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Abstract: In the spirit of Bose–Einstein condensation, we present a detailed account of the statistical
description of the condensation phenomena for a Fermi–Dirac gas following the works of Born
and Kothari. For bosons, while the condensed phase below a certain critical temperature, permits
macroscopic occupation at the lowest energy single particle state, for fermions, due to Pauli exclusion
principle, the condensed phase occurs only in the form of a single occupancy dense modes at the
highest energy state. In spite of these rudimentary differences, our recent findings [Ghosh and
Ray, 2017] identify the foregoing phenomenon as condensation-like coherence among fermions in an
analogous way to Bose–Einstein condensate which is collectively described by a coherent matter wave.
To reach the above conclusion, we employ the close relationship between the statistical methods of
bosonic and fermionic fields pioneered by Cahill and Glauber. In addition to our previous results,
we described in this mini-review that the highest momentum (energy) for individual fermions,
prerequisite for the condensation process, can be specified in terms of the natural length and energy
scales of the problem. The existence of such condensed phases, which are of obvious significance in
the context of elementary particles, have also been scrutinized.
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1. Introduction

The basic idea of Bose–Einstein condensation (BEC) dates back to 1925 when Einstein [1], on the
basis of a work by Bose [2], predicted the occurrence of a phase transition in a gas of noninteracting
bosons. The phase transition is the consequence of quantum statistical effects which is associated
with the condensation of atoms in the lowest energy state. For a decade these predictions had no
practical impact. It was only after the discovery of superfluidity [3] in 1938, the phenomenon received
tremendous impetus which eventually led to its experimental realization in 1995 [4–6]. The study of
BEC in dilute gases exhibits quantum phenomena on a large scale and has become one of the most
active fields of research in atomic, molecular, and condensed matter physics in recent times [7–11].

Interestingly, in the same period around 1938, based on Born’s suggestion on “The Theory of
Reciprocity Principle” [12,13], the possibility of “condensation” in Fermi–Dirac (FD) statistics [14]
was speculated by Kothari and Nath which remained in a dormant state since 1943. Here we review
our recent [15] research devoted to elucidate this hitherto unexplored phenomenon of condensation
for fermions, in resemblance to BEC. In case of BEC, particles that obey Bose–Einstein (BE) statistics,
merge to form a “coherent matter wave” at the lowest energy state. On the other hand, fermions
obeying FD statistics, are forbidden to get together by the “Pauli Exclusion Principle” of quantum
mechanics. Nonetheless, the above theory can be shown to form a condensate as a dense band at
the highest energy state [14] as a direct consequence of Born-Green reciprocity principle which fixes
an upper limit of the momentum possible for a particle [16–18]. Motivated by the coherent matter
wave description of BEC and a toy model of an ideal gas of non-interacting fermions, we identify the
so-called Born-Kothari condensation (BKC) as condensation-like coherence within fermions. While we
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emphasize that the validity of Born-Green reciprocity theory is the hypothesis of our work, it is useful
to make some general remarks on the status of reciprocity principle in connection with the current
state of affairs:

• The principle of reciprocity originally proposed by Born can be observed in much, but not all, of
the formalism of classical and quantum mechanics [19]. However, the idea was later taken up
by Yukawa [20] in developing nonlocal quantum field theory [21–23] by recognizing “reciprocity
principle as the leading heuristic idea in the theory of elementary particles” [24].

• It is important to point out that the theory of reciprocity is based on a demand for symmetry,
requiring the fundamental laws of nature to remain unaltered as mentioned by Born in his letters
to Einstein [24]. Although its universality as a general theory remains questionable not only in
view of General Relativity which breaks this symmetry [25], but also, there is no extant empirical
evidence that could confirm its validity. Current observations in high energy physics experiments
suggest that if Born’s reciprocity would be valid, then its effect could only be present at energies
of the order of TeV or higher.

• Yet, constructing a general theory defining Born reciprocity as an intrinsic symmetry [26],
continued as an interesting field of research even in modern times by adapting group theoretical
methods [27–31] which are employed to study a group, namely the quaplectic group. With the
advent of renormalization theory and Higg’s mechanism in the last seventy years [32–35], both in
theory as well as in experiments, it has also been suggested that Born’s reciprocity may be the
underlying physical reason for the T-duality symmetry in string theory [25,35,36], and may be of
relevance in developing a quantum geometry [37,38].

Here we follow the celebrated work of Cahill and Glauber [39] to present a convenient description
of the aforementioned condensate for fermions on the basis of a close parallelism between the properties
of coherent states for fermionic fields and more familiar ones for bosonic fields. This resulted in an
unification between the two seemingly distinct seminal works. Our mini-review is composed of four
different kinds of approaches or formulations which are organized as follows: In Section 2, we give an
outline of the Born-Green formalism of reciprocity theory to stimulate our discussion, followed by a
brief overview in Section 3, on the basic concepts of Kothari-Nath approach regarding the condensation
in FD statistics. We summarize in Section 4, the essential elements of the coherent state formulation
for fermionic fields as put forwarded by Cahill and Glauber. Our approach [15] has been discussed
in Section 5 and extended further to unravel the BKC as a state of macroscopic condensation-like
coherence for fermions within the purview of elementary particles. We conclude our discussion in
Sections 6 and 7 and finally, an outlook for open future problems in this direction has been presented
in Section 8.

2. The Principle of Reciprocity: The Born-Green Formalism

The duality-symmetry among the configuration space and the momentum space was introduced
by Born and his collaborator Green to formulate the “principle of reciprocity” [12,13,16–18,21,24,40–43].
According to this, the fundamental laws of nature must be invariant under the linear transformation

xk −→ pk, pk −→ −xk, (k = 1, 2, 3, 4), (1)

or, more precisely, they are symmetrical in space-time xk ≡ (x, ct) and momentum-energy pk ≡
(p, E/c). The most obvious indications of such invariance under the above transformation are already
presented in the accepted laws of classical physics,

ẋk = ∂H/∂pk, ṗk = −∂H/∂xk, (2)
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when the first 3 components of the 4-vectors xk and pk are considered. The same symmetry appears in
the fundamental commutation relations of relativistic quantum mechanics,

xk pl − pl xk = ih̄δk
l , (3)

in the Fourier transformation connecting wave functions, and representations of dynamical variables
in the co-ordinate and momentum spaces [16], and also in the formal expression for the angular
momentum tensor,

jkl = xk pl − xl pk. (4)

These observations strongly motivated Born that each general law in the x-space has an “inverse image”
in the p-space [18] and laid him to make an attempt to construct a more general theory which however
remained largely unsuccessful.

