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Abstract: Recent developments in nanoscale experimental techniques made it possible to utilize
single molecule junctions as devices for electronics and energy transfer with quantum coherence
playing an important role in their thermoelectric characteristics. Theoretical studies on the efficiency
of nanoscale devices usually employ rate (Pauli) equations, which do not account for quantum
coherence. Therefore, the question whether quantum coherence could improve the efficiency of
a molecular device cannot be fully addressed within such considerations. Here, we employ a
nonequilibrium Green function approach to study the effects of quantum coherence and dephasing
on the thermoelectric performance of molecular heat engines. Within a generic bichromophoric
donor-bridge-acceptor junction model, we show that quantum coherence may increase efficiency
compared to quasi-classical (rate equation) predictions and that pure dephasing and dissipation
destroy this effect.
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1. Introduction

Single molecules are used as building blocks of molecular devices for electronics, biosensors,
nanoscale motors, controllable chemical reactivity and energy transfer [1–3]. The development of
nano-fabrication led to tremendous progress in the ability to detect and manipulate molecules on
surfaces and in junctions [4–9]. Due to the small size of nanodevices, their characterization is necessarily
quantum, and interference is expected to be crucial in the response of molecular electronic devices.
Experimental measurements have demonstrated quantum coherence effects on the transport [10–12]
and optical response [13,14] of molecular junctions. The importance of quantum coherence in energy
transfer was demonstrated in experimental studies of the initial stages of photosynthesis [15–18].

Understanding and controlling the combined motion of charges and excitations (energy) is crucial
for the development of new materials and state-of-the-art guiding principles for building efficient
energy conversion and storage devices. Historically, this research has been focused on thermoelectric
properties in bulk materials [19]. With the development of nanofabrication techniques, the study
of thermoelectric properties at the nanoscale attracted a lot of attention experimentally [20–28] and
theoretically [29–40]. The small size of these nanodevices gives rise to new physical phenomena
(such as quantum coherence) that are not present at the macroscopic level, and which promise to
improve the performance of energy conversion. These studies are concerned with characterizing
charge and energy fluxes in the system.

A closely related set of works utilized the thermodynamic approach to determine the efficiency of
photoelectric devices [41–45]. With rate (Pauli) equations employed in the thermodynamic description
of such devices, quantum coherence could not be fully taken into account (see below). The effect of
coherence on the thermodynamics of quantum heat engines consisting of n-level systems coupled
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to thermal bath(s) was considered in a number of publications [46–50] at the Lindblad-Redfield
level of theory. These considerations were either restricted to closed systems or disregarded charge
transfer between the system and the baths (the latter is inherent in molecular devices). Thus, naturally
also in thermodynamic studies, the question of how quantum coherence affects a molecular device
performance can be raised.

We note in passing that the distinction between populations and coherences (diagonal and
off-diagonal elements of the density matrix) is basis dependent. For example, transforming the local
basis to the eigenbasis of the system accounts for coherences of the local basis simply by converting
them into populations in the eigenbasis. For an isolated system, local basis coherences are taken into
account exactly as a result of such a transformation. In the presence of baths, for the consideration
to be complete one has to account also for bath-induced coherences between the eigenstates of the
system. The latter cannot be treated properly at the Lindblad-Redfield quantum master equation (QME)
level of theory (one has to go to at least the fourth order in system-bath coupling to account for the
coherences [51]), while approximate consideration may lead to qualitative failures (see, e.g., [52–54]).
In addition, Lindblad-Redfield QME does not allow to model the gradual transition from coherent to
incoherent transport. The latter is the focus of our study.

Here, we consider a generic donor-bridge-acceptor (DBA) molecular system, which is coupled to
fermionic baths and is driven against the bias applied by solar photons. This setup is a simple model
for a continuous steady-state heat engine [55–57], whose thermoelectric efficiency was previously
considered in [41,42,44] with the effects of quantum coherence disregarded. The latter were shown
to play an important role in the charge and energy transport in similar models of DBA molecular
junctions [58,59].

