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Abstract: A theoretical and a mathematical model is presented to determine the entropy generation
on electro-kinetically modulated peristaltic propulsion on the magnetized nanofluid flow through
a microchannel with joule heating. The mathematical modeling is based on the energy, momentum,
continuity, and entropy equation in the Cartesian coordinate system. The effects of viscous dissipation,
heat absorption, magnetic field, and electrokinetic body force are also taken into account. The electric
field terms are helpful to model the electrical potential terms by means of Poisson–Boltzmann
equations, ionic Nernst–Planck equation, and Debye length approximation. A perturbation method
has been applied to solve the coupled nonlinear partial differential equations and a series solution is
obtained up to second order. The physical behavior of all the governing parameters is discussed for
pressure rise, velocity profile, entropy profile, and temperature profile.

Keywords: magnetic field; electrokinetic; peristaltic pumping; nanofluid; perturbation solution;
microchannel

1. Introduction

During the recent few decades, Nanotechnology has received a remarkable attention due to its
numerous applications in industry, since material containing nano-sized particles exhibits various
chemical and unique physical features. Major applications include hybrid power engines, fuel cells,
microelectronics, domestic refrigerators, pharmaceutical processes, chillers, cooling of nuclear reactors,
space technology, boiler flue gas temperature control, and grinding. Nanofluid is the interaction of
Nano-sized particles within the fluid. Nanofluid heat transfer is very much favorable to enhance
the heat transfer and thermal conductivity of the fluid up to 40%. Nanofluid consists of nano-sized
particles (diameter: 1–100 nm) in different Newtonian and non-Newtonian fluid such as water, ethylene
glycol, and oil. In nanofluid, nanoparticles are made up of carbon or carbide nanotubes, oxides, and
metals. Most of the fluids have low thermal conductivity and thus they are unable to match today’s
need of cooling rate. For this purpose, a new way to enhance the thermal conductivity of such type
of fluids is by adding nano-sized particles in the base fluids (water) to form slurries. Nanofluid has
become now the major attention of various researchers for the new manufacturing of automotive
and plant cooling systems, and for transfer of heat in different heat exchanger devices. Choi [1]
was the first who described experimentally the thermal conductivity of fluid with nanoparticles.
Khanafer et al. [2] described the heat transfer enhancement in a two-dimensional enclosure using
nanofluid under the influence of buoyancy force. Oztop et al. [3] investigated numerically the
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natural convection in a partially heated rectangular enclosure with nanofluid models. Sheremet
and Pop [4] discussed the natural convection in the presence of sinusoidal temperature distributions
on nanofluid flow propagating through a porous medium. He modeled the governing flow with the
help of Darcy–Boussinesq approximation and the Buongiorno’s nanofluid model. They used a second
order finite difference method to obtain the numerical solutions. In this study, they found that the
Sherwood number and Nusselt number behave as an increasing function due to greater influence of the
buoyancy–ratio parameter, thermophoresis parameter, and Rayleigh number, and behave conversely
for the Brownian motion parameter and Lewis number.

Xiao et al. [5] presented an analytical model for effective thermal conductivity of nanofluid with
Brownian motion effects of nanoparticles. They found that the greatest influence of the concentration
of nanoparticles is to enhance the thermal conductivity of nanofluids. Moreover, they also observed
that the effective thermal conductivity of nanofluids for the smaller magnitude of nanoparticles is
higher than the larger size at a given concentration. Sheremet et al. [6] discussed numerically the
transient natural convection through a porous wave wall cavity filled with nanofluid. He used the
mathematical model proposed by Tiwari and Das and utilized the Darcy–Boussinesq approximation
with thermal dispersion. Cai et al. [7] highlighted the recent developments on fractal-based approaches
to nanoparticle aggregation and nanofluids. Recently, Xia et al. [8] presented the optimization of
a fractal-like architecture of porous medium associated with diffusivity, thermal conductivity, and
permeability. They observed that the ratio of dimensionless permeability over dimensionless effective
diffusivity diminished due to the decrement of tortuosity and porosity fractal dimensions. Hence, the
lower tortuosity and porosity fractal dimensions were favorable to water/wind resistant fabric, as it is
helpful to diminish the ratio of dimensionless permeability over dimensionless effective diffusivity.
Further, they also found that the ratio of dimensionless total effective thermal conductivity over
effective diffusivity enhances with tortuosity fractal dimension which reveals that the lower tortuosity
fractal dimensional was helpful to clothing insulations, because it diminishes the ratio of dimensionless
effective thermal conductivity over effective diffusivity. Some more pertinent studies on the said topic
can be found from the references [9–13].

