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Abstract: In image and signal processing, the beta-divergence is well known as a similarity measure
between two positive objects. However, it is unclear whether or not the distance-like structure
of beta-divergence is preserved, if we extend the domain of the beta-divergence to the negative
region. In this article, we study the domain of the beta-divergence and its connection to the
Bregman-divergence associated with the convex function of Legendre type. In fact, we show
that the domain of beta-divergence (and the corresponding Bregman-divergence) include negative
region under the mild condition on the beta value. Additionally, through the relation between
the beta-divergence and the Bregman-divergence, we can reformulate various variational models
appearing in image processing problems into a unified framework, namely the Bregman variational
model. This model has a strong advantage compared to the beta-divergence-based model due to the
dual structure of the Bregman-divergence. As an example, we demonstrate how we can build up
a convex reformulated variational model with a negative domain for the classic nonconvex problem,
which usually appears in synthetic aperture radar image processing problems.

Keywords: beta-divergence; bregman-divergence; sparsity; convex function of legendre type;
optimization; synthetic aperture radar; multiplicative noise; bregman proximity operator; convexity;
total variation

1. Introduction

In general, the domain of a divergence [1,2] is that confined not by the positiveness of variables
but by the positiveness of a divergence (i.e., D(b|u) ≥ 0). Therefore, the domain of a divergence
could be defined to include negative region while keeping positiveness of the divergence. To the
best of our knowledge, it is unclear when the domain of the β-divergence (and the corresponding
Bregman-divergence) include the negative region. In this article, we systematically explore the domains
of the β-divergence [2] and the corresponding Bregman-divergence associated with the convex function
of Legendre type [3].

The β-divergence [2,4–7] is a general framework of similarity measures induced from various
statistical models, such as Poisson, Gamma, Gaussian, Inverse Gaussian, compound Poisson,
and Tweedie distribution. For the connection between the β-divergence and the various statistical
distributions, see [8]. Among the diverse statistical distributions, the Tweedie distribution has a unique
feature, i.e., the unit deviance of the Tweedie distribution [8] corresponds to the β-divergence with
β ∈ R \ (1, 2). It is interesting that (1, 2) is a vital range of β while defining a convex right Bregman
proximity operator [9,10]. We will address this issue in more details in Section 4. In addition,
the β-divergence is also used as a distance-like measure in diverse areas, for instance, synthetic
aperture radar (SAR) image processing [11,12], audio spectrogram comparison [6,13], and brain EEG
signal processing [7].

We note that authors in [7] show the usefulness of the β-divergence with β > 1 as a
robust similarity measure against outliers between two probability distributions. Here, outliers
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(rare events) are that have extremely low probability and thus they exist near zero probability.
However, the (generalized) Kullback–Leibler-divergence (i.e., β-divergence Dβ=1(b|u)), which is
a commonly used similarity measure for probability distributions, is undefined at zero (u = 0).
See Figure 1a. Therefore, it is not easy to obtain robustness against outliers through the (generalized)
Kullback–Leibler-divergence. On the contrary, the β-divergence with β > 1 (i.e., Dβ>1(b|u)) is well
defined at zero (u = 0) and thus it is more robust to outliers than the Kullback–Leibler-divergence.
For more details, see [4,5,7]. We also note that if the variables of β-divergence are not probability
distributions (i.e., unnormalized) then outliers correspond to the variables that have extremely
large values (�1) [14]. To detect such kind of outliers under the Gamma distribution assumption,
the β-divergence with β ∈ [−1, 0] is used as a distance-like measure in [11]. See also Figure 1c.

Figure 1. The graphs of the β-divergence Dβ(b|u), which is based on the proposed extended logarithmic
function lnα(u) in (4). (a) and (b) shows Dβ(b|u) for β ≥ 1 with different choice of b, i.e., b = 1,−1;
(c) and (d) shows Dβ(b|u) for β ≤ 1 with different choice of b i.e., b = 1,−1. Note that Dβ(b|u) with
β = 1 is not defined if u ∈ R−−.

In the case of SAR image data processing, speckle noise is modeled with the Gamma
distribution and thus the negative log-likelihood function, which appears in speckle reduction problem,
corresponds to the β-divergence with β = 0, i.e., the Itakura–Saito-divergence. Actually, this model
is highly nonconvex [15]. Therefore, various transforms are introduced to relax nonconvexity of
the Gamma distribution related speckle reduction model [16–21]. Recently, we have shown that
the β-divergence with β ∈ (0, 1) can be used as a transform-less convex relaxation model for SAR
speckle reduction problem [12]. Generally, the data captured via a SAR system has extremely high
dynamic range [22,23]. Under this harsh environment, β-divergence with β ∈ (−1, 0) is successfully
used as a similarity measure for separation of the strong scatterers in SAR data [11]. In addition,
the β-divergence is also used for the decomposition of magnitude data of audio spectrograms [6].
In these applications, the domains of data are generally assumed to be positive. However, the domain
of the β-divergence can be extended to the negative region. In fact, if β = 2, then the β-divergence
is exactly the square of `2-distance, the domain of which naturally includes a negative region.
Surprisingly, in this article, we show that, under the mild condition on β, there are infinitely many
β-divergences that have a negative domain.