We utilize nonequilibirum Green function (NEGF) methodology [60], which is capable of
accounting for quantum coherence in an open nonequilibrium system, to study the effects of quantum
coherence on the average efficiency of photoelectric molecular devices. For simplicity, our consideration
is restricted to a non-interacting (electron-electron and electron-vibration interactions are disregarded)
molecular system, although intra-system interactions in principle can be taken into account within
many-body flavors of the methodology [61–65]. We show that quantum coherence may lead to an
increase and a decrease in the efficiency of the device and study the transition to a quasi-classical regime
by destroying coherence with pure dephasing or dissipation. The former is achieved by employing
a Büttiker probe [66], and the latter is induced by increasing the strength of the system-contacts
coupling. We note in passing that although a general formulation of quantum thermodynamics for
current-carrying junctions has not yet been established [67,68], the formulation is clear as long as the
junction operates in a steady-state [69,70]. The latter is the situation considered here.

The paper is structured as follows: In Section 2, we introduce the model and discuss the technical
details of the simulations. We present the results of the numerical simulations and compare them with
previously published (coherence-free) studies in Section 3. We draw conclusions in Section 4.

2. Model

We consider a molecular junction comprised of a DBA molecular complex coupled to metallic
contacts L and R (see Figure 1). The contacts are equilibrium reservoirs of free charge carriers
maintained at the same temperature T. The junction is biased so that the electrochemical potential
of contact L is lower than that of R, µL < µR. The donor and the acceptor are modeled as two-level
(highest occupied molecular orbital-lowest unoccupied molecular orbital, HOMO-LUMO) systems.
Following [44], we assume that the HOMO of the acceptor is always populated (i.e., does not participate
in transport), and thus can be disregarded. The bridge provides super-exchange coupling between
the donor and the acceptor and is accounted for by effective electron hopping matrix element t.
The donor is subjected to solar radiation which is modeled by coupling to a thermal bath S of high
(solar) temperature TS (TS � T). Electron transfer is allowed between the LUMOs of the donor and
the acceptor; thus, solar radiation drives the electronic flux against the applied bias (heat engine).
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Bridge-induced coupling between the LUMOs (levels 2 and 3 in Figure 1) is the cause of intra-molecular
quantum coherence. For an isolated two-level system, such coherence leads to permanent Rabi
oscillations in the electron population on both levels. In our model, these oscillations are damped by
coupling to baths (solar radiation and contacts) with the damping rate depending on the strength of
the couplings.

Figure 1. Sketch of the molecular donor-bridge-acceptor (DBA) heat engine model.

The Hamiltonian of the model is

Ĥ = ĤM + ∑
B=L,R,S

(ĤB + V̂B), (1)

where the ĤM and ĤB Hamiltonians represent the molecule (M), contacts (L and R) and thermal
bath (S), respectively. V̂B couples the molecule to the baths (contacts and Sun radiation). Explicit
expressions are

ĤM =
3

∑
m=1

εmd̂†
md̂m + t

(
d̂†

2 d̂3 + d̂†
3 d̂2

)
ĤL(R) = ∑

k∈L(R)
εk ĉ†

k ĉk; ĤS = ∑
α∈S

ωα â†
α âα

V̂L = ∑
`∈L

(
V`d̂†

1 ĉ` + H.c.
)

; V̂R = ∑
r∈R

(
Vr d̂†

3 ĉr + H.c.
)

V̂S = ∑
α∈S

(
UαD̂† âα + H.c.

)
.

(2)

Here, d̂†
m (d̂m) and ĉ†

k (ĉk) create (annihilate) the electron at the molecular level m or contact state
k, respectively. D̂† = d̂†

2 d̂1 is the donor excitation operator. â†
α (âα) creates (annihilates) excitation

quanta in the thermal bath. We previously discussed a similar model [58,59] in a study of the quantum
coherence effects on electron transport in DBA junctions. Einax et al. [42,44] utilized the model in
consideration of a molecular heat engine within a hopping transport regime. Here, we elucidate the
effects of intra-molecular quantum coherence (Rabi oscillation between the LUMOs, levels 2 and 3;
see Figure 1) on the thermodynamic performance of the engine.

The response properties of the junction can be conveniently expressed in terms of NEGFs.
In particular, we use single- and two-particle electron Green functions defined on the Keldysh
contour as (here and below e = h̄ = kB = 1)

Gm1m2(τ1, τ2) = −i〈Tc d̂m1(τ1) d̂†
m2
(τ2)〉; G(τ1, τ2) = −i〈Tc D̂(τ1) D̂†(τ2)〉. (3)
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Here, m1 and m2 indicate the molecular levels, Tc is the contour ordering operator and τ1 and τ2 are
the contour variables. The single-particle Green function is obtained by solving the Dyson equation