In a human body, symmetrical contraction and suspension of smooth muscles create a sinusoidal
wave which is known as a peristaltic wave. It is a very well-known mechanism that helps in
transporting various biological fluids, such as the transport of urine, in the human body. Chyme
movement and vasomotion of small blood vessels are the common examples of peristaltic flow.
Due to an extensive range of applications, peristaltic nanofluid flow grabbed the attention of different
researchers. For instance, Bhatti et al. [14] discussed the peristaltic nanofluid flow in the presence
of titanium nanoparticles with magnetic and endoscopic effects. He further obtained the series
solutions using a homotopy perturbation method. Tripathi and Beg [15] presented a mathematical
and theoretical study on nanofluids with peristalsis. They used the viscous fluid model and presented
the exact solutions for the velocity, temperature, and nanoparticle concentration profiles. Akbar and
Nadeem [16] considered PTT fluid model with nanoparticles propagating peristaltically in a diverging
tube. Bhatti et al. [17] presented the two-phase flow simulation with heat and mass transfer in the
presence of EDL (“Electric double layer”) and MHD (“Magnetohydrodynamics”) effects. A few more
studies on the said topic can be found from the references [18–20].

Entropy generation can be defined as the phenomena of irreversibility processes of different
thermal systems that are related to viscous dissipation, heat transfer, magnetic field and mass transfer
etc. To enhance the performance of these irreversibilities, the second law of thermodynamics has
been used [21–26] by various scientists. However, the first law of thermodynamics has also been used
by various researchers and it is found that the second law of thermodynamic is more efficient and
convenient as compared to the first law of thermodynamics. Rashidi et al. [27] investigated the entropy
generation in steady magnetohydrodynamic flow of nanofluid over a rotating porous disk. Ranjit
and Shit [28] recently investigated the entropy generation with a peristaltic flow in the presence of
magnetic field. Akbar et al. [29] also discussed the entropy generation on peristaltic flow of water
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with copper nanoparticles. Sheikholeslami and Ganji [30] applied Lattice Boltzmann method (LBM)
to determine the entropy generation on nanofluid flow with magnetic effects. Bhatti et al. [31,32]
studied numerically the entropy generation with non-Newtonian fluid models through a shrinking
and stretching sheet.

The purpose of the present study is to analyze the entropy generation on electro-kinetically
modulated peristaltic propulsion on the magnetized nanofluid flow through a microchannel with joule
heating. The effects of viscous dissipation, heat absorption, magnetic field, and electrokinetic body
force are also taken into account. According to the best of our knowledge, no such analysis has been
presented before.

2. Mathematical Formulation

The geometry model of the electro-osmotically peristaltic nanofluid flow through a microchannel
is presented in Figure 1. The wavy wall surface of the microchannel is described as [33]:

h̃ = ã− φ̃ cos2 π

(
X̃− c̃t̃

)
λ

. (1)

where h̃, ã, c̃, t̃, φ̃, λ are the transverse vibration of the wall, half width of the channel, velocity of the
wave, time period, amplitude of the wave, and wave length, respectively. The temperature at the wall
and the center line are presented as

T̃ = T̃0 at Ỹ = 0, (2)

T̃ = T̃1 at Ỹ = h̃. (3)

The governing equations of motion, concentration, temperature, and continuity are expressed
as [17]:

∂Ũ
∂X̃

+
∂Ṽ
∂Ỹ

= 0, (4)

ρ

(
∂Ũ
∂t̃

+ Ũ
∂Ũ
∂X̃

+ Ṽ
∂Ũ
∂Ỹ

)
= − ∂P̃

∂X̃
+ µ

(
∂2Ũ
∂X̃2

+
∂2Ũ
∂Ỹ2

)
+ ραg

(
T̃ − T̃0

)
− σB2

0Ũ + ρeEX̃ , (5)

ρ

(
∂Ṽ
∂t̃

+ Ũ
∂Ṽ
∂X̃

+ Ṽ
∂Ṽ
∂Ỹ

)
= − ∂P̃

∂Ỹ
+ µ

(
∂2Ṽ
∂X̃2

+
∂2Ṽ
∂Ỹ2

)
, (6)