It is known that the β-divergence can be reformulated with the Bregman-divergence [2,6].
However, if we restrict the base function of the Bregman-divergence as the convex function of Legendre
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type, then some part of the β-divergence cannot be expressed through the Bregman-divergence
(see Table 1). Although the Bregman-divergence associated with a convex function of Legendre
type does not exactly match with the β-divergence, due to the fruitful mathematical structure of the
convex function of Legendre type, the associated Bregman-divergence has many useful properties.
For instance, the dual formulation of the Bregman-divergence associated with the convex function of
Legendre type can be used as a convex reformulation of some nonconvex problems under the certain
condition on its domain [24]. In this article, we demonstrate that, by using the dual Bregman-divergence
with the negative convex domain, we can make a convex reformulated Bregman variational model for
the classic nonconvex problem that appears in the SAR image noise reduction problem [15]. We also
show that we can unify the various variational models appearing in image processing problems as
the Bregman variational model having sparsity constraints, e.g., total variation [25,26] (we called it
Bregman-TV). Actually, the Bregman variational model corresponds to the right Bregman proximity
operator [9,10]. See also [9,10,24,27–30] for theoretical analysis of the Bregman-divergence and related
interesting properties of it.

Table 1. We compare the domain of the β-divergence and the domain of the Bregman-divergence
associated with the convex function of Legendre type in (19). We note that the domain Rn

+ ×Rn
+ (β > 1)

and the domain Rn
−− ×Rn

−− (β = 0) do not exist in the Bregman-divergence. ∗If we relax the Legendre
condition of Φ as a convex and smooth function, then the Bregman-divergence DΦ also exists in the region β > 1
with domΦ = Rn

+.

Region β-Divergence Bregman-Divergence

entire β > 1, β ∈ Re ΩL = ΩR = Rn β > 1, β ∈ Re domΦ = Rn

β > 1 ΩL = ΩR = Rn
+ -∗ -

positive 0 < β ≤ 1 ΩL = Rn
+ and ΩR = Rn

++ 0 < β ≤ 1 domΦ = Rn
+

β ≤ 0 ΩL = ΩR = Rn
++ β ≤ 0 domΦ = Rn

++

negative 0 < β < 1, β ∈ Re ΩL = Rn
− and ΩR = Rn

−− 0 < β < 1, β ∈ Re domΦ = Rn
−

β ≤ 0, β ∈ Re ΩL = ΩR = Rn
−− β < 0, β ∈ Re domΦ = Rn

−−

1.1. Background

In this section, we review typical examples of the β-divergence, i.e., Itakura–Saito-divergence,
Generalized Kullback–Leibler-divergence (I-divergence), and norm2-distance. In addition,
we introduce the Bregman-divergence and the corresponding Bregman variational model with
sparsity constraints.

Let us start with the β-divergence Dβ : ΩL ×ΩR → R+ given by

Dβ(b|u) = 〈
∫ b

u

(
b− x
x2−β

)
dx, 1〉, (1)

where ΩL × ΩR = {(b, u) ∈ Rn × Rn | 0 ≤ Dβ(b|u) < ∞} is the domain of the β-divergence.
Actually, the domain ΩL ×ΩR corresponds to the effective domain in optimization [3,31]. We call ΩL
and ΩR as the left and right domains of the β-divergence. In addition, we assume that the left and right
domains, ΩL and ΩR, are convex sets, respectively. That is, if a, b ∈ ΩL (or ΩR), then the line segment
between two points also satisfies ab ∈ ΩL (or ΩR). Note that 〈a, d〉 = ∑n

i=1 aidi, a = (a1, ..., an) ∈ Rn,
d = (d1, ..., dn) ∈ Rn, 1 is the all one vector in Rn, R+ = {x ∈ R | x ≥ 0}, R++ = {x ∈ R | x > 0},
R− = {x ∈ R | x ≤ 0}, and R−− = {x ∈ R | x < 0}. In addition, integration, multiplication,
and division are performed component-wise. Based on a selection of β, we can recover the famous
representatives of the β-divergence, i.e., Itakura–Saito-divergence [4,5,13], I-divergence (or generalized
Kullback–Leibler-divergence) [20,32], and norm2-distance [25,26]. These three divergences are
important examples of the β-divergence, since they show three different types of domains of the
β-divergence. We summarize them in the following.
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• Itakura–Saito-divergence (β = 0): ΩL = Rn
++ and ΩR = Rn

++ :

Dβ(b|u) = 〈
(

b
u

)
− ln

(
b
u

)
− 1, 1〉.

Usually, the left and right domain, i.e., ΩL and ΩR of Itakura–Saito-divergence, are defined as
positive and ΩL = ΩR [12,13]. However, due to the scale invariance property of it, the variables b
and u can be negative at the same time, even within the logarithmic function, i.e., ΩL = ΩR = Rn

−−.
Based on this keen observation, in this article, we develop a new methodology that systematically
detects a domain having the negative region. The Itakura–Saito-divergence is a typical example
that can be expressed by the β-divergence and the Bregman-divergence at the same time. However,
it has the negative domain in the β-divergence framework, but not in the Bregman-divergence
framework (see Table 1).

• Generalized Kullback–Leibler-divergence (I-divergence) (β = 1): ΩL = Rn
+ and ΩR = Rn

++ :

Dβ(b|u) = 〈b ln
(

b
u

)
− (b− u), 1〉,

where we naturally assume that 0 ln 0 = 0. Interestingly, it has different left and right domains,
i.e., ΩL 6= ΩR. Due to the asymmetric structure of the domain of I-divergence, we need to
carefully handle the β-divergence at the boundary of each domain. We categorize the class of the
β-divergence that has the asymmetric domain structure in Section 2.

• norm2-distance (β = 2): ΩL = Rn and ΩR = Rn :

Dβ(b|u) =
1
2
‖b− u‖2

2.

This divergence is preferable to other divergences, since it has Rn as its domain for each variable.
Unlike the previous two divergences, the domain of it naturally includes a negative region Rn

−.
Surprisingly, there are infinitely many β-divergences having Rn as its domain. We will show it
in Section 2.