The most appealing features of reciprocity principle is the introduction of a line element in the
p-space, dσ2 = γkldpkdpl , where γkl forms the metric tensor in exact analogy to the coefficients gkl
for the four dimensional line element ds2 = gkldxkdxl [12]. The three dimensional volume element in
p-space is then given by

dΩ =
dp√

(1− p2c2/E2)
. (5)

This volume element comes from the hypotheses that the p-manifold is a closed and maximally
symmetric space which is needed in order to derive Lorentz-invariant theory without uv-divergences.
The relation between energy E and mass m of a physical system, E = mc2, defines the highest
momentum E/c corresponding to the rest mass of the particle. One may introduce a similar invariant
space-time-momentum-energy line element under quaplectic transformations which assumes Born
reciprocity as an accepted group of intrinsic symmetry. If such quaplectic group is considered to be
fundamental, then it would imply a maximum rate of change of momentum and appear as a new
fundamental constant [26]. Here, however, we confine our discussion in the light of Born-Green
reciprocity and its validity is the heart of our analysis. We emphasize that there remains a well
distinction between the momentum and the coordinate space, because the 4-dimensional distance
R

1
2 , for the latter, with R = xkxk = c2t2 − x2, has an absolute significance and can be measured for

macroscopic dimensions. Natural question therefore arises, is it plausible to measure 4-dimensional
distance between two events in microscopic dimensions too?

From the standpoint of momenta, there exists of course a quantity analogous to R, namely
P = pk pk = E2/c2 − p2. However, this is not a continuous variable since it involves the rest mass.
A determination of P, therefore implies not a real measurement but a choice between a number of
values corresponding to the particles. By estimating p and E for a particle, one obtains the value of the
rest mass which permits to recognize the kind of particles with which one is dealing with [18].

We conclude this section with a note that the idea of “reciprocity” is a generalization of the
invariant “metric-operator” concept as an extension of the Minkowski metric of special relativity.
The simplest relativistically and reciprocally invariant metric function constructed by Born and Green,
comprises the x-space and p-space simultaneously [16], i.e.,

S = xkxk + pk pk. (6)

For further generalization see References [25,34–36,44,45]. Using the notations R = xkxk and P = pk pk,
introduced above, Equation (6) can be rewritten as

S = R + P. (7)
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The metric invariant R, which is a number scalar in x-space, is replaced by Equation (7) as the symmetric
sum of the x and p-space metric operators. As long as we are dealing with macroscopic bodies in
macroscopic dimensions, P is small and in all such situations ordinary relativity holds as a perfect
assumption. However, on a microscopic scale, the space metric is not independent of the momentum
metric, both together determine S. It may be worthwhile to clarify a small ambiguity at this point:
According to the reciprocity principle, Einstein special relativity is an accurate theory for macroscopic
domain [18], but this does not imply that one should expect its effect in all every day experiments. It is
well known that at small velocities relative to the speed of light, Newtonian mechanics is completely an
accurate description for macroscopic world. Similarly, in atomic physics where one basically deals with
a 1/r potential, Born reciprocity has negligible effect on known experimental results [46]. It therefore
implies that the standard relativistic tools are perfectly adequate methods for known experimental
scenarios. The same is true in the context of a condensed matter problem. Interestingly enough,
this point was nicely demonstrated with several examples (including the deviation from standard
Planck’s distribution law) by Born that the correction due to reciprocity principle (although very
small) makes sense only at extremely high energy (or equivalent temperature) [12]. An estimation of the
aforesaid energy scale following Born is given by kBΘ0 � 1.41× 108 eV, which in terms of temperature
corresponds to Θ0 � 1.63× 1012 degrees (See Equation (37) of Reference [12]). Since in the last twenty
years there are experimental data reporting that electrons may reach 200 GeV [47], it suggests that any
modification in the density of states due to reciprocity principle may only appear at energies &1 TeV
(see also Discussion Section 6).

Finally, as x and p have different dimensions, it is customary to measure all coordinates xk in
units a and all pk in units b, so that they become dimensionless. Instead of a and b one may choose
Planck’s constant as the primary absolute constant [18,40], so that

h̄ = a.b. (8)

The actual mass µ of an elementary particle can then be computed from its reduced rest mass κ, using
the formula µ = h̄κ/ac (Appendix A), where a is the classical electron radius, the natural length scale
of electron and simultaneously of all nuclei. Finally, we point out that the highest momentum of any
particle is related to its reduced rest mass κ, by the relation

E
c
= µ.c = κ.b. (9)

Equation (9) which is our new observation of the present analysis, reflects an interesting point. It states
that the highest momentum of a particle is specific to its rest mass and the product of the reduced rest
mass and the scale factor b. We will use this relation in the next section and return to its discussion in
Section 6, on the choice of the scale parameter b to account for the characteristic Born constant of the
reciprocity theory. Once again we stress that the Born-Green reciprocity theory is the hypothesis of
our work and our analysis based on a toy model of an ideal gas of non-interacting fermions, entirely
depends on the validity of the above principle.

3. “Condensation” in FD Statistics: The Kothari–Nath Approach

Theory of Reciprocity, thus developed by Born and Green, plays the role for the momentum
coordinates what Einstein’s theory does for position coordinates. Following Equations (5) and (9), and
making use of the hypothesis connecting the proportionality relation between the density of states
and the volume element, the number of wave-functions for a particle with weight factor g (due to its
internal degrees of freedom), enclosed in a volume V and momentum range p to p + dp is given by

a(p)dp =
4πVg
(2πh̄)3

p2dp
(1− p2/κ2b2)1/2 . (10)
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At this point, let us take a pause and make some important upshot in view of Equation (10):

• It is apparent from Equation (10) that the only effect of the reciprocity principle is on the density
of states. Importantly, it was pointed out by Born, “a consequence of this assumption is a modification
of the formula for the number of quantum states” [12].

• In the usual treatment the momentum space is taken to be infinite, i.e., b → ∞ [48]. Then
Equation (10) reduces to the well known expression a(p)dp = 4πVg

(2πh̄)3 p2dp [49].
• The form of the statistical distributions, either, Fermi–Dirac, Bose–Einstein, or Maxwell-Boltzmann,

remain unperturbed by the reciprocity principle [12,48].

It is of interest, therefore, to see to what extent the properties of an assembly of identical and
non-interacting particles get modified when the momentum space presumed by Born is restricted in
the above manner. While the case of a classical gas and that of a radiation field have been analysed
by Born himself [12], the thermodynamic properties of both relativistic and non-relativistic FD gas
have been studied by others [48]. Remarkably, all the thermodynamic relations are found to be exactly
identical to their well known results.