ρcp

(
∂T̃
∂t̃

+ Ũ
∂T̃
∂X̃

+ Ṽ
∂T̃
∂Ỹ

)
= k̃

(
∂2T̃
∂X̃2

+
∂2T̃
∂Ỹ2

)
+ µ

(
∂Ũ
∂Ỹ

)2

+ Ω + σE2
X̃ + σB2

0Ũ2, (7)

With the help of Poisson Boltzmann equation, the electric potential with in a microchannel can be
written as [17,33]:

∇2Φ̃ = −ρe

ε
(8)

where ε is the permittivity, ρe = ez[ñ+ − ñ−] is the electrical charge density, e is the elementary charge,
ñ+ and ñ− are positive and negative charge ions consists of bulk concentration (“number density”) n0

and the valence of z+ and z− respectively. Moreover, in order to analyze the potential distribution, it is
compulsory to define the charge number density. For this purpose, Nernst–Planck equation is helpful
to describe the number distributions of an individual species as [34].(

∂ñ±
∂t̃

+ Ũ
∂ñ±
∂X̃

+ Ṽ
∂ñ±
∂Ỹ

)
= D

(
∂2ñ±
∂X̃2

+
∂2ñ±
∂Ỹ2

)
± Dze

T̃kB

[
∂

∂X̃

(
ñ±

∂Φ̃
∂X̃

)
+

∂

∂Ỹ

(
ñ±

∂Φ̃
∂Ỹ

)]
, (9)
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In the above equation, D is the diffusivity of an ionic species, kB is the Boltzmann constant. The
approximation of equal ionic diffusion coefficients for both species and the mobility of a species is
described with the help of the Einstein formula.
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To move from the fixed frame to the wave frame, we define the following variables as X̃ =

x− c̃t̃, y = Ỹ, Ũ − c̃ = u, Ṽ = v. Let us define the following non-dimensional quantities

x = x
λ , y = y

ã , t = c̃t̃
λ , u = u

c̃ , v = w
δc̃ , h = h̃

ã , φ = φ̃
ã δ = ã

λ , Φ = Φ̃
ζ , n = ñ

n0

θ = T̃−T̃0
T̃1−T̃0

, M2 =
σB2

0 ã2

µ , Gr =
gα(T̃0−T̃1)ρ2 ã3

µ2 c̃ , β = ã2µΩ
(T̃1−T̃0)k̃

, Sc = µ
ρD

S = ã2E2
xσ

(T̃1−T̃0)k̃
, UHS = − Exζε

µc̃ , Br = c̃2µ

(T̃1−T̃0)k̃
, Re = ρδc̃ã

µ , ΩT = T̃1−T̃0
T̃0

 (10)

The nonlinear terms in Equation (9) are of O
(

Pe δ2), whereas Pe = Sc Re is the ionic Peclet
number and Sc denotes the Schmidt number. Therefore, the nonlinear terms dropped in the limit i.e.,
Re, Pe, δ << 1. The Poisson equation reduced into the following form

∂2Φ
∂y2 + m2

[
n+ − n−

2

]
= 0, (11)

where m = ãez
√

2n0/kBεT̃ = ã/λd is an electro-osmotic parameter and λd = 1/m is debye length
or characteristic thickness EDL (“electrical double layer”). After some simplification Equation (10),
the ionic distribution can be written as

∂2n±
∂y2 ±

∂

∂y

[
n±

∂Φ
∂y

]
= 0, (12)

Along with following bulk conditions

n±(Φ = 0) = 1,
∂n±
∂y = 0, and ∂Φ

∂y = 0.

}
(13)

Then the Boltzmann distributions for the ions are

n± = e±Φ (14)
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Using Equations (11) and (14), we get

∂2Φ
∂y2 = m2sinhΦ, (15)

To proceed further, Equation (15) must be modified by means of low-zeta potential approximation.
This approximation is not beneficial due to a broad range of pH and the magnitude of the zeta potential
is very small (less than 25 mV). Therefore, Equation (15) reduces to the following form

∂2Φ
∂y2 = m2Φ, (16)

Subject to
∂Φ
∂y

∣∣∣
y=0

= 0,

Φ| y=h = 1,
(17)

whereas the potential function is defined as

Φ =
cosh my
cosh mh

. (18)

Using Equation (10) in Equations (1)–(7), and applying the approximation long wavelength and
creeping flow regime,

∂p
∂x

=
∂2u
∂y2 + Grθ −M2(u + 1) + m2UHSΦ, (19)

∂p
∂y

= 0, (20)