Additionally, we introduce the Bregman-divergence associated with the convex function of
Legendre type [3]. The Bregman-divergence DΦ : Ω× int(Ω)→ R+ is formulated as

DΦ(b|u) = Φ(b)−Φ(u)− 〈b− u, ∇Φ(u)〉, (2)

where the base function Φ is the convex function of Legendre type [3],
Ω = dom(Φ) = {x ∈ Rn | Φ(x) ∈ R}, and int(Ω) is the interior of Ω. In fact, it is relatively
interior of Ω, i.e., ri(Ω). Note that ri(Ω) is the interior of Ω relative to its affine hull, which is the
smallest affine set including Ω. Therefore, the relative interior ri(Ω) coincides with the interior
int(Ω) when the affine hull of Ω is Rn. For more details, see Chapter 2.H in [31]. In this article,
since the β-divergence (1) is separable in terms of dimension, the affine hull of Ω is always Rn and
thus we simply use int(Ω) instead of ri(Ω). Note that the typical examples of the β-divergence in
the above (Itakura–Saito-divergence, I-divergence, and norm2-distance) can be reformulated with
the Bregman-divergence (2) by using the convex function of Legendre type Φ and the associated
domain Ω:

• Itakura–Saito-divergence: Φ(x) = 〈− ln x, 1〉 with Ω = Rn
++,

• I-divergence: Φ(x) = 〈x ln x, 1〉 with Ω = Rn
+,

• norm2-distance: Φ(x) = 〈 1
2 x2, 1〉 with Ω = Rn.

The domain of the second variable of the Bregman-divergence (2) is always open set int(domΦ).
However, the right domain ΩR of the second variable of the β-divergence (1) could be a closed
set. In the coming section, we thoroughly analyze the relation between the Bregman-divergence
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and the β-divergence with regard to its domain. Based on the Bregman-divergence (2), we
introduce the Bregman variational model that unifies the various minimization problems appearing in
image processing:

min
u
{DΦ(b|u) + λR(u) | u ∈ int(Ω)}, (3)

where b is the observed data and R(u) is the sparsity enforcing regularization term, such as total
variation [26]. In image processing, (3) corresponds to the denoising problem under the various
noise distributions: Poisson, Speckle, Gaussian noise, etc. However, in optimization, it is known as
(nonconvex) right Bregman proximity operator under mild conditions. See [9,10,24,30] for more details
on the Bregman operator.

1.2. Overview

The article is organized as follows. In Section 2, we analyze the structure of the domain of the
β-divergence. In Section 3, we study various mathematical structures of the β-divergence through the
Bregman-divergence associated with the convex function of Legendre type. In Section 4, we introduce
the Bregman variational model and its dual formulation for convex reformulation of the classic
nonconvex problem that appears in the SAR speckle reduction problem. In addition, we introduce the
right and left Bregman proximal operator. We give our conclusions in Section 5.

2. A Characterization of the Domain ΩL ×ΩR of the β-Divergence

In this section, we analyze the structure of the β-divergence and the associated domain ΩL ×ΩR
based on the so-called extended logarithmic function.

Let us start with a definition of the extended logarithmic function that is essential in characterizing
the domain of the β-divergence. We note that it corresponds to an equivalence class of Tsallis’s
generalized logarithmic function [1,33] with an extention to the negative domain.

Definition 1. Let α ∈ R, u = (u1, ..., un) ∈ dom(lnα), and

lnα,c(u) = (lnα,c(u1), lnα,c(u2), ..., lnα,c(un)) ,

where lnα,c(ui) =
∫ ui

c x−αdx and c ∈ Rc,u = {c ∈ R | lnα,c(u) ∈ Rn and c 6= ui, i = 1, ..., n}. Then,
the extended logarithmic function is defined as an equivalence class

[lnα(u)]c = {x ∈ Rn | x = lnα,c(u), c ∈ Rc,u}.

For simplicity, we leave out all constants after integration and then we attain

lnα(u) =

{
ln u, if α = 1,

1
1−α u1−α, otherwise,

(4)

where dom(lnα) = {x ∈ Rn | lnα(x) ∈ Rn}. We call (4) as the extended logarithmic function instead of the
equivalence class [lnα(u)]c, unless otherwise specified.

Note that the domain and range of lnα(u) (4) are given in Table 2. In addition, we illustrate the
structure of the extended logarithmic function in Figure 2. As noticed in Definition 1, the extended
logarithmic function is defined as an equivalence class [lnα(u)]c with respect to c. If we set
c = 1, then we can recover Tsallis’ generalized logarithmic function [1,33] on its positive domain
dom(lnα) ⊆ R+. See Figure 2a. However, we cannot use the generalized logarithm (i.e., lnα,c=1(u))
in the negative domain. In fact, if α > 1 and R− ⊂ dom(lnα) then Tsallis’ generalized logarithmic
function is undefined, e.g., ln4,c=1(−1) =

∫ −1
1 x−4dx 6∈ R. On the other hand, the proposed extended

logarithmic function (4) is well defined on R for all α, since we can choose an appropriate c having
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the same sign with u even if α > 1, e.g., ln4,c=−2(−1) =
∫ −1
−2 x−4dx ∈ R. See Figure 2d and Table 2.

Indeed, the extended logarithmic function is useful when we simplify the complicated structure of
the β-divergence. As described in the following Definition 2, the β-divergence is defined based on
the difference of two extended logarithmic functions. In other words, the β-divergence is invariance
with respect to a constant function in the extended logarithmic function (4). It is interesting that the
Bregman-divergence (2) also has a similar invariance property with respect to an affine function in the
base function Φ (see Proposition 1).

Table 2. The domain and range of the extended logarithmic function lnα(x) defined in (4).

