 1) and bu
(

un(l = 1)
)

= 1 correspond to the same given sequences. Define the

following events:

E1 :=
{

∀vn
1 (k) ∈ Cv,

(

Sn
1 , vn

1(k)
)

/∈ T
(n)

ǫ (S1, V1)
}

E2 :=
{

(

Sn
1 , vn

1(1)
)

∈ T
(n)

ǫ (S1, V1) but
(

Sn
2 , vn

1(1)
)

/∈ T
(n)

ǫ (S2, V1)
}

E3 :=
{

∃k′ 6= 1 such that bv
(

vn
1(k
′)
)

= 1 and
(

Sn
2 , vn

1(k
′)
)

∈ T
(n)

ǫ (S2, V1)
}

E4 :=
{

∀un(l) ∈ Cu,
(

Xn, Sn
1 , vn

1(1), un(l)
)

/∈ T
(n)

ǫ (X, S1, V1, U
)

}

E5 :=
{

(

Xn, Sn
1 , vn

1(1), un(1)
)

∈ T
(n)

ǫ (X, S1, V1, U
)

but
(

Sn
2 , vn

1(1), un(1)
)

/∈ T
(n)

ǫ (S2, V1, U
)

}

E6 :=
{

∃l′ 6= 1 such that bu
(

un(l′)
)

= 1 and
(

Sn
2 , vn

1(1), un(l′)
)

∈ T
(n)

ǫ (S2, V1, U)
}

.

The probability of error P
(n)
e is upper bounded by Pn

e ≤ P(E1) + P(E2|E
c
1) + P(E3|E

c
1, Ec

2) +

P(E4|E
c
1, Ec

2, Ec
3) + P(E5|E

c
1, . . . , Ec

4) + P(E6|E
c
1 . . . , Ec

5). Using standard arguments and assuming that

(Xn, Sn
1 , Sn

2 ) ∈ T
(n)

ǫ (X, S1, S2) and that n is large enough, we can state that

1.

P(E1) =Pr
{

⋂

vn
1 (k)∈Cv

(

Sn
1 , vn

1(k)
)

/∈ T
(n)

ǫ (S1, V1)
}

≤
2

n

(

I(V1;S1 )+ǫ

)

∏
k=1

Pr{
(

Sn
1 , Vn

1 (k)
)

/∈ T
(n)

ǫ (S1, V1)}
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≤e−2
n

(

I(V1;S1 )+2ǫ

)

2−nI(S1;V1)−nǫ

=e−2nǫ

. (A42)

The probability that there is no vn
1(k) in Cv such that

(

Sn
1 , vn

1(k)
)

is strongly jointly typical

is exponentially small provided that |Cv| > 2n
(

I(S1;V1)+ǫ

)

. This follows from the standard

rate-distortion argument that 2nI(S1;V1) vn
1 (k)s “cover” Sn

1 , therefore P(E1)→ 0.

2. By the Markov lemma, since (Sn
1 , Sn

2 ) are strongly jointly typical and
(

Sn
1 , vn

1(1)
)

are strongly

jointly typical and the Markov chain V1 − S1 − S2 holds, then
(

Sn
1 , Sn

2 , vn
1(1)

)

are also strongly

jointly typical. Thus, P(E2|E
c
1)→ 0.

3.

P(E3) =Pr
{

⋃

vn
1 (k′ 6=1)

bv

(

v1(k′)
)

=1

(

Sn
2 , vn

1(k
′)
)

∈ T
(n)

ǫ (S1, V1)
}

≤ ∑
vn

1 (k′ 6=1)

bv

(

v1(k′)
)

=1

Pr
{

(Sn
1 , vn

1(k
′)
)

∈ T
(n)

ǫ (S1, V1)}

≤2n
(

I(V1;S1)+2ǫ−R′
)

2−n
(

I(S2;V1)−ǫ

)

. (A43)

The probability that there is another index k′, k′ 6= 1, such that vn
1(k
′) is in bin number 1 and

that it is strongly jointly typical with Sn
2 is bounded by the number of vn

1(k)’s in the bin times the

probability of joint typicality. Therefore, if R′ > I(V1; S1)− I(V1; S2) + 3ǫ then P(E3|E
c
1, Ec

2) →

0. Furthermore, using the Markov chain V1 − S1 − S2, we can see that the inequality can be

presented as R′ > I(V1; S1|S2) + 3ǫ.