However, the most intriguing consequence of the reciprocity principle was due to Kothari and
Nath [14] who pointed out the possible existence of a “condensed phase” in FD statistics. Unlike Bose
gases, where the condensed phases are formed by the particles in the lowest energy state, for FD gases,
the condensed phases are formed by the particles in their respective highest energy states. According
to Equation (10), the total number of wave-functions (a0) contained in a volume V is

a0 =
∫ κb

0
a(p)dp = g

π2Vκ3b3

(2πh̄)3 , (11)

which can also be expressed in terms of the Compton’s wavelength λc = h
µc of the particle (i.e.,

the wavelength of a photon whose energy is equal to the mass of the particle) as a0 ∝ gV/λ3
c .

Equation (11) determines the maximum number of possible wave-functions (N ≡ N0 = a0) that can be
accommodated by the volume V. Again by Pauli exclusion principle, any independent wave-function
for fermions can only be occupied by a single particle. It is, therefore, a legitimate question to ask what
will happen to the FD gas, when the number of particles N in the volume V, exceeds N0?

Kothari and Nath [14] resolved the issue by proposing that on replacement of the sum by the
integral of all possible eigenstates extending from (p = 0) to (p = E/c) in Equation (11), the total
number of eigenstates although becomes limited, it is practically infinite. So, the total number of states
a, can be written as

a = a0 + a1, (12)

where a1 denotes an infinitely large number of eigen-states corresponding to the highest momentum
p → κb, which has a specific value for a fixed fermion rest mass. It follows, therefore when the
number of particles N in a FD gas exceed N0, irrespective of any critical temperature, a condensed phase
containing (N − N0) particles, will be formed in the highest energy state, all possessing momentum
E/c. One may expect that the existence of such “condensed” phases are of natural significance for the
application of the reciprocity theory within the ambit of elementary particles.

Here we draw the attention of the readers to the crucial step behind Kothari–Nath proposition.
It is generally assumed that the density of states is proportional to the volume element in the p-space
as we considered here in Equation (10). This is true in the description of BEC which is derived by
assuming a discrete set of plane wave modes in a large box, and then allowing the box length to infinity
to recover the integral as a limit of the sum. Here on the other hand, Born reciprocity in the form
of Equation (10) does not establish which are the modes; it just specifies the volume element in the
p-space. This difference is the key point in the argument of Kothari and Nath, where they presume
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that the integral in Equation (11) comes from a sum. Moreover, the ad-hoc term a1 in Equation (12) is
included to force the system to incorporate an infinite number of particles in a fixed volume.

One should keep in mind that the above inference is not in contradiction with our basic knowledge
that asserts fermions obey Pauli exclusion principle, ruling out the possibility of macroscopic occupation
at a single particle state [50]. Yet, to this end, we pose the following question: Is it still possible to draw
a close parallelism between the condensation of Reference [14] and that of BEC? Using the statistical
properties for fermionic fields in kinship to bosonic fields, pioneered by Cahill and Glauber [39], we
have shown in the following that the desired concordance can be arrived within the framework of
coherent states. The prime advantage of such coherent state formalism is that it is no more regulated
by the strict Yang criterion [50] for fermionic fields that must abide by the single particle picture. This
accounts for a consistent and satisfactory theory for the largely untrodden condensation event of the
FD gas in terms of fermionic coherent states. In what follows, we first make a little digression on the
coherent states of fermions followed by our methods that conceives BKC as a close BEC analog.

4. Fermionic Coherent States: The Cahill–Glauber Formulation

The mathematical methods that are used to characterize the statistical properties of boson fields,
in particular the coherence of photons in quantum optics, has their counterparts for fermionic fields.
The coherent states, displacement operators, P-representation all possess surprisingly close fermionic
analogues. However, an extension of these schemes to their fermionic counterpart is not a trivial task.
The reason was first pointed out by Schwinger [51], since fermion field variables anticommute, their
eigenvalues must be anticommuting numbers. Such numbers are called Grassmann numbers which
can be handled only by means of Grassmann algebra. For general properties of such anti-commuting
Grassmann variables we refer the reader to the classic book of Berezin [52]. Here instead we follow
the line of approach publicized by Cahill and Glauber [39] for the construction of fermionic coherent
states to describe the statistical properties of fermionic fields. In doing so, we summarize only the
parts necessary to make our presentation self-contained.

However, one can proceed one step further and ask in the light of the extended form of relativity,
due to Born, what will happen with locality and micro-causality in the context of relativistic and
eventually in reciprocal quantum field theories? Since coordinate space is curved while the momentum
space is linear and therefore flat, it appears that the introduction of gravity breaks the symmetry
between them. Still there are literatures which considered curved momentum space geometry to
allow a natural way to reconcile gravity with quantum mechanics and discuss relative locality [53]
and micro-causality [34,54] from a newer perspective [35,55]. In this connection we mention earlier
works relating reciprocity with non-localizable quantum fields by Born [21], Pias [22] and Yukawa [20]
which made a significant contribution to the development of meson theories in 50’s. We stress however
that this is of course not relevant for our present purpose, since we restrict our discussion within
non-interacting fermions. Therefore, we refrain ourselves further in this direction as it is beyond the
scope of our present discussion.

4.1. Properties of Anti-Commuting Numbers

For a system of fermions described by the creation a†
k and annihilation al operators following

{âk, â†
l } = δkl ; {âk, âl} = {â†

k , â†
l } = 0, (13)

the set of Grassmann variables γ = {γk} satisfy the anti-commutation relations,

γkγl + γlγk ≡ {γk, γl} = 0. (14)

This immediately results in, for any given “k”, γ2
k = 0. As the square of every Grassmann monomial

vanishes, any Grassmann variable can not be an ordinary real, imaginary, or complex number. In other
words, they are nilpotent, an important property for the treatment of fermions [52,56–58]. This
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crucial difference between the Grassmann variables and the ordinary variables has far-reaching
consequences, such as, the operation of differentiation is the same as the integration in Grassmann
calculus. The Grassmann number γk and its complex conjugate γ∗k are independent variables which obey

{γk, γ∗k} = 0. (15)

They also anti-commute with their fermionic operators, like:

{γk, âl} = 0 ; {γk, â†
l } = 0. (16)

The Hermitian conjugation reverses the order of all fermionic quantities, both the operators and the
anti-commuting numbers. For an example

(â1γ2 â†
3γ∗4)

† = γ4 â3γ∗2 â†
1. (17)

While Grassmann numbers are well studied in mathematics [52] and path integral formulation for
fermionic fields [56–58], other applications of such anti-commuting numbers are less popular. Recently,
however, a number of investigations by incorporating Grassmann variables in fermionic systems have
appeared in the literature [59–76]. Among them are the phase space methods for degenerate Fermi
gases [59], counting statistics and quantum Monte–Carlo methods of strongly correlated fermions [62],
superfluidity [67] and Cooper-like pairing in trapped fermions [68], to name just a few.