α = 1 α < 1 α > 1
α ∈ Ro α ∈ Re α ∈ Rx α ∈ Ro α ∈ Re α ∈ Rx

dom (lnα) R++ R R R+ R++ or R−− R++ or R−− R++

range (lnα) R R+ R R+ R−− R−− or R++ R−−

Figure 2. The graphs of the extended logarithmic function in Definition 1. (a) shows an equivalence
class [lnα(u)]c = {lnα,0(u), lnα,1(u), lnα,2(u)} with α = 2

3 ; (b) shows lnα,1(u) =
∫ u

1
1
xα dx with different

choice of α = 2
7 , 4

7 , 6
7 ; (c) and (d) show lnα(u) in (4) for different choices of α. Note that lnα(u) is an

extended logarithmic function without a constant term.

Definition 2. Let (b, u) ∈ ΩL × ΩR = {(b, u) ∈ Rn × Rn | Dβ(b|u) ∈ R+} and β ∈ R. Then,
the β-divergence is defined by

Dβ(b|u) = 〈b[ln2−β(b)− ln2−β(u)]− [ln1−β(b)− ln1−β(u)], 1〉 (5)

= 〈b
∫ b

u
uβ−2du−

∫ b

u
uβ−1du, 1〉.

After integration, we get the well-known formula of β-divergence:

Dβ(b|u) =


〈
(

b
u

)
− ln

(
b
u

)
− 1, 1〉, if β = 0,

〈b ln
(

b
u

)
− (b− u), 1〉, if β = 1,

〈 b
β−1 (b

β−1 − uβ−1)− 1
β (b

β − uβ), 1〉, if β 6= 0, 1.

(6)

Although the β-divergence has a unified formula (5) via the extended logarithm (4), unfortunately,
the determination of the domain ΩL ×ΩR of the β-divergence heavily depends on β. Before we go
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any further, let us introduce the most important equivalence classes in this article. It will simplify
complicated notations appearing in the β-divergence and the Bregman-divergence.

Re = { 2k/(2l + 1) | k, l ∈ Z, }
Ro = { (2k + 1)/(2l + 1) | k, l ∈ Z, }
Rx = R \Ro ∪Re.

(7)

Note that Re and Ro are subsets of the rational number and satisfy Re ∩ Ro = ∅, while Rx is
composed of all irrational numbers with a subset of the rational number that are not in Re ∪ Ro.
For instance, Re = {0,± 2

3 ,± 4
3 , ...}, Ro = {±1,± 1

3 ,± 5
3 , ...} and Rx = {± 1

4 ,± 1
2 ,±
√

2, ...}.
Since the β-divergence (6) is developed based on the extended logarithmic function (i.e., power

functions), inherently, we have to quantify the domain of a power function p(x) = xα and its inverse
function p−1(y) = y1/α. Actually, if x is positive, then a power function p(x) and the corresponding
inverse function is well defined, irrespective of the choice of an exponent α ∈ R \ {0}. On the
other hand, in the case of negative domain, e.g., x < 0, the domain of a power function p(x) severely
depends on the choice of an exponent α. With newly introduced equivalence classes in (7), we can easily
categorize the domain of a power function p(x) = xα and its inverse function p−1(y) = y1/α, α 6= 0.
We summarize it in the following Lemma.

Lemma 1. Let α ∈ R and dom−(p)= {x ∈ R−− | p(x) ∈ R} = domp ∩R−− be the negative domain of
a power function p(x) = xα. Then, p : dom−(p)→ range−(p) has its negative domain

dom−(p) =

{
R−−, if α ∈ Re ∪Ro,
∅, if α ∈ Rx,

and the corresponding range

range−(p) =

{
R−−, if α ∈ Ro,
R++, if α ∈ Re.

In addition, if α ∈ Ro, then the inverse function of p is well defined and transparent on dom−(p), i.e.,
p−1 ◦ p(x) = x for all x ∈ dom−(p). However, if α ∈ Re \ {0}, then p−1 ◦ p(x) 6= x for all x ∈ dom−(p).

Proof. For any x ∈ R−−, let x = (−1)|x|, then the power function p is expressed as
p(x) = (−1)α|x|α, ∀α ∈ R. We note that the negative real domain of p(x) is well-defined only if
(−1)α ∈ {−1,+1}. To clarify the evaluation of (−1)α, let us express it in a polar form:

(−1)α = eiα(2l+1)π , ∀l ∈ Z. (8)

Then, we get

(−1)α =


1, if α ∈ Re,
−1, if α ∈ Ro,
δ, if α ∈ Rx,

where δ ∈ C \ R. Regarding the inverse function p−1(y) = y1/α, we have (−1)1/a ∈ C \ R for all
α ∈ Re \ {0}. However, if α ∈ Ro, then (−1)1/α = −1. That is, we have p−1 ◦ p(x) = x, for all
x ∈ R−−.

Now, with the equivalence classes (7) and Lemma 1, we classify domains of the β-divergence.
The details are given in the following Theorem and Table 3. See also Figure 1 for the overall structure
of the β-divergence on its domain.
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Table 3. A classification of the domain ΩL × ΩR = {(b, u) ∈ Rn × Rn | Dβ(b|u) ∈ R+} of the
β-divergence in terms of β.