4. We use here the same argument we used for P(E1). By the covering lemma we can state that the

probability that there is no un(l) in Cu that is strongly jointly typical with
(

Xn, Sn
1 , vn

1(k)
)

tends

to 0 as n→ ∞ if R′u > I(U; X, S1, V1) + ǫ. Hence, P(E4|E
c
1, Ec

2, Ec
3)→ 0.

5. Using the same argument we used for P(E2|E
c
1), we conclude that P(E4|E

c
1, Ec

2, Ec
3)→ 0.

6. We use here the same argument we used for P(E2|E
c
1). Since (U, X, S1V1) are strongly jointly

typical, (X, S1, S2) are strongly jointly typical and the Markov chain (U, V1)− (X, S1)− S2 holds,

then (U, X, S1, S2, V1) are also strongly jointly typical.

7. The probability that there is another index l′, l′ 6= 1 such that un(l′) is in bin number 1

and that it is strongly jointly typical with
(

Sn
2 , vn

1(1)
)

is exponentially small provided that

R ≥ I(U; X, S1, V1) − I(U; S2, V1) + 3ǫ = I(U; X, S1|V1) − I(U; S2|V1) + 3ǫ. Notice that

2n(I(U;X,S1,V1)−R) stands for the average number of sequences un(l)’s in each bin indexed w for

w ∈ {1, 2, . . . , 2nR}.

This shows that for rates R and R′ as described, and for large enough n, the error events are

of arbitrarily small probability. This concludes the proof of the achievability for the source coding

Case 1.

Converse: (Rate-distortion Case 1). Fix a distortion measure D, the rates R′, R ≥ R(D) =

min I(U; X, S1|V1) − I(U; S2|V1) = min I(U; X, S1|S2, V1) and a sequence of codes (n, 2nR, 2nR′)

such that E

[

1
n ∑

n
i=1 d(Xi, X̂i)

]

= D. Let T1 = fv(Sn
1 ), T = f (Xn, Sn

1 , T) and define V1,i =

(T1, Sn
1,i+1, Si−1

2 , Sn
2,i+1) and Ui = T. Notice that X̂i = X̂i(T, T1, Sn

2 ) and, therefore, X̂i is a function

of (Ui, V1,i, S2,i).

nR′ ≥H(T1)

≥H(T1|S
n
2 )− H(T1|S

n
1 , Sn

2 )
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=I(T1; Sn
1 |S

n
2 )

=H(Sn
1 |S

n
2 )− H(Sn

1 |T1, Sn
2 )

=
n

∑
i=1

[

H(S1,i|S
n
1,i+1, Sn

2 )− H(S1,i|T1, Sn
1,i+1, Sn

2 )
]

(a)
=

n

∑
i=1

[

H(S1,i|S2,i)− H(S1,i|T1, Sn
1,i+1, Si−1

2 , Sn
2,i+1, S2,i)

]

=
n

∑
i=1

[

H(S1,i|S2,i)− H(S1,i|V1,i, S2,i)
]

=
n

∑
i=1

I(S1,i; V1,i|S2,i), (A44)

where (a) follows from the fact that S1,i is independent of (Sn
1,i+1, Si−1

2 , Sn
2,1+i) given S2,i.

nR ≥H(T)

≥H(T|T1, Sn
2 )− H(T|T1, Xn, Sn

1 , Sn
2 )

=I(T; Xn, Sn
1 |T1, Sn

2 )

=H(Xn, Sn
1 |T1, Sn

2 )− H(Xn, Sn
1 |T, T1, Sn

2 )

=
n

∑
i=1

[

H(Xi, S1,i|T1, Sn
2 , Xn

i+1, Sn
1,i+1)− H(Xi, S1,i|T, T1, Sn

2 , Xn
i+1, Sn

1,i+1)
]

(b)
=

n

∑
i=1

[

H(Xi, S1,i|T1, Sn
1,i+1, Sn

2 )− H(Xi, S1,i|T, T1, Sn
2 , Xn

i+1, Sn
1,i+1)

]

(c)
≥

n

∑
i=1

[

H(Xi, S1,i|T1, Sn
1,i+1, Sn

2 )− H(Xi, S1,i|T, T1, Sn
1,i+1, Sn

2 )
]

=
n

∑
i=1

I(Xi, S1,i; T|T1, Sn
1,i+1, Sn

2 )

=
n

∑
i=1

I(Xi, S1,i; Ui|V1,i, S2,i)

=
n

∑
i=1

R
(

E

[

d
(

Xi, X̂i

)

])

(d)
≥nR

(

E

[ 1

n

n

∑
i=1

d
(

Xi, X̂i

)

])

=nR(D), (A45)

where (b) follows from the fact that (Xi, S1,i) is independent of Xn
i+1 given (T1, Sn

1,i+1, Sn
2 );

this is because Xn
i+1 is independent of (T1, Xi, Si

1) given (Sn
1,i+1, Sn

2,i+1), (c) follows from the fact that

conditioning reduces entropy and (d) follows from the convexity of R(D) and Jensen’s inequality.