Gm1m2(τ1, τ2) = G(0)
m1m2(τ1, τ2) + ∑

m3,m4

∫
c

dτ3

∫
c

dτ4 G(0)
m1m3(τ1, τ3)Σm3m4(τ3, τ4) Gm4m2(τ4, τ2), (4)

where G(0)
m1m2(τ1, τ2) is the single-particle Green function in the absence of coupling to baths and

Σm1m2(τ1, τ2) = ∑
B=L,R,S

ΣB
m1m2

(τ1, τ2) (5)

is the total electron self-energy due to coupling to the baths. In our consideration, we use second-order
(in system-baths couplings) diagrammatic expansion. The procedure is self-consistent, because
single-electron self-energy due to coupling to the radiation field ΣS

m1m2
(τ1, τ2) depends on the

single-electron Green function Gm1m2(τ1, τ2), while the latter is defined by the self-energy. Below,
we utilize level populations,

nm = −iG<
mm(t, t) (m = 1, 2, 3), (6)

at subsequent iteration steps to judge the convergence of the procedure. Here, G< is a lesser projection
of the single-particle Green function. Explicit expressions of the self-energies are given in Appendix A.

To evaluate the two-particle Green function G, we employ an approximation

G(τ1, τ2) ≈ −iG11(τ2, τ1)G22(τ1, τ2) (7)

which disregards multi-photon processes in the evaluation of the heat flux (see below).
This approximation was employed in earlier studies [71], and for the parameters of the simulations
(strength of coupling to the radiation field), the approximation is reasonable.

Below, we calculate the particle flux at the interface with the right contact, IR, and the energy
(heat) flux at the interface with the solar bath S, JS. In terms of these fluxes, the average thermodynamic
efficiency of the molecular heat engine is defined as

η =
(µR − µL)IR

JS
≡ P

JS
, (8)

where P ≡ (µR − µL)IR is the power of the engine. We are interested in the efficiency at the maximum
power ηmax. Within NEGF, fluxes IR and JS are defined as the rates of the change in the electronic
population in R and the energy in S, respectively:

IR = − d
dt ∑

r∈R
〈ĉ†

r (t)ĉr(t)〉; JS = − d
dt ∑

α∈S
ωα〈â†

α(t)âα(t).〉 (9)

They can be expressed exactly in terms of the Green functions and self-energies. At steady state
within the NEGF, fluxes IR and JS are (see Appendix B for the derivation)

IR =Tr
∫ +∞

−∞

dE
2π

(
ΣR<(E) G>(E)− ΣR>(E) G<(E)

)
, (10)

JS =−
∫ ∞

0

dω

2π
ω

(
Π<(ω) G>(ω)−Π>(ω) G<(ω)

)
. (11)

Here, Tr[. . .] is the trace over the molecular levels, ΣR<(E) and ΣR>(E) are defined in
Equations (A4) and (A5), Π<(ω) and Π>(ω) are given in Equations (A11) and (A12).
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3. Results

We present the results of the simulations for the DBA heat engine model (see Figure 1). Unless
stated otherwise, the parameters of the simulation are ambient temperature T = 300 K (this is the
temperature of the contacts L and R), temperature of the Sun TS = 6000 K (this is the temperature
of the thermal bath S), molecular levels ε1 = −0.5 eV and ε2 = ε3 = 0.8 eV, donor-acceptor electron
hopping t = 0.1 eV, contacts electron escape rates ΓL = ΓR = 0.01 eV and the energy dissipation
rate to the thermal bath γ = 0.01 eV. Fermi energy is taken as the origin, EF = 0, and the junction
is biased in contact R: µL = EF and µR = EF + |e|Vsd (e is the electron charge). Here, Vsd is the bias
across the junction. Gate potential Vg is applied to the acceptor; the position of the acceptor LUMO
is ε3 + |e|Vg. Simulations are performed on the energy grid spanning the region from −3 to 3 eV
with step 5× 10−4 eV. Convergence is checked by comparing the level populations in the subsequent
iterations of the self-consistent solution of the Dyson equation. The convergence tolerance is 10−5.

Figure 2 shows that quantum coherence between the LUMOs of the donor and acceptor results
in the two-peak structure of the engine power dependence on the bias at the fixed gate potential
(see the top panel). The effect can be easily understood if one transforms in the eigenbasis of the
molecular system. In this basis, ground state (ε1) is coupled by Sun radiation to two excited eigenstates.
Each of the excited states yields a separate channel for electron transfer into contact R. The strength
of the excited states’ coupling to the Sun radiation and the contact R depends on gate potential
Vg. Thus, the two-peak structure indicates the presence of two scattering eigenchannels with the
dominant channel defined by detuning of the molecular system LUMOs (see Figure 2b). Note that this
channel control is to some extent similar to consideration of [72] with the role of the resonant driving
field there played by the gate potential in our consideration. Note also that channel control by level
detuning does not affect the overall thermodynamic formulation, because (for static levels) no external
thermodynamic forces are acting on the system.