β ΩL×ΩR

β > 1 and β 6∈ Re Rn
+ ×Rn

+
β > 1 and β ∈ Re Rn ×Rn

0 < β ≤ 1 and β 6∈ Re Rn
+ ×Rn

++
0 < β ≤ 1 and β ∈ Re Rn

+ ×Rn
++ or Rn

− ×Rn
−−

β ≤ 0 and β 6∈ Re Rn
++ ×Rn

++
β ≤ 0 and β ∈ Re Rn

++ ×Rn
++ or Rn

−− ∪Rn
−−

Theorem 1. Let us consider the domain of the β-divergence

ΩL ×ΩR = {(b, u) ∈ Rn ×Rn | Dβ(b|u) ∈ R+},

where

Dβ(b|u) = 〈
∫ b

u
(b− x)G(x)dx, 1〉

and G(x) = xβ−2 = (xβ−2
1 , xβ−2

2 , ..., xβ−2
n ). In addition, let us assume that the minimum value of G(x) on its

domain is nonnegative, i.e.,

0 ≤ MG = minx{G(x) | xi ∈ [min{ui, bi}, max{ui, bi}], i = 1, ..., n }, (9)

where (b, u) ∈ ΩL ×ΩR. Then, the domain of the β-divergence ΩL ×ΩR is classified as in Table 3. Note that
ΩR ⊆ ΩL for all β ∈ R. In particular, if β ∈ (0, 1], then ΩR ( ΩL.

Proof. Due to the assumption MG ≥ 0, we can easily obtain the positiveness of the β-divergence by
the following inequality

Dβ(b|u) = 〈
∫ b

u
(b− x)xβ−2dx, 1〉 = 〈

∫ b

u
(b− x)G(x)dx, 1〉 ≥ 1

2
‖b− u‖2

2MG ≥ 0. (10)

Consequently, we only need to fulfill the following two conditions: (1) Is the domain of the
β-divergence determined to satisfy (9)? (2) Is the β-divergence well-defined on its domain?

• Case 1: MG ≥ 0, for all (b, u) ∈ ΩL ×ΩR.
If (b, u) ∈ Rn

++ × Rn
++ then it is trivial to show MG ≥ 0 and thus it is always true that

Rn
++ × Rn

++ ⊆ ΩL ×ΩR. Now, we will find β such that R−− × R−− ⊂ ΩL ×ΩR is satisfied.
From Lemma 1, if xi < 0 then, we get the following

G(xi) =


|xi|β−2, if β ∈ Re,
−|xi|β−2, if β ∈ Ro,
∅, if β ∈ Rx,

Based on β ∈ R, we have two different cases regarding the domain ΩL ×ΩR.

– If β 6∈ Re, then, due to (9), the negative region cannot be included into the domain of the
β-divergence. Therefore, we have

ΩL ×ΩR ⊆ Rn
+ ×Rn

+.

– If β ∈ Re, then due to (9), the domain of the β-divergence can be defined to include negative
region. That is, we have

Rn
−− ×Rn

−− ⊆ ΩL ×ΩR.
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• Case 2: Dβ(b|u) < +∞, for all (b, u) ∈ ΩL ×ΩR.
Basically, the β-divergence can be expressed as

Dβ(b|u) = 〈b
∫ b

u
xβ−2dx−

∫ b

u
xβ−1dx, 1〉.

That is, it is based on integrations of power functions of real variables u and b in Rn. Therefore,
we only need to see whether or not the integration in Dβ(b|u) is well defined at {0}. We note that,
after integration, the exponents of b ∈ ΩL and u ∈ ΩR are different and thus the corresponding
domains ΩR and ΩL could be different as well. Hence, we should consider the following three
different cases:

– β > 1: We do not have any singularity at {0} with respect to b ∈ ΩL and u ∈ ΩR.
Therefore, we have {0} ⊂ ΩL = ΩR.

– 0 < β ≤ 1: After integration, b ∈ ΩL does not have any singularity at {0}. However, u ∈ ΩR
has a singularity at {0}. Therefore, we have {0} ⊂ ΩL but {0} 6⊂ ΩR and thus ΩL 6= ΩR in
this region.

– β ≤ 0: In this case, both b ∈ ΩL and u ∈ ΩR have singularity at {0}. Thus, {0} 6⊂ ΩL = ΩR.

Based upon the analysis in Cases 1 and 2, we have six different choices of domain ΩL ×ΩR for the
β-divergence. It is summarized in Table 3 and illustrated in Figure 1. Since we only consider a convex
domain, ΩL and ΩR should be selected as a convex set for each variable. In addition, due to the
inherent integral formulation of β-divergence between b and u, the domain of both variables should
be determined to have the same sign.

As observed in Table 3, if β ∈ Re ∩ R−, then there is a symmetry in the selection of the
domain of the β-divergence. That is, ΩL ×ΩR = Rn

++ × Rn
++ or Rn

−− × Rn
−−. Especially, if β = 0,

then the β-divergence corresponds to the Itakura–Saito-divergence Dβ(b|u) = 〈
(

b
u

)
− log

(
b
u

)
− 1, 1〉,

where the domain of it can be Rn
++ ×Rn

++ or Rn
−− ×Rn

−−. The positive domain is generally preferable,
since it is related to real applications, e.g., intensity data type in the SAR system [11,12]. However,
if we reformulate the β-divergence with the Bregman-divergence, then the negative domain commonly
appears in the dual Bregman-divergence. In addition, we note that, due to Theorem 1, the β-divergence
with the domain defined in Table 3 satisfies the following distance-like properties of the generic
divergence [1,2]:

Dβ(b|u) ∈ R+, (11)

Dβ(b|u) = 0 if and only if b = u, (12)

where (11) is followed from the Definition of the domain of the β-divergence and (10). Note that
(12) is satisfied, if we restrict the domain of the β-divergence as ΩR ×ΩR. In fact, let us assume that
(b, u) ∈ ΩR × ΩR. It is trivial to show that b = u ⇒ Dβ(b|u). Therefore, we only need to show
Dβ(b|u) = 0⇒ b = u. Letting b 6= u, we then get Dβ(b|u) ≥ 1

2‖b− u‖2
2MG > 0 from (10).