Using also the convexity of R′ and Jensen’s inequality, we can conclude that

R′ ≥I(V1; S1|S2), (A46)

R ≥I(U; X, S1|V1, S2). (A47)

It is easy to verify that (T1, Sn
1,i+1, Si−1

2 , Sn
2,i+1) − S1,i − S2,i forms a Markov chain, since T1(S

n
1 )

depends on S2,i only through S1,i. The structure T − (T1, Sn
1,i+1, Si−1

2 , Sn
2,i+1, Xi, S1,i) − S2,i

also forms a Markov chain since S2,i contains no information about (Si−1
1 , Xi−1, Xn

i+1) given

(T1, Sn
1,i, Si−1

2 , Sn
2,i+1, Xi) and, therefore, contains no information about T(Xn, Sn

1 , T1).



Entropy 2017, 19, 467 34 of 41

This concludes the converse, and the proof of Theorem 2 Case 1.

Appendix C.2. Proof of Theorem 2, Case 1C

Rate-distortion Case 1C is illustrated in Figure A5. For describing the ESI, S1, with a rate R′ we

use the standard rate-distortion coding scheme. Then, for the main source, X, we use a Weissman-El

Gamal [12] coding scheme where the DSI, S2, is the causal side information at the decoder, S1 is a part

of the source and the rate-limited description of S1 is the side information at both the encoder and

decoder.

Encoder Decoder
Xn X̂i

Sn
1 S2,i

R′

Figure A5. Rate-distortion: Case 1 with causal DSI. R1C(D) = min I(U; X, S1|V1), where the

minimization is over all PMFs p(v1|s1)p(u|x, s1, v1)p(x̂|u, s2, v1) such that R′ ≥ I(V1; S1) and

E

[

d(X, X̂)
]

≤ D.

Achievability: (Rate-distortion Case 1C). Given (Xi, S1,i, S2,i) ∼ i.i.d. p(x, s1, s2) where the DSI

is known in a causal way (Si
2 in time i) and the distortion measure is D, fix p(x, s1, s2, v1, u, x̂) =

p(x, s1, s2)p(v1|s1)p(u|x, s1, v1)p(x̂|u, s2, v1) that satisfies E
[

d(X, X̂)
]

= D and that x̂ = f (u, s2, v1).

Codebook generation and random binning

1. Generate a codebook Cv of 2n
(

I(V1;S1)+2ǫ

)

sequences Vn
1 independently using i.i.d. ∼ p(v2).

Label them vn
1(k) where k ∈

{

1, 2, . . . , 2n(I(V1;S1)+2ǫ)
}

.

2. For each vn
1 (k) generate a codebook Cu(k) of 2n

(

I(U;X,S1|V1)+2ǫ

)

sequences Un distributed

independently according to i.i.d. ∼ p(u|v1). Label them un(w, k), where w ∈
{

1, 2, . . . , 2n(I(U;X,S1|V1)+2ǫ)
}

.

Reveal the codebooks to all encoders and decoders.

Encoding

1. State Encoder: Given the sequence Sn
1 , search the codebook Cv and identify an index k such that

(

vn
1(k), Sn

1

)

∈ T
(n)

ǫ (V1, S1). If such a k is found, stop searching and send it. Otherwise, if no such

k is found, declare an error.

2. Encoder: Given Xn, Sn
1 and the index k, search the codebook Cu(k) and identify an index w such

that
(

un(w, k), Xn, Sn
1

)

∈ T
(n)

ǫ (U, X, S1|v
n
1(k)). If such an index w is found, stop searching and

send it. Otherwise, declare an error.

Decoding

Given the indices w, k and the sequence Si
1 at time i, declare x̂i = f

(

ui(w, k), S2,i, v1,i(k)
)

.