4.2. Coherent States for Fermions

The entire formulation of quantum optics is couched in terms of coherent states [77–80], which
are eigen-states of the harmonic oscillator annihilation operators and obey bosonic commutation
relations. For fermionic fields, though, the vacuum state is the only physically realizable eigenstate of
the annihilation operators, still, it is possible, to define such eigenstates in a formal way and put them
to the same analytical uses as they are made for bosonic coherent states.

Thus, in analogy to coherent state |α〉 [77–80] for bosonic field which is a displaced state |α〉 =
D̂(α)|0〉 produced by the action of the displacement operator D̂(α) = exp

(
∑i(αi â†

i − α∗i âi)
)

on the
vacuum |0〉, where {αi} being a set of complex numbers [77–84], it is possible to construct the normalized
coherent state for fermions [39].

|γ〉 = D̂(γ)|0〉. (18)

Here the displacement operator is given by

D̂(γ) = exp

(
∑

i
(â†

i γi − γ∗i âi)

)
, (19)

for a set of γ = {γi} Grassmann variables. It should be noted that in Equation (19) the creation
operator â†

i must stand to the left of the Grassmann variable γi. Using the properties of the displaced
annihilation operator

D̂†(γ)âkD̂(γ) = âk + γk, (20)

one can show that the coherent state is an eigenstate of every annihilation operator âk, âk|γ〉 = γk|γ〉,
with eigenvalue γk (see Appendix B). While the adjoint relation is 〈γ|â†

k = 〈γ|γ∗k , the inner product of
any two coherent states is given by

〈γ|β〉 = exp

(
∑

i
γ∗i βi −

1
2
(γ∗i γi + β∗i βi)

)
. (21)
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Upon using the completeness relation of the coherent states, an arbitrary coherent state |β〉 can be
expanded by

|β〉 =
∫

d2γ〈γ|β〉|γ〉, (22)

which immediately follows from the resolution of identity∫
d2γ|γ〉〈γ| = I. (23)

Here we emphasize that for fermionic fields the integrations are taken over anticommuting
variables and for such pairs we will adhere to the notation

∫
d2γ ≡

∫
∏i d2γi,

∫
d2γi =

∫
dγ∗i dγi,

in which the differential of the conjugate variable comes first and we keep in mind that
dγ∗i dγi = −dγidγ∗i .

Now, the most conspicuous feature for fermionic field arises from the peculiar property of
fermionic oscillator which has both upper and lower bounds [57], in contrast to only lower bound
for harmonic oscillator in case of a bosonic field. This ensures unlike bosonic fields, it is possible to
define the normalized eigenstate |α〉′ of the fermionic creation operators â†

k for any set α = {αi} of
Grassmann variables, as the displaced state

|α〉′ = D̂(α)|1〉, (24)

where |1〉 represents the state in which every mode is filled:

|1〉 = ∏
k

â†
k |0〉. (25)

Using the adjoint relation of Equation (20) (confer Equation (A10)), one can show that the state |α〉′ is
an eigenstate of every creation operator â†

k (see Appendix B):

â†
k |α〉

′ = α∗k |α〉
′. (26)

Similarly, the corresponding adjoint equation and the identity operator for the eigenstates |α〉′ are
given by

8〈α|âk =
8 〈α|αk,∫

∏
i
(−d2αi)|α〉′ 8〈α| = I. (27)

We close this section with the following note:

• As pointed out after Equation (19) that for fermionic field, every operator and Grassmann numbers
anticommute with each other. Hence, special care must be taken for the ordering of all such
fermionic quantities.

• Eigenstate of every fermionic creation operators, |α〉′, stems from the characteristic upper bound
exhibited by general system of fermions. Equation (24) will thus be shown to play the key role in
our theoretical formulation which we explore in the next section.

Apart from this ordering issue and the characteristic upper bound possessed by fermionic field modes,
Equations (18)–(27) are rather similar to their bosonic counterparts. So, they can be applied to the
same analytical techniques as their counterparts are employed for bosonic fields [15,39,72,74,75,85].
The differences prevail only in their mathematical background [52,56–58].
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5. BKC as Condensation-Like Coherence within Fermions

We proceed by considering the Hamiltonian [15]

Ĥ =
∫ ( h̄2

2µ
∇ψ̂†(x)∇ψ̂(x)

)
dx, (28)

of a non-interacting Fermi gas of N particles of mass µ, expressed in terms of the field operators ψ̂(x)
and ψ̂†(x). The field operator ψ̂(x) that annihilates a particle at a space point x can be expanded in
terms of its mode functions φk(x) as

ψ̂(x) = ∑
k

âkφk(x). (29)

The field operator ψ̂(x) and its adjoint satisfy the anti-commutation relation

{ψ̂(x), ψ̂†(x′)} = ∑
k

φk(x)φ∗k (x′) = δ(x− x′), (30)

which implies that the creation (â†
k ) and annihilation (âk) operators in the single particle state φk(x)

obey the fermionic anti-commutation relations Equations (13), while wave functions φk(x) fulfil the
orthonormal condition ∫

φ∗k (x)φl(x) = δkl . (31)

The close similarity between the bosonic and fermionic fields [39] discussed in the previous
section and a hint from Bogoliubov approximation [86] for bosons motivate us to separate out the
field operator ψ̂(x) for a systematic description into a non-commuting “classical” field ψ(x) and the
quantum fluctuation δψ̂(x) about its classical component,

ψ̂(x) = ψ(x) + δψ̂(x). (32)

The sense of “classicality” for fermionic fields will be addressed later on, in course of examining
fermionic “order parameter”. As evident, the ansatz for the Equations (32) is guided by the non-zero
expectation value 〈ψ̂(x)〉 for the harmonic oscillator coherent states for bosonic fields which are
well-known basis for examining the condensation phenomena in BEC [7–9]. In the same spirit we
will utilize fermionic oscillator coherent states introduced by Cahill and Glauber [39] to explain the
condensation behaviour of the FD gas envisaged by Kothari and Nath [14] on the basis of Born-Green
reciprocity theory [17,18].