∂2θ

∂y2 + S + β + Br

[
M2(u + 1)2 +

(
∂u
∂y

)2
]

, (21)

subject to the following boundary conditions

∂u
∂y

= 0, θ = 0; at y = 0 and u = 0, θ = 1; at y = h. (22)

3. Entropy Generation Analysis

The volumetric rate of a local entropy generation is described in the following form as:

NG = k
T̃2

0

{(
∂T̃
∂X̃

)2
+
(

∂T̃
∂Ỹ

)2
}

Heat Transfer Irreversibility (HTI)

+ µ

T̃0

[
2
{(

∂Ũ
∂X̃

)2
+
(

∂Ṽ
∂Ỹ

)2
}
+
(

∂Ũ
∂Ỹ

+ ∂Ṽ
∂X̃

)2
]

Fluid Friction Irreversibility (FFI)

+
σB2

0Ũ2

T̃0
+

σE2
X̃

T̃0
Hydromagnetic effect

. (23)

The above equation describes the dimensional form of entropy generation due to fluid friction
irreversibility, heat transfer, and magnetic field. A characteristics entropy generation is defined as

NG,0 =
k
(

T̃1 − T̃0

)2

T̃2
0 ã2

. (24)

Then the dimensionless form of entropy generation is written as

NS =
NG

NG,0
=

(
∂θ

∂y

)2
+

Br
ΩT

(
∂u
∂y

)2
+

M2Br
ΩT

(u + 1)2 +
S

ΩT
. (25)
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where M, Br, ΩT are defined above. Furthermore, the integration of Equation (23) in the whole
computational domains gives the dimensionless entropy generation, Navg

G , which can be written as

Navg
G =

1
χ

w
NGdχ. (26)

Moreover, the Bejan number Be is a significant parameter that describes the importance of
irreversibility process in a domain and can be described as

Be =

(
∂θ
∂y

)2[(
∂θ
∂y

)2
+ Br

ΩT

(
∂u
∂y

)2
+ M2Br

ΩT
(u + 1)2 + S

ΩT

] . (27)

The relative global supremacy of heat transfer irreversibility can be analyzed by average Bejan
number Bavg

e , which can be defined as

Bavg
e =

Navg
G,HTI

Navg
G

. (28)

It is noticeable here that Bavg
e < 1/2 reveals that the irreversibility process due to fluid friction

dominates the flow whereas Bavg
e > 1/2 reveals that heat transfer irreversibility dominates and

Bavg
e = 1/2 shows that the fluid friction and heat transfer entropy generation are equal.

4. Solution of the Problem

The exact solutions of Equations (19) and (21) are difficult to obtain due to a coupled nonlinearity.
Therefore, we have applied the homotopy perturbation method [17,25] to obtain the solutions.
Therefore, the homotopy for Equations (19) and (21) are defined as:

H(Θ, ξ) = (1− ξ)
[

L(Θ)− L
(

Θ̃0

)]
+ ξ

[
L(Θ) + Grθ + m2UHSΦ−M2(u + 1)− dp

dx

]
, (29)

H(ϑ, ξ) = (1− ξ)
[
L(ϑ)− L

(
ϑ0
)]

+ ξ

[
L(ϑ) + β + S + Br

(
∂u
∂y

)2
+ M2Br(u + 1)2

]
, (30)

where ξ is an embedding parameter. The Linear operator L is considered as

L =
∂2

∂y2 , (31)

and the initial guesses for the above linear operators are defined as

Θ̃0 = y2 − h2, ϑ0 =
y
h

, (32)

Defining the following expansions

Θ(y) = Θ0(y) + ξΘ1(y) + ξ2Θ2(y) + . . . , (33)

ϑ(y) = ϑ0(y) + ξϑ1(y) + ξ2ϑ2(y) + . . . ., (34)

Applying the series expansion in Equations (33)–(34) to the homotopy sets in Equations (29) and (30),
then comparing the powers of ξ, the system of linear differential equations can be obtained. Using the
property of homotopy perturbation scheme [17,25] i.e., ξ → 1, we have

u(y) = Θ(y) = Θ0(y) + Θ1(y) + Θ2(y) + . . . , (35)
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θ(y) = ϑ(y) = ϑ0(y) + ϑ1(y) + ϑ2(y) + . . . , (36)

The final form of solutions for the velocity profile and temperature can be written in simplified
form as

u(y) = u0 + u1y2 + u2y3 + u3y4 + u4y5 + u5y6 + u6y8 + u7 cosh my, (37)