Analysis of the probability of error

Without loss of generality, let us assume that vn
1(1) corresponds to Sn

1 and that un(1, 1)

corresponds to (Xn, Sn
1 , vn

1(1)).

Define the following events:

E1 :=
{

∀vn
1 (k) ∈ Cv,

(

vn
1(k), Sn

1

)

/∈ T
(n)

ǫ (S1, V1)
}

E2 :=
{

∀un(w, 1) ∈ Cu(1),
(

Xn, Sn
1 , un(w, 1)

)

/∈ T
(n)

ǫ (X, S1, U)
}
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The probability of error P
(n)
e is upper bounded by Pn

e ≤ P(E1) + P(E2|E
c
1). Assuming that

(Sn
1 , Sn

2 ) ∈ T
(n)

ǫ (S1, S2), we can state that by the standard rate-distortion argument, having more

than 2n(I(V1;S1)+ǫ) sequences vn
1 (k) in Cv and a large enough n assures us with probability arbitrarily

close to 1 that we would find an index k such that
(

vn
1 (k), Sn

1

)

∈ T
(n)

ǫ (V1, S1). Therefore, P(E1) → 0

as n→ ∞. Now, if
(

vn
1 (1), Sn

1

)

∈ T
(n)

ǫ (V1, S1), using the same argument, we can also state that having

more than 2n(I(U;X,S1|V1)+ǫ) sequences un(w, 1) in Cu(1) assures us that P(E2|E
c
1) → 0 as n → ∞.

This concludes the proof of the achievability.

Converse: (Rate-distortion Case 1C). Fix a distortion measure D, the rates R′, R ≥ R(D) =

min I(U; X, S1|V1) and a sequence of codes (n, 2nR, 2nR′) such that E
[

1
n ∑

n
i=1 d(Xi, X̂i)

]

= D. Let T1 =

fv(Sn
1 ), T = f (Xn, Sn

1 , T1) and define V1,i = (T1, Sn
1,i+1), Ui = T. Notice that X̂i = X̂i(T, T1, Si

2), and,

therefore, X̂i is a function of (Ui, V1,i, Si
2).

nR′ ≥H(T1)

≥H(V)− H(T1|S
n
1 )

=I(T1; Sn
1 )

=H(Sn
1 )− H(Sn

1 |T1)

=
n

∑
i=1

[

H(S1,i|S
n
1,i+1)− H(S1,i|T1, Sn

1,i+1)
]

(a)
=

n

∑
i=1

[

H(S1,i)− H(S1,i|T1, Sn
1,i+1)

]

=
n

∑
i=1

[

H(S1,i)− H(S1,i|V1,i)
]

=
n

∑
i=1

I(S1,i; V1,i), (A48)

where (a) follows the fact that S1,i is independent of Sn
1,i+1.

nR ≥H(T)

≥H(T|T1)− H(T|T1, Xn, Sn
1 )

=I(T; Xn, Sn
1 |T1)

=H(Xn, Sn
1 |T1)− H(Xn, Sn

1 |T, T1)

=
n

∑
i=1

[

H(Xi, S1,i|T1, Xn
i+1, Sn

1,i+1)− H(Xi, S1,i|T, T1, Xn
i+1, Sn

1,i+1)
]

(b)
=

n

∑
i=1

[

H(Xi, S1,i|T1, Sn
1,i+1)− H(Xi, S1,i|T, T1, Xn

i+1, Sn
1,i+1)

]

(c)
≥

n

∑
i=1

[

H(Xi, S1,i|T1, Sn
1,i+1)− H(Xi, S1,i|T, T1, Sn

1,i+1)
]

=
n

∑
i=1

I(Xi, S1,i; T|T1, Sn
1,i+1)

=
n

∑
i=1

I(Xi, S1,i; Ui|V1,i)

=
n

∑
i=1

R
(

E

[

d
(

Xi, X̂i

)

])

(d)
≥nR

(

E

[ 1

n

n

∑
i=1

d
(

Xi, X̂i

)

])
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=nR(D) (A49)

where (b) follows from the fact that (Xi, S1,i) is independent of Xn
i+1 given (T1, Sn

1,i+1), (c) follows

from the fact that conditioning reduces entropy and (d) follows from the convexity of R(D) and

Jensen’s inequality.

Using also the convexity of R′ and Jensen’s inequality, we can conclude that

R′ ≥I(V1; S1), (A50)

R ≥I(U; X, S1|V1). (A51)

It is easy to verify that both Markov chains V1,i − S1,i − (Xi, S2,i) and Ui − (Xi, S1,i, V1,i) − S2,i

hold. This concludes the converse, and the proof of Theorem 2 Case 1C.