5.1. Comparative Study between BEC and BKC

In the following we first lay down the steps behind our preliminary surmise to depict BKC in
analogy to BEC:

1. In BEC, the condensed phase forms a coherent matter wave as the ground state of the many body
system. Hence it is quite logical to delineate the giant matter wave in terms of a bosonic coherent
state which is a displaced vacuum state |α〉 = D̂(α)|0〉, with, α being the complex numbers
(Figure 1a).

2. On the other hand, as discussed in Section 2, the condensed phase for a FD gas occurs only at the
highest energy state p = κb, characteristic of the reduced mass of the fermionic system. The reduced
mass (rest mass) in case of BKC is analogous to Tc for bosonic systems that dictates the existence
of BEC below such critical temperatures.
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3. Due to Pauli exclusion principle, any eigenstate of fermions can accommodate only a single
particle. Subsequently, by reciprocity principle the highest momentum state p = κb for any
fermionic system, in principle contains an infinitely large number of eigenstates [14].

4. Combining the points 2 and 3, unequivocally suggest that the condensed phase for each individual
fermionic systems can occur only in the form of a single occupancy dense band at their respective
highest accessible momentum (energy) state, p = κb (Figure 1b).

5. Since, the eigenstate of the fermionic creation operator originates from the characteristic upper
bound displayed by any general systems of fermions, our preliminary surmise is that the
condensate of Reference [14] that appears at the highest energy state in the form of a dense band,
is most appropriately described in light of our Equation (24), as a displaced state |α〉′ = D̂(α)|1〉.
As discussed in Section 3, that the Born reciprocity does not specify the modes, so an explanation of
the exclusion principle focusing on the quantum numbers for the ad-hoc a1 term of Equation (12),
is not apparent. Therefore we resort to this end to fermionic coherent state in order to establish
that the condensed phase at the highest energy is compatible with the exclusion principle. Since
fermionic operator anticommutes, any creation operator can act only once on the vacuum, a†

n|0〉,
thereby it creates only a single particle in each mode. As a result, |1〉 = ∏n=N

n=N0
a†

n|0〉 which
represents product state of all such large number of modes created by the single action of their
creation operators, absolutely fulfils the exclusion principle. Thus, a unitary transformation
of such state, here for instance, the displaced coherent state |α〉′ = D̂(α)|1〉 in Equation (24),
automatically obeys the Pauli exclusion principle.

Figure 1. Schematic diagrams illustrating the basic differences and innate similarities between
two kinds of condensations: (a) Bose–Einstein condensation (forms coherent matter wave) and
(b) Born-Kothari condensation (forms condensation-like coherence).

This allows us to associate an intrinsic notion of symmetry breaking and thermodynamic “order
parameter” to characterize the condensation for a gas of non-interacting fermions in parallel to Bose
condensate for a gas of non-interacting bosons.

5.2. Characterization of the “Condensate” State

The basis for characterization of the “condensed” state of BKC is the thermodynamic limit, order
parameter and spontaneous symmetry breaking, as detailed below.
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5.2.1. Thermodynamic Limit of Fermionic Operators

We are interested in the behaviour of a gas of fermionic atoms in the thermodynamic limit.
Therefore, it is necessary to comprehend both the number of particles and the volume of the gas are
large, i.e., N −→ ∞ and V −→ ∞, keeping the density ρ = N

V constant. In this limit, we are allowed to
forget the operator character of ân and â†

n because

{ân, â†
n}

V
=

ân â†
n + â†

n ân

V
=

1
V
−→ 0. (33)

This is similar to the commutation relations for bosonic operators which vanish in the thermodynamic
limit, and thus are replaced by c-numbers in BEC theory [8,9,49]. This can be illustrated by considering
the non-interacting ground state of a Bose gas with N particles

|Φ0(N)〉 = |N, 0, 0, 0...〉, (34)

where all N particles occupy the state k = 0. The annihilation and creation operators for the state k = 0
are denoted by â0 and â†

0 which satisfy

â0|Φ0(N)〉 = N1/2|Φ0(N − 1)〉,
â†

0|Φ0(N)〉 = (N + 1)1/2|Φ0(N + 1)〉. (35)

It is important to note that neither â†
0 nor â0 annihilate the ground state. This is in contrast to the

well-known property of â0|0〉 = 0 of a vacuum state. As the bosonic operators multiply the ground
state with large numbers of the order

√
N, it is convenient to switch to new operators defined as

b̂0 = V−1/2 â0 and b̂†
0 = V−1/2 â†

0. (36)

Since [â0, â†
0] = 1, we get [b̂0, b̂†

0 ] = V−1. Therefore one has

b̂0|Φ0(N)〉 =
(

N
V

)1/2
|Φ0(N − 1)〉,

b̂†
0 |Φ0(N)〉 =

(
N + 1

V

)1/2
|Φ0(N + 1)〉. (37)

As mentioned before we are interested in the behaviour of a gas in the thermodynamic limit, hence the
operators b̂0 and b̂†

0 multiply the ground state with a constant factor. Therefore, the commutator

[â0, â†
0]

V
=

â0 â†
0 − â†

0 â0

V
=

1
V
−→ 0, (38)

in the thermodynamic limit, i.e., we obtain a classical limit for which the bosonic operators are replaced
by ordinary c-numbers.

In the same way, anticommuting fermionic operators ân and â†
n can be replaced by numbers in the

thermodynamic limit, V −→ ∞. The only difference is that unlike the bosonic case where the operators
are replaced by classical commuting variables, these numbers must be Grassmann or anti-commuting
classical numbers for fermionic case. One can make this point more explicit by defining

â†
n ân = N̂n. (39)

Because of 8〈α|N̂n|α〉′ = α∗nαn 6= 0, neither ân and â†
n can annihilate the ground state of a system of N

fermionic atoms, realized as the coherent state |α〉′. In the thermodynamic limit, we identify ∑n α∗nαn

as the average number of fermions in the condensed phase. We thus obtain the classical limit of the
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fermionic operators for which ân and â†
n are replaced by their corresponding Grassmann variables,

which follows from their anti-commuting nature:

8〈α|{ân, â†
n}|α〉′

V
=

1 + {αn, α∗n}
V

=
1
V
−→ 0 (40)

In the following we further illustrate the physical significance of these Grassmann variables from the
fermionic order parameter point of view.