θ(y) = θ0 + θ1y + θ2y2 + θ3y4 + θ4y5 + θ5y6 + θ6y7 + θ7y8 + θ8 cosh my + θ9ysinhmy + θ10y2 cosh my, (38)

whereas the constant appearing i.e., (ui, θi; i = 1, 2, 3....) in the above equations can be found using
routine calculations. The instantaneous volume flow rate Q can be calculated as

Q =
hw

0

udy. (39)

The mean flow rate over one period of wavelength can be written as

Q = Q + 1− h− φ

2
. (40)

The pressure rise is evaluated numerically with the help of the following expression

∆p =
xw

0

dp
dz

dz, (41)

5. Results and Discussion

The main idea of this section is to provide the physical behavior of all the governing parameters that
are included in the present flow problem. To determine graphically, a symbolic computational software
“Mathematica” has been utilized. For this purpose, Figure 2 to Figure 12 are sketched against velocity
profile, temperature profile, Bejan number. and entropy profile for the following parameters i.e., Hartmann
number M, thermal Grashof number Gr, electro-osmotic parameter m, Helmholtz–Smoluchowski velocity
(or “maximum electro-osmotic velocity”) UHS, Joule heating parameter S, heat source/sink β, amplitude
ratio φ, and Brinkmann number Br. Pumping features have also been evaluated numerically with the help
of Equation (33) and are discussed. Figure 2 shows the numerical comparison with previously published
results [35] by ignoring the magnetic field (M→ 0) and the viscous dissipation effects in the governing
equations. From this figure, we can see that the present results are in excellent agreement with previously
published data. Therefore, it is concluded that the methodology used to obtain the results are correct and
the present results converge. In the all the upcoming figures, the red, blue, and green colors reveal the
variation of the mentioned variable in ascending order. However, the solid and dashed lines indicate the
lower to the higher value for the given parameter.
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Figure 3 represents the variation of the velocity profile against different values of thermal Grashof
number Gr and Hartmann number M. In this figure we can see that the thermal Grashof number
significantly enhances the velocity profile in the region y ∈ [0.5, 1], however, the results are completely
converse when y < 0.5. On the other hand, the effects of Hartmann number M is completely opposite
as compared to thermal Grashof number. The velocity of the fluid tends to diminish when y > 0.5,
because when the magnetic field is applied to any conducting fluid, a converse force occurs which
tends to oppose the velocity and provide a marked resistance in the flow field. Figure 3 is plotted for
electro-osmotic parameter m, and Helmholtz–Smoluchowski velocity (or “maximum electro-osmotic
velocity”) UHS. In Figure 4, we can see that the electro-osmotic parameter accelerates the fluid velocity
in the region y ∈ [0.5, 1], whereas its behavior becomes the opposite for y < 0.5. Electro-osmotic
parameter is the ratio of channel length and a Debye length m(= ã/λd) which reveals that the increment
in the height of the channel produces a significant enhancement in velocity profile and consequently
and increment in electrical Debye length. Further, Helmholtz–Smoluchowski velocity (or “maximum
electro-osmotic velocity”) UHS(= −Exζε/µc̃) also boosts the velocity profile in the similar region as
compared to the electro-osmotic parameter.
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Figures 5 and 6 represent the temperature profile against different values of Hartmann number
M, Joule heating parameter S, heat source/sink β, and Brinkmann number Br. It can be noticed from
Figure 4 that Joule heating parameter S, significantly raises the temperature profile. The Joule heating