Appendix C.3. Proof of Theorem 2, Case 2

Rate-distortion Case 2 (see Figure A6) is a special case of [10] for K = 1, and hence, the proof is

omitted.

Encoder Decoder
Xn X̂n

Sn
1 Sn

2

R′

Figure A6. Rate distortion: Case 2. R2(D) = min I(U; X, S1|V2) − I(U; S2|V2), where the

minimization is over all PMFs p(v2|s2)p(u|x, s1, v2)p(x̂|u, s2, v2) such that R′ ≥ I(V2; S2)− I(V2; X, S1)

and E

[

d(X, X̂)
]

≤ D.

Appendix D. Proof of Lemma 1

We provide here a partial proof of Lemma 1. In the first part we prove the concavity of Clb
2 (R′)

in R′ for Case 2, the second part contains the proof that it is enough to take X to be a deterministic

function of (S1, V1, U) in order to achieve the capacity C1(R′) for Case 1 and in the third part we

prove the cardinality bound for Case 1. The proofs of these three parts for the rest of the cases can

be derived using the same techniques and therefore are omitted. The proof of Lemma 2 can also be

readily concluded using the techniques we use in this appendix and is omitted as well.
Part 1: We prove here that for Case 2 of the channel capacity problems, the lower bound on the

capacity, Clb
2 (R′), is a concave function of the state information rate, R′. Recall that the expression

for Clb
2 is Clb

2 (R′) = max I(U; Y, S2|V2)− I(U; S1|V2) where the maximization is over all probabilities
p(s1, s2)p(v2|s2)p(u|s1, v2)p(x|u, s1, v2)p(y|x, s1, s2) such that R′ ≥ I(V2; S2|S1). This means that we
want to prove that for any two rates, R′(1) and R′(2), and for any 0 ≤ α ≤ 1 and ᾱ = 1 − α the

capacity maintains Clb
2

(

αR′(1) + ᾱR′(2)
)

≥ αClb
2 (R′(1)) + ᾱClb

2 (R′(2)). Let (U(1), V
(1)
2 , X(1), Y(1)) and

(U(2), V
(2)
2 , X(2), Y(2)) be the random variables that meet the conditions on R′(1) and on R′(2) and

also achieve Clb
2 (R′(1)) and Clb

2 (R′(2)), respectively. Let us introduce the auxiliary random variable
Q ∈ {1, 2}, independent of S1, S2, V2, U, X and Y, and distributed according to Pr{Q = 1} = α and
Pr{Q = 2} = ᾱ. Then, consider

αR′(1) + ᾱR′(2) = α
[

I(V
(1)
2 ; S2)− I(V

(1)
2 ; S1)

]

+ ᾱ
[

I(V
(2)
2 ; S2)− I(V

(2)
2 ; S1)

]

(a)
= α

[

I(V
(1)
2 ; S2|Q = 1)− I(V

(1)
2 ; S1|Q = 1)

]

+ ᾱ
(

I(V
(2)
2 ; S2|Q = 2)− I(V

(2)
2 ; S1|Q = 2)

]

(b)
= I(V

(Q)
2 ; S2|Q)− I(V

(Q)
2 ; S1|Q)

(c)
= I(V

(Q)
2 , Q; S2)− I(V

(Q)
2 , Q; S1), (A52)
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and

αClb
2 (R′(1)) + ᾱClb

2 (R′(2)) =α
[

I(U(1); Y(1), S2|V
(1)
2 )− I(U(1); S1|V

(1)
2 )

]

+ ᾱ
[

I(U(2); Y(2), S2|V
(2)
2 )− I(U(2); S1|V

(2)
2 )

]

(d)
= I(U(Q); Y(Q), S2|V

(Q)
2 , Q)− I(U(Q); S1|V

(Q)
2 , Q), (A53)

where (a), (b), (c) and (d) all follow from the fact that Q is independent of (S1, S2, V2, U, X, Y) and

from Q’s probability distribution. Now, let V′2 = (V
(Q)
2 , Q), U′ = U(Q), Y′ = Y(Q) and X′ = X(Q).