Since the β-divergence (5) with its domain defined in Table 3 has the distance-like properties,
(11) and (12), we can make a variational model with the β-divergence and a regularization term for
smoothness constraint of the given data b. The following is an example of a variational model based
on the β-divergence [12]

u∗β = arg min
u∈B

Fβ(u) = Dβ(b|u) + λR(u), (13)

where λ > 0 and B ⊆ ΩR is a domain of Fβ for a given b ∈ B. Note that B is an open convex set
induced from the physical constraints of the observed data b. In the case of a prior R(u), it can be
a sparsity-enforcing function such as total variation (TV) TV(u) = ‖∇u‖1 [25,26] and frame [34].
We call (13) the β-sparse model or β-TV [12], if TV is used as a prior. Under the domain restriction in
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Table 3, actually, we have lots of freedom in choosing β ∈ R of the β-sparse model (13). However, if we
add additional constraints, such as convexity onto the β-divergence, then interestingly, the possible
choice of β is dramatically reduced to a small set. For example, Dβ(b|u) with respect to u is convex on
its domain only if β ∈ [1, 2] [6]. Outside of this region, i.e., β ∈ R \ [1, 2], the convexity of it depends
on the given data b [12]. In Section 4.1, we analyze the convexity of the β-divergence via the right
Bregman proximity operator [28].

Although the proposed β-sparse model Fβ(u) in (13) is not convex in general, Fβ(u) has an
interesting global optimum property [11,12], in case λ = 0. See also [35,36]. For completeness of the
article, we add it below.

Theorem 2 ([11,36]). For a given observed data {b1, .., b|N|}, let B be an open convex set in ΩR, β ∈ R,
bj ∈ B, and µ = 1

|N| ∑
|N|
j=1 bj. Then, we obtain that

|N|

∑
j=1

Dβ(bj|u) ≥
|N|

∑
j=1

Dβ(bj|µ) (14)

is always satisfied, regardless of the choice of u ∈ B.

Note that µ in (14) corresponds to the β-centroid in segmentation problem and is related to the
Bregman centroid, which is extensively studied in [37]. In SAR image processing, if β = 0, then (14)
corresponds to the multi-looking process, which is commonly used to reduce speckle noise in SAR
data [12,22,23].

3. The Bregman-Divergence Associated with the Convex Function of Legendre Type for
the β-Divergence

In this section, we study the Bregman-divergence associated with the convex function of
Legendre type and its connection to the β-divergence. Although there is partial equivalence
between two divergences, the Bregman-divergence has an important mathematical dual formulation.
With a negative domain, the dual Bregman-divergence is unambiguously useful for convex
reformulation of the nonconvex β-sparse model (13) (see Section 4).

Before we proceed further, let us first review the convex function of Legendre type
(see Section 26 [3]). See also [27,29].

Definition 3. Let Φ : Ω → R be lower semicontinuous, convex, and proper function defined on
Ω = domΦ ⊆ Rn. Then, Φ is the convex function of Legendre type (or Legendre), if the following conditions
are satisfied (i.e., Φ is essentially strictly convex and essentially smooth):

1. int(Ω) 6= ∅.
2. Φ is differentiable on int(Ω).
3. ∀x ∈ bd(Ω) and ∀y ∈ int(Ω),

lim
t↓0
〈∇Φ(x + t(y− x)), y− x〉 = −∞.

4. Φ is strictly convex on int(Ω).

Here, Ω = domΦ = {x ∈ Rn | Φ(u) ∈ R} is a convex set and bd(Ω) is the boundary of the domain Ω.

The main advantage of the convex function of Legendre type is that the inverse function of the
gradient of it has an isomorphism with the gradient of its conjugate function as described below. This is
a useful property when we characterize the dual structure of the Bregman-divergence associated with
the convex function of Legendre type.



Entropy 2017, 19, 482 11 of 27

Theorem 3 ([3,27]). Let Ω = domΦ and Ω∗ = domΦ∗ = {x∗ ∈ Rn | Φ∗(x∗) ∈ R}. Then, the function Φ
is the convex function of Legendre type if and only if its conjugate

Φ∗(x) = sup
ξ∈Ω
〈x, ξ〉 −Φ(ξ)

is the convex function of Legendre type. In this case, the gradient mapping

∇Φ : int(Ω)→ int(Ω∗) (15)

is an isomorphism with its inverse mapping (∇Φ)−1 = ∇Φ∗.

For more details on Theorem 3, see Theorem 26.5 in [3] and Fact 2.9 in [27]. Let us assume
that Φ be the convex function of Legendre type. Then, we can define the Bregman-divergence
DΦ : Ω× int(Ω)→ R+ associated with Legendre Φ:

DΦ(b|u) = Φ(b)−Φ(u)− 〈b− u, ∇Φ(u)〉, (16)

where b ∈ Ω and u ∈ int(Ω). Several functions we are interested in are in a category of the convex
function of Legendre type. For instance, Shannon entropy function Φ(x) = 〈x log x, 1〉 is a typical
example of Legendre. the Bregman-divergence associated with it corresponds to the β-divergence
with β = 1, i.e., Generalized Kullback–Leibler-divergence. We note that there is the convex function
of Legendre type which does not have a corresponding β-divergence. For instance, Fermi–Dirac
entropy function Φ(x) = 〈x ln x + (1 − x) ln(1 − x), 1〉 is Legendre and the associated Bregman
divergence is the Logistic loss function DΦ(b|u) = 〈b ln

(
b
u

)
+ (1− b) ln

(
1−b
1−u

)
, 1〉. See [27,36] for

more details on the Bregman-divergence. In the following, we summarize various useful features of
the Bregman-divergence associated with Legendre Φ.