While maximum power (see Figure 2c) is insensitive to the change in the dominant scattering
channel, the thermodynamic efficiency at maximum power shows a non-monotonic behavior due to
the sudden change in the bias at which the device performs at maximum power when the dominant
channel is switched. We stress that this behavior is possible only due to the presence of quantum
coherence in the molecular system and that when coherence is destroyed the efficiency at maximum
power attains its monotonic dependence on level detuning in agreement with the classical study of the
system [42].

To destroy system coherence, we employ Büttiker probes coupled to LUMOs of the donor and
the acceptor. Büttiker probes are widely used in quantum transport literature. They are modeled
as an additional bath (represented by additional self-energy), whose role is to induce dephasing in
the system. The probes should destroy the phase at the same time not allowing for either electron
or energy exchange between the system and the probe. Following [66], we introduce the probes by
considering additional local self-energies

Σmm(τ1, τ2) = δ · Gmm(τ1, τ2) (m = 2, 3). (12)

Here, δ is the dephasing parameter. This self-energy can be derived considering the electron-phonon
interaction in the second order of the diagrammatic expansion [60] in the limit of low phonon
frequency [59]. Such physical insight shows that neither electron nor energy flux can be induced
between the system and the probe. Thus, the probe can destroy only quantum coherence in the
molecular system.
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Figure 2. Effects of coherence in the DBA heat engine (Figure 1). Shown are (a) a map of the engine
power P vs. detuning of LUMOs, Vg, and bias across the junction, Vsd; (b) power P vs. bias Vsd for
the three gate potentials (see inset; the results for Vg = 0.5 and 0.7 V are scaled by a factor of 2 and 3,
respectively); (c) the dependence of the maximum power Pmax (dashed line, squares) and the efficiency
at maximum power ηmax (dotted line, circles) on gate potential Vg.

Figure 3 demonstrates the effect of coherence destruction with Büttiker probes. The dephasing
parameter employed in the simulation is δ = 0.02 eV2. Introducing the probe has two effects on the
device’s performance. First, by destroying coherence the two transport channel situation in the purely
coherent case changes to a single transport channel situation in the purely classical (hopping) case.
The dephasing parameter employed in the simulation partially destroys system coherence; therefore,
the second channel is less prominent (compare panels (a) and (b) in Figures 2 and 3), although the
impact of coherence on efficiency is still pronounced (compare the dotted lines in Figure 3c). Note that
destroying coherence increases the efficiency for Vg < 0.6 V, while decreasing it for Vg ≥ 0.6 V. This
indicates the prevalence (in the purely coherent case) of destructive and constructive interference in the
two regions. Second, destroying coherence leads to a slight increase in the maximum power (compare
the dashed lines in Figure 3c). The effect is due to the disruption by the Büttiker probe of the Rabi
oscillations between the donor and acceptor LUMOs: The electron that previously spent time in the
system now escapes faster in the right contact, which results in an increase in the current.
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Figure 3. Coherence destruction on efficiency of the DBA heat engine by a Büttiker probe. Shown are
(a) a map of the engine power P vs. detuning of LUMOs, Vg, and bias across the junction, Vsd; (b) power
P vs. bias Vsd for the three gate potentials (see inset; the results for Vg = 0.5 and 0.7 V are scaled by a
factor of 2 and 3, respectively); (c) the dependence of the maximum power Pmax (dashed line, triangles)
and efficiency at maximum power ηmax (dotted line, diamonds) on gate potential Vg. The results
presented in Figure 2c (coherent transport, δ = 0)—squares (dashed line) and circles (dotted line)—are
given for comparison.