Then, following from the equalities above, for any two rates R′(1) and R′(2) and for any 0 ≤ α ≤ 1,

there exists a set of random variables (U′, V′2, X′, Y′) that maintains

αR′(1) + ᾱR′(2) = I(V′2 ; S2)− I(V′2; S1), (A54)

and

Clb
2

(

αR′(1) + ᾱR′(2)
)

≥I(U′; Y′, S2|V
′
2)− I(U′; S1|V

′
2)

=αClb
2 (R′(1)) + ᾱClb

2 (R′(2)). (A55)

This completes the proof of the concavity of Clb
2 (R′) in R′.

Part 2: We prove here that it is enough to take X to be a deterministic function of (U, S1, V1) in

order to maximize I(U; Y, S2, V1)− I(U; S1, V1). Fix p(u, v1|s1). Note that

p(y, s2|u, v1) = ∑
x,s1

p(s1|, u, v1)p(s2|s1, v1, u)p(x|s1, s2, v1, u)p(y|x, s1, s2, v1, u)

= ∑
x,s1

p(s1|u, v1)p(s2|s1)p(x|s1, v1, u)p(y|x, s1, s2) (A56)

is linear in p(x|u, v1, s1). This follows from the fact that fixing p(u, v1|s1) also defines p(s1|u, v1) and

from the following Markov chains S2−S1− (V1, U), X− (S1, V1, U)−S2 and Y− (X, S1, S2)− (V1, U).

Hence, since I(U; Y, S2|V1) is convex in p(y, s2|v1) it is also convex in p(x|u, v1, s1). Noting also that

I(U; S1|V1) is constant given a fixed p(u, v1|s1), we can conclude that I(U; Y, S2|V1)− I(U; S1|V1) is

convex in p(x|u, v1, s1) and, hence, it gets its maximum at the boundaries of p(x|u, v1, s1), i.e., when

the last is equal 0 or 1. This implies that X can be expressed as a deterministic function of (U, V1, S1).

Part 3: We prove now the cardinality bound for Theorem 1. First, let us recall the support

lemma [32] (p. 310). Let P(Z) be the set of PMFs on the set Z , and let the set P(Z|Q) ⊆ P(Z)

be a collection of PMFs p(z|q) on Z indexed by q ∈ Q. Let gj, j = 1, . . . , k, be continuous functions

on P(Z|Q). Then, for any Q ∼ FQ(q), there exists a finite random variable Q′ ∼ p(q′) taking at most

k values in Q such that

E

[

gj(pZ|Q(z|Q))
]

=
∫

Q
gj(pZ|Q(z|q))dF(q)

= ∑
q′

gj(pZ|q(z|q
′))p(q′). (A57)

We first reduce the alphabet size of V1 while considering the alphabet size of U to be constant and

then we calculate the cardinality of U. Consider the following continuous functions of p(x, s1, s2, u|v1)

gj =











PXS1S2|V
(j|v1), j ∈

{

1, 2, . . . , |X ||S1||S2| − 1
}

,

I(V1; S1)− I(V1; Y, S2) j = |X ||S1||S2|,

I(U; Y, S2|V1 = v1)− I(U; S1|V1 = v1) j = |X ||S1||S2|+ 1.

(A58)
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Then, by the support lemma, there exists a random variable V′1 with |V ′1| ≤ |X ||S1||S2|+ 1 such

that p(x, s1, s2), I(V1; S1)− I(V1; Y, S2) and I(U; Y, S2|V1)− I(U; S1|V1) are preserved. Notice that the

probability of U might have changed due to changing V1; we denote the corresponding U as U′. Next,

for v′1 ∈ V
′
1 and the corresponding probability p(v′1) that we found in the previous step, we consider

|X ||S1||S2||V
′
1| continuous functions of p(x, s1, s2, v′1|u

′)

f j =

{

PXS1S2V ′1|U
′(j|u′) j =

{

1, 2, . . . , |X ||S1||S2||V
′
1| − 1

}

,

I(U′; Y, S2|V
′
1)− I(U′; S1|V

′
1) j = |X ||S1||S2||V

′
1|.

(A59)

Thus, there exists a random variable U′′ with |U ′′| ≤ |X ||S1||S2||V
′
1| such that the mutual

information expressions above and all the desired Markov conditions are preserved. Notice that

the expression I(V1; S1)− I(V1; Y, S2) is being preserved since p(x, s1, s2, v′1) is being preserved.