Theorem 4. Let Ω = domΦ and Ω∗ = domΦ∗. Then, the Bregman-divergence associated with the convex
function of Legendre type Φ satisfies the following.

1. DΦ(b|u) is strictly convex with respect to b on int(Ω).
2. For any u ∈ int(Ω), DΦ(b|u) is coercive with respect to b, i.e., lim‖b‖→∞ DΦ(b|u)→ ∞.
3. For some b ∈ int(Ω), DΦ(b|u) is coercive with respect to u if and only if Ω∗ = int(Ω∗).
4. DΦ(b|u) = 0 if and only if b = u, where b ∈ int(Ω)
5. For any b, u ∈ int(Ω),

DΦ(b|u) = DΦ∗(∇Φ(u),∇Φ(b)), (17)

where Φ∗ is the conjugate function of Φ.
6. For any b∗, u∗ ∈ int(Ω∗),

DΦ∗(b∗|u∗) = DΦ(∇Φ∗(u∗),∇Φ∗(b∗)).

Proof. Since Φ is the convex function of Legendre type, Φ is strictly convex on int(Ω). Hence, (1) is
trivial. The proofs of (2)–(6) are in Theorem 3.7, Theorem 3.9 and Corollary 3.11 in [27].

In the above Theorem, the dual formulation (17) is a unique feature of the Bregman-divergence
with Legendre. Unfortunately, the β-divergence does not have a corresponding dual concept.
Later, we will show how to use the dual Bregman-divergence (17) to make a convex reformulated model
of the nonconvex β-sparse model (13). In addition, we note that the β-divergence (5) is established
based on the extended logarithmic function (4), which is an equivalence class in terms of a constant
function. Therefore, we can say that the β-divergence is invariant with respect to a constant function in
the extended logarithmic function. Interestingly, the base function Φ of the Bregman-divergence also
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has such kind of invariance property with respect to an affine function. For this, Φ does not need to be
Legendre. However, for simplicity, we assume that Φ is Legendre. The details are following.

Proposition 1. Let us define an equivalence class of the convex function of Legendre type Φ in terms of affine
function as follows:

[Φ]A = {Φ′(x) ∈ R | Φ′(x) = Φ(x) + 〈c, x〉+ 〈d, 1〉, c, d ∈ Rn}, (18)

whereA = {〈c, x〉+ 〈d, 1〉 | c, d ∈ Rn }. Then, the Bregman-divergence D[Φ]A associated with an equivalence
class [Φ]A is equal to the Bregman-divergence DΦ associated with Φ, irrespective of the choice of an affine
function A.

Proof. We have the following equivalence with respect to an arbitrary affine function A:

D[Φ]A(b|u) = [Φ(b)]A − [Φ(u)]A − 〈b− u, ∇[Φ(u)]A〉
= (Φ(b) + 〈c, b〉+ 〈d, 1〉)− (Φ(u) + 〈c, u〉+ 〈d, 1〉)− 〈b− u, ∇Φ(u) + c〉
= Φ(b)−Φ(u)− 〈b− u, ∇Φ(u)〉
= DΦ(b|u),

where (b, u) ∈ Ω × int(Ω) and Ω = domΦ. Therefore, Φ with an arbitrary affine function A
(i.e., an equivalence class [Φ]A in terms of affine function A) does not change the structure of the
Bregman-divergence DΦ(b|u) at all.

To connect the β-divergence and the Bregman-divergence associated with Legendre, we need
to find a specialized convex function of Legendre type. Based on the comments in [2], we use an
integral formula of the extended logarithmic function for the special convex function of Legendre type.
Through this connection, we can reformulate the β-divergence into the Bregman-divergence associated
with the convex function of Legendre type. The details are following.

Theorem 5. Let x ∈ Ω ⊆ Rn and

Φ(x) = 〈
∫ x

d
ln2−β(t)dt, 1〉 =


〈− ln x, 1〉, if β = 0,
〈x ln x, 1〉, if β = 1,
〈 1

β(β−1) xβ, 1〉, if β 6= 0, 1,
(19)

where Ω = domΦ = {x ∈ Rn | Φ(x) ∈ R}, lnα(t) is the extended logarithmic function in (4), d is an arbitrary
constant vector in Rn and be selected to satisfy the condition Φ(x) ∈ R. For simplicity, by Proposition 1, we dropped
all affine function in Φ(x). Then, Φ in (19) is the convex function of Legendre type with the domain Ω given
below: 

I. entire region:
β > 1, β ∈ Re and Ω = Rn,

II. positive region:
0 < β ≤ 1 and Ω = Rn

+,
β ≤ 0 and Ω = Rn

++,
III. negative region:

0 < β < 1, β ∈ Re and Ω = Rn
−,

β < 0, β ∈ Re and Ω = Rn
−−.

(20)

Proof. For simplicity, all affine functions are left out based on Proposition 1. In addition, it is trivial
to show that Φ(x) is the Burg entropy (〈− ln x, 1〉 with Ω = Rn

++) if β = 0 and the Shannon entropy
(〈x ln x, 1〉 with Ω = Rn

+) if β = 1. They are well-known examples of Legendre. As noticed
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in (2), the corresponding Bregman-divergences are Itakura–Saito-divergence and Generalized
Kullback–Leibler-divergence.

Now, we only need to check whether Φ(x) = 〈 1
β(β−1) xβ, 1〉 (β 6= 0, 1) is Legendre or not.

Among four conditions in Definition 3, it is trivial to show that Φ(x) satisfies the conditions 1 and 2.
In the end, Φ(x) with β 6= 0, 1 and two Legendre conditions 3 and 4 are left.