Another way to destroy system coherence is by increasing dissipation due to coupling to contacts
(increase escape rate parameters ΓL and ΓR). We use ΓL = ΓR = 0.05 eV in the simulations. Similar
to the Bütiiker probe case, here the destruction of coherence results in a transition from two-channel
to single-channel transport (and from quantum to classical behavior). The difference between the
two cases is that while the former is pure decoherence, which results in a transition from coherent
transport to hopping, the latter effectively eliminates the acceptor LUMO by incorporating it into
the right contact. Thus, the extreme of the Bütiiker probe is the classical model of [42] while strong
acceptor-contact coupling results in the classical consideration of [41]. Figure 4 shows that for the
parameters of the simulation coherence is completely destroyed, which results in a monotonic behavior
of efficiency and an essential increase in the maximum power.
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Figure 4. Coherence destruction on efficiency of the DBA heat engine by dissipation due to coupling
to contacts. Shown are (a) a map of the engine power P vs. detuning of the LUMOs, Vg, and bias across
the junction, Vsd; (b) power P vs. bias Vsd for the three gate potentials (see inset; the results for Vg = 0.5
and 0.7 V are scaled by a factor of 2 and 3, respectively); (c) the dependence of the maximum power
Pmax (dashed line, triangles) and efficiency at maximum power ηmax (dotted line, diamonds) on gate
potential Vg. The results presented in Figure 2c—squares (dashed line) and circles (dotted line)—are
given for comparison.

4. Conclusions

We study thermoelectric properties of a bi-chromophoric DBA junction model driven by solar
radiation of the donor complex. In particular, utilizing NEGF formalism, we calculate the efficiency at
the maximum power and elucidate the role of intra-molecular quantum coherence in the efficiency.
Coherence in the junction is controlled by effective donor-acceptor coupling and by detuning of
molecular levels at the two nodes of the molecular complex. We show that quantum coherence results
in non-monotonic behavior of efficiency at maximum power vs. level detuning. The observed sudden
jump indicates a switch between dominant scattering eigenchannel in our two-site model (see Figure 1).
Although the non-monotonic behavior of the current-voltage characteristic in junctions is well-known,
thus far nobody has discussed this effect with respect to efficiency.

We stress that this behavior is possible only due to the presence of quantum coherence in the
molecular system and that when coherence is destroyed, efficiency at maximum power attains its
monotonic dependence on level detuning in agreement with previously performed classical studies of
the system. To show the quantum-classical transition, we destroy quantum coherence in the system by
either employing a Büttiker probe or increasing molecule-contacts coupling. In both cases, destruction
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of coherence implies a transition from two transport channels to one transport channel and from
quantum to classical consideration. We indicate that employing a Büttiker probe results in pure
dephasing with transition from coherent transport to hopping, thus reducing the quantum model
to the classical consideration of [42]. At the same time, increasing the strength of molecule-contacts
coupling leads to dissipation and effectively eliminates donor LUMO by incorporating it into the
right contact. This reduces our model to the classical consideration of [41]. Comparing the classical
and quantum results, we find that quantum coherence may be advantageous or disadvantageous for
the performance of a molecular thermoelectric device (interference effects may lead to an increase or
decrease in the efficiency).
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Abbreviations

The following abbreviations are used in this manuscript:

EOM Equation-Of-Motion
DBA Donor-Bridge-Acceptor
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
NEGF Nonequilibrium Green Function

Appendix A. Expressions for Self-Energies

Expressions for self-energies Equation (5) can be derived following the standard diagrammatic
perturbation theory formulated on the Keldysh contour [60,73,74]. The resulting expression for the
electron self-energies due to coupling to contacts L and R is exact

ΣK
m1m2

(τ1, τ2) = ∑
k∈K

Vm1k gk(τ1, τ2)Vkm2 (K = L, R) (A1)

where
gk(τ1, τ2) ≡ −i〈Tc ĉl(τ1) ĉ†

k(τ2)〉 (A2)

is the Green function of the free electron in state k. For Equation (2), Vmk = V` for m = 1 and Vmk = Vr

for m = 3. At steady state and within the wide-band approximation, the projections of (A1) after
performing the Fourier transform are

ΣK−−
m1m2

(E) =ΣK ++
m1m2

(E) = i ΓK
m1m2

(
fK(E)− 1

2

)
(A3)

ΣK−+
m1m2

(E) = i ΓK
m1m2

fK(E) (A4)

ΣK +−
m1m2

(E) =− i ΓK
m1m2

(
1− fK(E)

)
, (A5)

where K = L, R, superscript − (+) indicates the forward (backward) branches of the Keldysh contour,
fK(E) is the Fermi-Dirac distribution, and