To conclude, we can bound the cardinality of the auxiliary random variables of Theorem 1 Case 1

by |V1| ≤ |X ||S1||S2|+ 1 and |U | ≤ |X ||S1||S2||V1| ≤ |X ||S1||S2|
(

|X ||S1||S2|+ 1
)

without limiting

the generality of the solution.

Appendix E. Proofs for Section 5

Appendix E.1. Proof of Lemma 4

Proof. For 0 ≤ α ≤ 1 and ᾱ = 1− α

Jw(αq1 + ᾱq2,αQ1 + ᾱQ2) = ∑
s1,s2,v2,t,y

p(s1, s2)w(v2|s2)p(y|t, s1, s2, v2)
(

αq1 + ᾱq2

)

log
αQ1 + ᾱQ2

αq1 + ᾱq2

(a)
≥ ∑

s1,s2,v2,t,y

p(s1, s2)w(v2|s2)p(y|t, s1, s2, v2)
(

αq1 log
Q1

q1
+ ᾱq2 log

Q2

q2

)

= αJw(q1, Q1) + ᾱJw(q2, Q2), (A60)

where (a) follows from the log-sum inequality:

∑
i

ai log
ai

bi
≥ a log

a

b
, (A61)

for ∑i ai = a and ∑i bi = b.

Appendix E.2. Proof of Lemma 6

Proof. Let us calculate q∗ using the KKT conditions. We want to maximize Jw(q∗, Q) over q∗,

where for all t, s1 and v2, 0 ≤ q∗(t|s1, v2) ≤ 1 and ∑t′ q
∗(t′|s1, v2) = 1.

For fixed s1 and v2,

0 =
∂

∂q∗

(

Jw(q
∗, Q) +

(

1−∑
t

q∗(t|s1, v2)
)

νs1,v2

)

(A62)

= ∑
s2,y

p(s1, s2)w(v2|s2)p(y|t, s1, s2, v2)
(

log
Q(t|y, s2, v2)

q∗(t|s1, v2)
− 1
)

− νs1,v2 , (A63)

divide by p(s1, v2),

0 = − log q∗(t|s1, v2) +
∑s2,y p(s1, s2)w(v2|s2)p(y|t, s1, s2, v2)

p(s1, v2)
log Q(t|y, s2, v2)− 1 +

νs1v2

p(s1, v2)
, (A64)

define −1 +
νs1v2

p(s1,v2)
= log ν′s1,v2

, hence

q∗(t|s1, v2) = ν
′
s1,v2 ∏

s2,y

Q(t|y, s2, v2)
p(s2|s1,v2)p(y|t,s1,s2,v2), (A65)
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and from the constraint ∑t′ q
∗(t′|s1, v2) = 1 we get that

q∗(t|s1, v2) =
∏s2,y Q(t|y, s2, v2)

p(s2|s1,v2)p(y|t,s1,s2,v2)

∑t′ ∏s2,y Q(t′|y, s2, v2)p(s2|s1,v2)p(y|t′,s1,s2,v2)
. (A66)

Appendix E.3. Proof of Lemma 7

The proof for this lemma is done in three steps: first, we prove that Uw(q1) is greater than or

equal to Jw(q0, Q∗0) for any two PMFs q0(t|s1, v2) and q1(t|s1, v2), then, we use Lemmas 3 and 5 to

state that for the optimal PMF, qc(t|s1, v2), Clb
2,w = Jw(qc, Q∗c ), and, therefore, Uw(q) is an upper bound

of Clb
2,w for every q(t|s1, v2). Thirdly, we prove that Uw(q) converges to Clb

2,w.

Proof. Consider any two PMFs, q0(t|s1, v2) and q1(t|s1, v2), their corresponding
{p0(s1, s2, v2, t, y), Q∗0(t|y, s2, v2)} and {p1(s1, s2, v2, t, y), Q∗1(t|y, s2, v2)}, respectively, according
to (24) and (26) and consider also the following inequalities:

∑
s1,s2,v2,t,y

p0(s1, s2, v2, t, y) log
Q∗1(t|y, s2, v2)

q1(t|s1, v2)
− Jw(q0, Q∗0)

= ∑
s1,s2,v2,t,y

p0(s1, s2, v2, t, y)
(

log
Q∗1(t|y, s2, v2)

q1(t|s1, v2)
− log

Q∗0(t|y, s2, v2)

q0(t|s1, v2)

)

= ∑
s1,s2,v2,t,y

p0(s1, s2, v2, t, y) log
(Q∗1(t|y, s2, v2)