Entropy 2017, 19, 481 9 of 15

parameter S is a normalized generation term that shows the ratio of Joule heating to the surface heat
flux. The result is cooling in the electrokinetic flow through a microchannel with a negative S and
heating with a positive S. Further, Joule heating is related to the electric field induced by the internal
heating process in a fluid in the presence of an applied potential gradient. Higher values of an electric
field cause a higher heat generation which results in heating of the fluid. In Figure 5 we can further
notice that higher values of heat source/sink β, produce a positive effect on the temperature profile
and significantly boosts the temperature profile. Figure 6 shows that the effects of magnetic field and
Brinkmann number accelerate the temperature profile. In fact, an increment in Brinkmann number
tends to diminish the conduction of heat that occurs due to viscous dissipation and, as a result, the
temperature rises significantly.
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Figures 7 and 8 are sketched to analyze the behavior of peristaltic pumping in different pumping
regions. It is a very important and substantial part of the peristaltic flow that is beneficial in the
propagation of multiple fluids. It can be observed from Figure 7 that the Hartmann number M, and
Helmholtz–Smoluchowski velocity (or “maximum electro-osmotic velocity”) UHS behaves in a similar
way on pressure rise. For instance, with the increment of both the parameters UHS, M, the pumping
rate increases in the retrograde pumping region [∆p > 0, Q < 0], whereas the behavior of pumping
rate changes in peristaltic pumping [∆p > 0, Q > 0]. and becomes opposite in co-pumping region
[∆p < 0, Q > 0]. It can be viewed from Figure 8 that an enhancement in the electro-osmotic parameter
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m, creates a noticeable increment in the peristaltic pumping region and retrograde pumping, whereas
its attitude is completely opposite in the co-pumping region. Further we can see that amplitude
ratio φ acts similarly to an electro-osmotic parameter in all the regions but it has a greater impact on
pressure rise.
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Figures 9 and 10 are sketched to determine the behavior of entropy profile against different
values of Hartmann number M, temperature difference ΩT , Joule heating parameter S, and Brinkmann
number Br. Figure 9 shows that an increment in Hartmann number M causes a significant increment
in the entropy profile and remains positive throughout the region, whereas the parameter ΩT shows
opposite attitude on the entropy profile. It can be seen from Figure 10 that when the Joule heating
parameter S, and Brinkmann number Br increase, then the entropy profile greatly increases and
it remains positive throughout the region. Figures 11 and 12 show the Bejan number variation
along multiple values of Hartmann number M, temperature difference ΩT , Joule heating parameter
S, and Brinkmann number Br. From both the figures, one can easily observe that an increment in
Hartmann number M, and Joule heating parameter S, and Brinkmann number Br tends to diminish
the Bejan number significantly, however, converse behavior has been observed against the temperature
difference ΩT .
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6. Conclusions

The present study deals with the theoretical study of entropy generation on electro-kinetically
modulated peristaltic propulsion on magnetized nanofluid flow through a microchannel with joule
heating. The effects of heat absorption, viscous dissipation, electrokinetic body force, and magnetic
field are also considered in the present flow. Series solutions have been obtained for the velocity profile
and temperature profile, whereas numerical integration has been used to evaluate the expression for
pressure. The major findings for the governing flow problem are as follows:

i. The velocity of the fluid behaves in a similar manner due to the increment in thermal Grashof
number and magnetic field.

ii. The velocity profile increases when y > 0.5 for higher values of electro-osmotic parameter and
Helmholtz–Smoluchowski velocity (or “maximum electro-osmotic velocity”).

iii. The temperature profile reveals a significant increment due to the higher presence of Brinkmann
number and magnetic field.

iv. An increment in the Joule heating parameter and heat source/sink significantly accelerates the
temperature profile.

v. Pressure rise exhibits similar behavior to higher values of an electro-osmotic parameter,
magnetic field, and Helmholtz–Smoluchowski velocity (or “maximum electro-osmotic
velocity”).

vi. The entropy profile also shows a positive response due to the greater impact of Brinkmann
number, magnetic field, and the Joule heating parameter.

Author Contributions: The authors wrote all parts of this paper together.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

h̃ Transverse vibration of the wall
ã Half width of the channel
Be Local Bejan number
Bavg

e Average Bejan number
P̃ Pressure
c̃ Velocity of the wave
Re Reynolds number
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NS Dimensionless entropy number
t̃ Time
Ũ, Ṽ Velocity field
EX̃ Electrokinetic body force
k̃ Thermal conductivity
X̃, Ỹ Cartesian coordinate axis
D Diffusivity of an ionic species
kB Boltzmann constant
m Electroosmosis parameter
S Joule heating parameter
UHS Helmholtz–Smoluchowski velocity
Br Brinkman number
Gr Grashof number
Q Average volume flow rate
M Hartman number
B0 Magnetic field
Q Volume flow rate
T̃ Temperature
g Acceleration due to gravity
n0 Bulk concentration (number density)
e Elementary charge

Greek Symbol

ρ Density of the fluid
α Coefficient of linear thermal expansion of fluid
Ω Heat absorption coefficient
µ Viscosity of the fluid
ε Permittivity
λd Debye length
λ Wave length
ρe Electrical charge density
φ̃ Amplitude of the wave
θ Temperature profile
ξ Embedding parameter
σ Electrical conductivity
ΩT Dimensionless temperature difference
β Dimensionless heat source/sink
δ Wave number
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