ΓK
m1m2

(E) ≡ 2π ∑
k∈K

Vm1kVkm2 δ(E− εk) (A6)
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is the dissipation matrix due to coupling to contacts. In the wide-band approximation, the matrix is
energy-independent. For Equation (2), ΓL

m1m2
= δm1,m2,1 ΓL and ΓR

m1m2
= δm1,m2,3 ΓR, where ΓL and ΓR

are the electron escape rates into contacts L and R, respectively. Note ΣK <(>) ≡ ΣK−+(+−).
The expression for the self-energy due to coupling to the thermal bath is derived within the

second order of the diagrammatic perturbation theory

ΣS
m1m2

(τ1, τ2) =


i Π(τ2, τ1) G22(τ1, τ2) for m1 = m2 = 1

i Π(τ1, τ2) G11(τ1, τ2) for m1 = m2 = 2

0 otherwise,

(A7)

where
Π(τ1, τ2) ≡∑

α

|Uα|2Fα(τ1, τ2) (A8)

is the self-energy due to the coupling of the molecular excitations to the thermal bath. The projections
after the Fourier transform is performed are

ΣS s1s2
m1m2(E) = i

∫ +∞

0

dω

2π


Πs2s1(ω) Gs1s2

22 (E + ω) for m1 = m2 = 1

Πs1s2(ω) Gs1s2
22 (E−ω) for m1 = m2 = 2

0 otherwise.

(A9)

Here, s1,2 = {−,+} and

Π−−(E) =Π++(E) = −i γ

(
N(E) +

1
2

)
(A10)

Π−+(E) =− i γ N(E) (A11)

Π+−(E) =− i γ

(
1 + N(E)

)
, (A12)

N(E) is the Bose-Einstein distribution, and

γ(ω) ≡ 2π ∑
α

|Uα|2δ(ω−ωα) (A13)

is the energy dissipation rate.

Appendix B. Derivation of Fluxes

The expression for electron flux, Equation (10), is the celebrated Jauho, Wingreen and Meir
formula [75] written for the steady-state situation.

Here, we will focus on the derivation of the photon energy flux Equation (11). We start from the
definition of the flux as the rate of the change of energy in the thermal bath (the radiation field)

JS(t) ≡ −
d
dt ∑

α

ωα〈â†
α(t)âα(t)〉. (A14)

Here, 〈. . .〉 is the statistical and quantum mechanical averaging with the density operator of the whole
world (system plus baths), and the operators are represented in the Heisenberg picture. Using the
Heisenberg equation-of-motion (EOM) for the operators â†

α(t) and âα(t) within Equation (2), one arrives
at the expression for the flux

JS(t) = 2Re ∑
α

ωαUαG<
αD(t, t) (A15)
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in terms of the lesser projection of a mixed (photon-molecular excitation) Green function

GαD(τ1, τ2) ≡ −i〈Tc âα(τ1) D̂†(τ2)〉. (A16)

Writing the Dyson equation for the Green function in the integral form and taking a lesser projection
leads to

G<
αD(t, t) =

∫ +∞

−∞
dt1

(
F<

α (t, t1)U∗α Ga(t1, t) + Fr
α(t, t1)U∗α G<(t1, t)

)
, (A17)

where G is the two-particle Green function defined in Equation (3) and

Fα(τ1, τ2) ≡ −i〈Tc âα(τ1) â†
α(τ2)〉 (A18)

is the Green function of the free photon of the radiation field. Substituting Equation (A17) into
Equation (A15) and using

Fr
α(t, t1) ≡θ(t− t1)

(
F>

α (t, t1)− F<
α (t, t1)

)
(A19)

Ga(t1, t) ≡θ(t− t1)

(
G<(t1, t)− G>(t1, t)

)
(A20)

(here, θ(x) is the Heaviside step function) leads to

JS(t) = −2 Re ∑
α

|Uα|2ωα

∫ t

−∞
dt1

(
∂tF<

α (t, t1) G>(t1, t) + ∂tF>
α (t, t1) G<(t1, t)

)
. (A21)

Finally, taking into account that for the free photon in mode α F<(>)
α (t, t1) ∼ e−iωα(t−t1), and thus,

ωαF<(>)
α (t, t1) ≡ i∂tF

<(>)
α (t, t1), we get

JS(t) = −2i Re
∫ t

−∞
dt1

(
∂tΠ<(t, t1) G>(t1, t)− ∂tΠ>(t, t1) G<(t1, t)

)
, (A22)

where Π(τ1, τ2) is defined in Equation (A8). At steady-state, the correlation functions depend
only on the time difference; therefore, performing the Fourier transform in Equation (A22) leads
to Equation (11).
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