5.2.2. Fermionic Order Parameter

In general, when the quantum fluctuation is neglected, the field operator ψ̂(x) coincides with
the classical field ψ(x). This happens for a dilute Bose gas at very low temperature and the system
behaves as a classical object [7–9]. For bosonic fields, the function ψ(x) =

√
N/V plays the role of

an order parameter which helps to characterize the basic principle of BEC. Similarly, the fermionic
field operator ψ̂(x) expanded in terms of its mode functions φk(x) (Equation (29)), in a properly
parametrized coherent states

|α〉′ = exp(
√

V ∑
n
(a†

nαn − α∗nan))|1〉, (41)

satisfies the eigenvalue equation

8〈α|ψ̂(x) =8 〈α|ψ(x). (42)

Here the eigenvalue ψ(x) corresponds to the amplitude

ψ(x) = ∑
n

αnφn(x), (43)

of the fermionic or Grassmann field wherein the annihilation operators of ψ̂(x) are replaced by the
Grassmann variables α = {αn}. As the parametrized coherent states are defined in terms of bilinear
forms in anticommuting variables, there is no need to adopt any ordering for the modes or extra
minus sign to compute the density of the FD gas, ρ = N/V, where N =

∫
ψ∗(r)ψ(r)dr. Therefore,

like the bosonic order parameter, one can always multiply ψ(x) by a numerical phase factor as eiθ or
equivalently can multiply αn by eiθ , without changing any physical property. This demonstrates the
natural gauge symmetry exhibited by all the physical equations of the fermionic fields. Hence, making
an explicit choice for the value of the phase, in turn order parameter, corresponds to a formal breaking
of the gauge symmetry which is guaranteed to be the necessary and sufficient condition [87,88] for the
occurrence of BEC in bosonic fields. We will reveal its significance to their fermionic counterpart in
due course, but, before that, several remarks are in order:

• One can argue that the fermionic order parameter does not bear any classical analogy, because it
involves Grassmann variables. This may lead to misconception, hence needs further clarification.
To be classically measurable, a field amplitude has to be large enough, like that of a strong
electromagnetic (EM) field which can be produced and measured classically. This is possible when
the particles obey BE statistics, as happens for light quanta in EM fields, where a large number of
particles can accommodate a same state so that the fields get summed up coherently. On the other
hand, for fermionic fields obeying FD statistics, quantities like energy, charge, current density
which are bilinear in field variables, are only physically relevant entities. The reason is the number
N̂ = ∑k â†

k âk and energy operators Ĥ = ∑k εk â†
k âk do have classical limits even for fermionic

fields, as they are bilinear in âk and â†
k . Extrapolating this idea, we may say that Grassmann fields

and fermionic field operators are by nature fermionic, while an even product of these variables
make them experimentally relevant [15,68,70,72,74,75]. A representation of correlation functions
and construction of parent quadratic Hamiltonians in terms of such Grassmann variables can
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be found in recent review [59,60] and in the theory of fermionic analog of parametric amplifier
developed by the present author [74,75].

• Therefore the order parameter ψ(x) which is linear in Grassmann variables (Equation (43)),
represents the amplitude of the fermionic field and is not an experimentally viable quantity. On
the contrary, the field intensity ψ∗(r)ψ(r) = ∑n α∗nαn|φn(r)|2, is bilinear in Grassmann amplitudes,
is an experimentally relevant quantity without any ambiguity [15]. Anticommutation in quantum
mechanics is very special because it involves Pauli exclusion principle, which does not make
sense at the classical level.

• Although the anticommuting nature of Grassmann variables preclude the possibility of
interpreting them in experimental terms, we have shown [75] that unlike the bosonic field,
fermionic fields are bound to satisfy fermionic analog of classical Liouville’s equation [61] and
therefore most closely resemble to classical phase-space distribution functions. This is not
surprising because of the simple fact that Grassmann algebra does not allow any derivative
higher than second order. In this sense, the fermionic field operators being linear in their field
variables, are always classical except for the effect that they incorporate Pauli exclusion principle.
This is an important difference when compared with their bosonic counterparts since for the latter
the Liouville’s equation is obtained only when the fields are either free or the quantum correction
to the interaction are neglected [75].

5.2.3. Spontaneous Symmetry Breaking

Finally, we choose the appropriately parametrized coherent state as Equation (41). We start by
noting that the state |α〉′ in Equation (41) is not invariant under the number operator N̂ = ∑k â†

k âk,
while the Hamiltonian Ĥ (Equation (28)) itself commutes with N̂,

eiθN̂ |α〉′ = |e−iθα〉′; eiθN̂Ĥe−iθN̂ = Ĥ. (44)

Even though, the operator eiθN̂ applied to |α〉′ produces a different state |e−iθα〉′, it leaves the scalar
product invariant

8〈e−iθα|e−iθα〉′ =8 〈α|α〉′. (45)

This result immediately gives a clue that similar to harmonic oscillator coherent states, one can also
multiply the fermionic coherent state by an arbitrary phase factor e−iθ without changing any physical
property. From the symmetry point of view, the situation is quite interesting for fermionic fields.
So, we elaborate this issue a little more.

With the help of Equation (21), the overlap of the coherent states |α〉′ defined by Equation (41)
can be evaluated as follows

8〈α′|α〉′ 8〈α|α′〉′ = exp

(
−V ∑

n
(α∗′n − α∗n)(α

′
n − αn)

)
. (46)

Equation (46) implies that in the limit V → ∞, any two coherent states |α〉′, |α′〉′ become orthogonal.
So, the states with different phase factors, |α〉′, |e−iθα〉′ are macroscopically distinct. This novel findings
of our analysis confirms the following points:

• Similar to BEC, the condensed state of FD gas [14], realized as a coherent state, forms a degenerate
manifold parametrized by a phase variable 0 < θ < 2π [15].

• The microscopic Hamiltonian (Ĥ) (Equation (28)) has global U(1) symmetry, since it is invariant
under multiplication by a constant phase factor to the wavefunction of the system, ψ̂→ eiθψ̂.

• The specific macroscopic ground condense state of Reference [14], viewed as a fermionic coherent
state, does not possess such symmetry. The phase factor to the state |α〉′ produces a different state
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altogether. This observation has a very fundamental consequence because the existence of BEC is
always accompanied by spontaneous breaking of such symmetry [87,88].

This enables us to establish BKC, in a similar spirit to BEC for bosons, as a condensation-like coherence
among fermions [15].

6. Discussion

We elucidate an appealing feature of a largely uncharted territory of the condensation for the FD
gas in close association with the Bose gas. The basic idea behind our present formulation is whether
the condensed phase of the FD gas as a state of macroscopic coherence, can be described in terms of a
fermionic coherent state. Such an approach gives an equivalent result to the problem of a fixed number
of particles N in the limit N −→ ∞ for BEC case [7–9]. We first summarize our main results of the
present mini-review as follows:

• In Section 2, we present basic idea behind the Born-Green reciprocity principle [12,13,16–24,40–43],
the assumption of its validity is the hypothesis of our work. The main conclusion of this section is
that the highest momentum of a particle allowed by the reciprocity principle is proportional to that of the
reduced rest mass of the particle in appropriate units.