Q∗0(t|y, s2, v2)

q0(t|s1, v2)

q1(t|s1, v2)

)

=D
(

q0(t|s1, v2)
∥

∥q1(t|s1, v2)
)

−D
(

Q∗0(t|y, s2, v2)
∥

∥Q∗1(t|y, s2, v2)
)

(a)
=D

(

q0(t|s1, s2, v2)p(y|t, s1, s2, v2)p(s1, s2)w(v2|s2)
∥

∥q1(t|s1, s2, v2)p(y|t, s1, s2, v2)p(s1, s2)w(v2|s2)
)

−D
(

Q∗0(t|y, s2, v2)
∥

∥Q∗1(t|y, s2, v2)
)

=D
(

p0(s1, s2, v2, t, y)
∥

∥p1(s1, s2, v2, t, y)
)

−D
(

Q∗0(t|y, s2, v2)
∥

∥Q∗1(t|y, s2, v2)
)

(b)
=D

(

p0(s2, v2, y)Q∗0(t|y, s2, v2)p0(s1|s2, v2, t, y)
∥

∥p1(s2, v2, y)Q∗1(t|y, s2, v2)p1(s1|s2, v2, t, y)
)

−D
(

Q∗0(t|y, s2, v2)
∥

∥Q∗1(t|y, s2, v2)
)

=D
(

p0(s2, v2, y)
∥

∥p1(s2, v2, y)
)

+D
(

p0(s1|s2, v2, t, y)
∥

∥p1(s1|s2, v2, t, y)
)

(c)
= ≥ 0, (A67)

where D
(

·
∥

∥·
)

is the K-L divergence, pj(s2, v2, y) and pj(s1|s2, v2, t, y) are marginal distributions of

pj(s1, s2, v2, t, y) for j = 0, 1, (a) follows from the fact that T is independent of S2 given (S1, V2)

and from the K-L divergence properties, (b) follows from the fact that Q∗j (t|y, s2, v2) is a marginal

distribution of pj(s1, s2, v2, t, y) for j = 0, 1 and (c) follows from the fact that D
(

·
∥

∥·
)

≥ 0 always.
Thus,

J(q0, Q∗0) ≤ ∑
s1,s2,v2,t,y

p0(s1, s2, v2, t, y) log
Q∗1(t|y, s2, v2)

q1(t|s1, v2)

= ∑
s1,s2,v2,t,y

p(s1, s2)w(v2|s2)q0(t|s1, v2)p(y|t, s1, s2, v2) log
Q∗1(t|y, s2, v2)

q1(t|s1, v2)

= ∑
s1,v2

p(s1, v2)∑
t

q0(t|s1, v2)∑
s2

p(s2|s1, v2)∑
y

p(y|t, s1, s2, v2) log
Q∗1(t|y, s2, v2)

q1(t|s1, v2)

≤ ∑
s1,v2

p(s1, v2)max
t′

∑
s2

p(s2|s1, v2)∑
y

p(y|t′, s1, s2, v2) log
Q∗1(t

′|y, s2, v2)

q1(t′|s1, v2)

=Uw(q1). (A68)
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We proved that Uw(q1) is greater than or equal to Jw(q0, Q∗0) for any choice of q0(t|s2, v2)

and q1(t|s1, v2). Therefore, by taking q0(t|s1, v2) to be the distribution that achieves Clb
2,w and by

considering Lemmas 3 and 5, we conclude that Uw(q) ≥ Cw,2 for any choice of q(t|s1, v2).

In order to prove that Uw(q) converges to Clb
2,w let us rewrite Equation (A63) as

∑
s2,y

p(s2|s1, v2)p(y|t, s1, s2, v2) log
Q(t|y, s2, v2)

q∗(t|s1, v2)
= ν

′
s1,v2

. (A69)

We can see that for a fixed Q, the right hand side of the equation is independent of t.

Considering also

Jw(q, Q) = ∑
s1,s2,v2,t,y

p(s1, s2)w(v2|s2)q(t|s1, v2)p(y|t, s1, s2, v2) log
Q(t|y, s2, v2)

q(t|s1, v2)

≤ ∑
s1,v2

p(s1, v2)max
t′

∑
s2

p(s2|s1, v2)∑
y

p(y|t′, s1, s2, v2) log
Q∗(t′|y, s2, v2)

q(t′|s1, v2)
, (A70)

we can conclude that the equation holds when the PMF q is the PMF that achieves Clb
2,w.
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