• In Section 3, we discuss the Kothari-Nath approach [14,48] which assesses the statistical and
thermodynamical properties of an assembly of noninteracting gas of fermions. We emphasize
thereafter, unlike BEC, the most conspicuous feature of BKC: The condensation is primarily guided
by the density of states rather than only statistics itself.

• In Section 4, we outline the coherence theory for fermionic fields following Cahill and Glauber [39].
Like quantum theory of optical coherence [77–80,89] describes the statistical properties and coherence
of photons in quantum optics, we discuss the fermionic coherence theory can be shown to play
a similar role for the description of fermionic atom-counting experiments [64,74,75,85]. Most
important result of this section is the fermionic coherent state which is the eigenstate of the fermionic
creation operators: An unitary displaced state of all filled up modes which arises due to the very
special property of fermionic fields.

• In Section 5, our formulation portrays that the condensed phase of BKC can be recognized by the
fermionic coherent state where the unitary displacement operator displaces in principle an infinitely dense
filled up modes. This is similar in spirit to that of harmonic oscillator coherent states defined as
unitarily displaced vacuum state which are used to represent BEC as a coherent matter wave.
Our formulation combined with thermodynamic consideration allows us to characterize the
condensate in terms of fermionic order parameter. It forms an essential ingredient for the
demonstration of thermodynamic limit and spontaneous breaking of guage symmetry of the state
comprising FD statistics. Most remarkably, similar to their bosonic counterpart, the coherent and
the rotated coherent state can be distinguished as macroscopically distinct ground states of the FD
gas. This enables us to capture the essence of BKC as “condensation-like coherence” among fermions,
likewise BEC is treated as “coherent matter wave” for bosons .

Secondly, as mentioned earlier, an important point of discussion is to decipher whether b is
universal or not. From the standpoint of Equation (8), it appears that the constant b is universal, since
its value depends on classical electron radius a and Planck’s constant h̄ which are the natural length
and energy scales of all elementary particles. Presumably, one has

a =
e2

m0c2 =
h̄

137m0c
= 2.81× 10−13 cm, (47)

where m0 is the mass of the electron. Therefore [41]

b = h̄/a = 137m0c. (48)
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Moreover, one may define a primary absolute constant, namely the Born constant,

B = b/a = 0.0085 gm s−1, (49)

originally postulated by M. Born [40] as the characteristic constant for the reciprocity principle in the
same way as c is the characteristic for relativity and h for quantum theory.

However, the modern estimate for the electron radius (10−20 cm) largely deviates from the
“classical electron radius” [90] and thus poses a serious question on the “universality” of the Born
constant B and the parameters in Born-Kothari (BK) model. By contrary, following reciprocity principle,
BKC is associated with the maximum momentum (µc) of a particle, i.e., the minimum wavelength
predicted by its Compton’s wavelength (λc). It may not a priori clear whether the current electron
radius indicates a modified b value and therefore a modified Born constant B or the highest momentum
state in the BKC can be better determined by λc, independent of the values a and b. Although, it is
interesting to note when the classical electron radius is used [Confer Equation (47)], the two procedures
give the same results for the electrons since λ̄e = 137a. It is also worth noting that the reduced
Compton’s wavelength, λ̄c =

λ
2π = 0.39× 10−10 cm and the simplest theoretical model due to Brodsky

and Drell [91]

|ge − 2| = R/λ̄c (50)

with electron gyromagnetic ratio |ge − 2| = 1.1× 10−10 cm, sets an upper bound on the electron radius,
R ≈ 10−20 cm [92] and upon the rest energy of the particles out of which the electron is made. This
results fits surprisingly well with the Large Electron-Positron Collider (LEP) accelerator data for
electron energies (∼200 GeV) which is five orders of magnitude large compared to the 0.5 MeV/c2

rest mass of the electron. This indicates that the Compton’s wavelength λc could be a better candidate
with respect to the parameters a and b for the estimation of the highest momentum for the condensate
in BKC. However, if the Compton’s wavelength is considered to be fundamental for the determination
of the maximum momentum, one must admit the following problem:

• The energy scale at which the physical evidence of the modification in the density of states should
appear in terms of Compton’s wavelength for electrons (i.e., energy� 1.41× 108 eV, estimated by
Born [12]), has been achieved decades ago [47]; therefore, one has to conclude that the estimation
of the critical density in terms of the Compton’s wavelength is far from realistic, and it was
introduced into the discussion only for historical reasons.

• Present understanding in view of the last twenty years of experimental achievements on electrons
energies reaching ∼200 GeV, implies that the effect of reciprocity principle could only be present
at energies which are &1 TeV.

• It seems therefore that the initial proposal for such scales introduced by Born [12] in his original
theory of reciprocity, needs to be updated in the light of last 70 years of theory and experimental
progress in high energy physics.

Finally, we stress that our approach, however, is not in contradiction to the standard pairing
theory for fermions [93,94] which merits attention in its own right, for the understanding of the
behaviour of trapped atomic Fermi gases at ultracold temperatures [95–99], both as a degenerate
quantum system [100] and as a possible precursor to a paired Fermi condensate [101–103]. It is also
possible to account for a Bardeen–Cooper–Schrieffer (BCS)-like condensation incorporating Grassmann
variables, which calls for a separate discussion [66–69]. Here, instead, we invoke the seldom used
but reasonable basis for the possible existence of a condensed phase for the FD gas [14] that is based
on the hypothesis of reciprocity principle [12,13,17,21,40,41,43,104–106], which is considered one of
the cornerstones for the development of the theory of elementary particles [16,18,20,22–24,42] and
other related fields [25,35–38]. As evident filling up a Fermi sea of real particles at an energy scale
of MeV or even more is not only difficult but hardly imaginable. However, this should not lead
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to misunderstanding that the reciprocity principle is in contradiction with the known experimental
results in atomic or condensed matter physics which are accessible via standard relativistic means.
However, measuring a small effect at very high energy (due to the modified density of states) could be
an excellent indirect proof for the experimental verification of the reciprocity principle itself.

We conclude our discussion with the following notes:

• In our previous paper [15], we have given only the theoretical formulation that accounts for
the condensation of FD gas as close equivalent to BE gas. However, the nature of the highest
momentum state where condensation takes place was not looked into. More precisely we did
not specify what determines the value of the highest momentum for a given system of fermionic
particles and what is its physical significance.

• In this mini-review we address all these issues in more detail. We hope our approach based on an
unified analysis of different aspects of formulation of quantum theory and relativity may shed
more light on the condensation phenomena of elementary fermions of astrophysical significance.

7. Conclusions

In summary, we stress that motivated by the Born’s reciprocity theory, we present some interesting
results based on a toy model of an ideal gas of non-interacting fermions. From this point of view,
the present work may be valuable because even if the reciprocity theory does not hold, it would be
possible that the level structure, for example, of certain condensed matter systems resemble to it. From
the discussion of our previous section as well as experimental evidence on the possible validity of the
Born’s reciprocity theory, we conclude that

• If the reciprocity theory remains valid, its effects should be observable only at energy scales & TeV.
• In the BK model, a phenomenon like BKC could happen, and it could be modeled with our

formalism based on coherent states with Grassmann variables.
• If a fermionic system presents a similar spectrum which is predicted by the BK theory, i.e., a high

degeneracy around certain energy value inside a continuous band, then a similar phenomenon
could appear only in the high density limit.

8. Open Issues

So far we have considered only non-interacting Fermi gas which is a good zeroth-order
approximation for a dilute gas of fermions, where we neglect the effects of atom-atom interactions
which are predominantly short-ranged and are therefore weak. For such dilute spin-polarized Fermi
gases, the s-wave scattering amplitude vanishes due to the antisymmetric nature of the many fermionic
wave function. The next leading order, p-wave scattering is small at low energy, hence one can safely
ignore its effect and assume that the repulsive effect is mainly due to the Pauli exclusion principle
rather than atom-atom interactions [107].

However, one can argue that at high energy when interaction terms are added, interacting
fermions would simply invalidate the basic assumptions and the condensation-like phenomenon will
not be relevant or even possible. In other ways, one could pose several different interesting questions:
Can one obtain interacting, renormalisable, local or causal quantum field theories? If non-locality and
or causality are lost can it be regained in some limits? We do not think a satisfactory answer to these
questions can be given at this stage. So, we keep these issues as a list of future open problems.

Finally we anticipate the difficulty in achieving the BKC in an experiment with actual condensed
matter systems [15,108]. Since it would correspond to fill up a Fermi sea of real particles at extremely
high energy, one has to think whether one can create an analogous astrophysical conditions with
fermionic atoms or molecules in the laboratory. We suppose that one needs the possible scaling
relationship that may exist between different parameters, and then one may see how to mimic the
gauge symmetry breaking in finite Fermi system with high number density. Recent experiments on
high pressure superconductivity [109,110] may throw new light in this direction.
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The following abbreviations are used in this manuscript:

BEC Bose–Einstein condensation
FD Fermi–Dirac
BE Bose–Einstein
BKC Born-Kothari condensation
EM Electromagnetic
BK Born-Kothari

Appendix A. Rest Masses of Particles from Reciprocity Principle

Particles with integral spin (or bosons), like photons and certain kinds of mesons, are generally
supposed to have a wave function which satisfies a wave equation of the form [18]

Pψ(xl) = κ2ψ(xl), P = pk pk, pk = i
∂

∂xk , (A1)

where the constant κ is proportional to the rest mass of the particle. Going over to customary units
one has

µ = (b/c)κ = (h̄/ac)κ, (A2)

as the actual rest mass of the observed particles. One can write the same wave function Equation (A1),
also in the form

F(P)ψ(xl) = 0, (A3)

where F(P) is any function of the form

F(P) = F1(P)P− κ2, (A4)

and if F1(P) has no roots, Equation (A1) is the only solution. If, F1(P) is itself of the form F2(P)(P− κ2)

then the Equation (A1) will have solutions corresponding to particles of rest-mass µ1 = bκ1/c, also.
Generalizing this, it can be seen quite easily that a wave equation of the type Equation (A1) may have
solutions corresponding to particles with any number of different rest-masses [16].

This consideration can also be extended to particles with spin half by taking the argument of F as
η, instead of P:

η = αk pk, αkαl + αlαk = 2gkl , (A5)
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in terms of the standard notations of the metric tensor

gkl = gkl = 0, (k 6= l);

g11 = g22 = g33 = −1, g44 = 1;

g11 = g22 = g33 = −1, g44 = 1;

xk = gkl xl , xk = gkl xl . (A6)

In a similar way it can be shown to have solution satisfying equation

F(η)ψ(xl) = 0, (A7)

where F(η) is any function of the form αk pk − κ.
This way one obtains a vast generalization of wave mechanics describing any number of particles

with different rest masses with the help of one single operator F, which is a function of the relativistic
invariant P or η , where η2 = pk pk = P. Supersymmetric generalizations of the reciprocity principle
are of great interest in this regard [34,44,45].

Appendix B. Properties of the Displacement Operator

The anti-commutivity of the Grassmann variables cancels on multiplication with that of fermionic
operators. Thus, the operators â†

i γi and γ∗j âj commute for i 6= j. Hence, the displacement operator in
Equation (19) may be written as the product

D̂(γ) = ∏
i

exp
(

â†
i γi − γ∗i âi

)
= ∏

i

[
1 + â†

i γi − γ∗i âi +

(
â†

i âi −
1
2

)
γ∗i γi

]
. (A8)

In the same logic, the annihilation operators âk commutes with all the operators â†
i γi and γ∗i âi

as long as k 6= i. Using Equation (A8), we may then compute the displaced annihilation operator by
ignoring all modes except the k-th one:

D̂†(γ)âkD̂(γ) = ∏
i

exp
(

γ∗i âi − â†
i γi

)
.âk. ∏

j
exp

(
â†

j γj − γ∗j âj

)
= exp

(
γ∗k âk − â†

k γk

)
.âk. exp

(
â†

k γk − γ∗k âk

)
= âk + γk. (A9)

Similarly, we have

D̂†(γ)â†
kD̂(γ) = â†

k + γ∗k . (A10)

Using Equation (A9), one may verify the eigen value equation

âk|γ〉 = âkD̂(γ)|0〉 = D̂(γ)D̂†(γ)âkD̂(γ)|0〉
= D̂(γ)(âk + γk)|0〉
= γkD̂(γ)|0〉 = γk|γ〉, (A11)
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while, Equation (26) can be verified by using Equation (A10) as

â†
k |α〉

′ = â†
kD̂(α)|1〉 = D̂(α)D̂†(α)â†

kD̂(α)|1〉
= D̂(α)(â†

k + α∗k )|1〉
= α∗k D̂(α)|1〉 = α∗k |α〉

′. (A12)
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