I. Condition 3 in Definition 3:
Since Φ(x) = 〈 1

β(β−1) xβ, 1〉 (β 6= 0, 1) is a power function, the only possible boundary of Φ is {0}.
Therefore, we search β ∈ R \ {0, 1} to find where condition 3 is satisfied. Since∇Φ(x) = 1

β−1 xβ−1,
we get the following at the potential boundary {0} :

– y ∈ Rn
++:

lim
t↓0
〈∇Φ(0 + ty), y〉 =

{
−∞ , if β < 1 and β 6= 0,

0 , if β > 1.

– y ∈ Rn
−−:

lim
t↓0
〈∇Φ(0 + ty), y〉 =


−∞ , if β < 1 and β ∈ Re \ {0},
+∞ , if β < 1 and β ∈ Ro,

0 , if β > 1.

In summary, the following are the possible domains and the corresponding β for condition 3.
We note that, if β > 1, then 0 6∈ bd(domΦ):

– Rn
++ ⊆ Ω and β ∈ (−∞, 1) \ {0},

– Rn
−− ⊆ Ω and β ∈ ((−∞, 1) \ {0}) ∩Re.

II. Condition 4 in Definition 3:
It can be easily checked by the fact that Φ is strictly convex on int(Ω) if and only if ∇Φ is strictly
monotone, that is, the following is satisfied [38] :

〈∇Φ(x)−∇Φ(x′), x− x′〉 > 0 whenever x 6= x′.

Since ∇Φ is separable in terms of dimension, we only need to show that ∇Φ(x) is a strictly
increasing function on int(Ω) ∩R. Note that if ∇2Φ(x) = xβ−2 > 0 on an open region, then Φ is
strictly convex (i.e., ∇Φ is strictly increasing) in that region:

– ∇2Φ(x) > 0 if β ∈ R \ {0, 1} and x ∈ Rn
++,

– ∇2Φ(x) > 0 if β ∈ (R \ {0, 1}) ∩Re and x ∈ Rn
−−.

Note that at {0}, we need to directly show that ∇Φ is strictly increasing.

Now, we integrate the information in the above Legendre conditions 3 and 4 for the decision of
the domain Ω = domΦ based on β. The details are the following:

• β > 1

– β ∈ Re : domΦ = Rn and ∀x ∈ Rn
−, xβ−1 = −|x|β−1. Therefore, ∇Φ(x) is strictly increasing

function on int(domΦ) since ∇Φ(x) = −∇Φ(−x).
– β ∈ Ro : domΦ = Rn but Φ is an odd function with respect to zero and thus it is not

a convex function.
– β ∈ Rx : domΦ = Rn

+ but it does not satisfy condition 3 at 0.

• 0 < β < 1
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– β ∈ Re : domΦ = Rn but dom∇Φ = Rn \ {0} is not a convex set. Since int(domΦ) ⊂
dom∇Φ [3], to keep convexity of the domain int(domΦ), we need to select int(domΦ) = Rn

−−
or Rn

++. That is, we have domΦ = Rn
− or domΦ = Rn

+. In both cases, we know that ∇Φ is
strictly increasing on int(domΦ), since ∇2Φ = xβ−2 > 0, ∀x ∈ int(domΦ).

– β ∈ Ro : Following the case β ∈ Re, we have domΦ = Rn
+ or Rn

−. If domΦ = Rn
+, then ∇Φ is

strictly increasing on int(domΦ) (∇2Φ > 0). However, if x < 0, then ∇2Φ(x) < 0 and thus it
is not convex on its negative domain.

– β ∈ Rx : domΦ = Rn
+ and ∇Φ is strictly increasing function on int(domΦ) since

∇2Φ = xβ−2 > 0 for all x ∈ int(domΦ).
– Condition 3 is satisfied on the above selected domain.

• β < 0

– β ∈ Re : domΦ = Rn \ {0} is not a convex set. Therefore, we need to restrict domΦ as
a convex set, i.e., domΦ = Rn

−− or domΦ = Rn
++. On both domains, ∇Φ is strictly increasing

(∇2Φ > 0, ∀x ∈ domΦ).
– β ∈ Ro : Following the case β ∈ Re, we have domΦ = Rn

++ or Rn
−−. If domΦ = Rn

++ then∇Φ
is strictly increasing on int(domΦ).

– β ∈ Rx : domΦ = Rn
++ and ∇Φ is strictly increasing function on int(domΦ) since

∇2Φ = xβ−2 > 0 for all x ∈ int(domΦ).
– Condition 3 is satisfied on the above selected domain.

Remark 1. Note that Φ in (19) should be an equivalence class

[Φ(x)]A = 〈
∫ x

d
[ln2−β(t)]c dt, 1〉

with an affine function A = {〈α, x〉+ 〈γ, 1〉 | α = f (c), γ = g(c, d)}. Here, [ln2−β(t)]c is an equivalence
class of an extended logarithmic function in (4). As observed in (18), we have D[Φ]A(b|u) = DΦ(b|u) for any
affine function A. Therefore, we can drop all affine function in [Φ]A.

Since Φ in (19) is Legendre under the domain condition (20), we can establish a new
Bregman-divergence associated with Φ in (19). Interestingly, it corresponds to the β-divergence (1) [2].
However, there is a mismatch between the domain of the Bregman-divergence in (20) and the domain
of the β-divergence in Table 3. We summarize it in Table 1. As a matter of fact, the positive domain
with β > 1 is not defined in Φ (19) due to the Legendre condition. In addition, in the case of β = 0,
the negative domain Rn

−− × Rn
−− is not defined in the Bregman-divergence with Φ (19). In the

following Theorem, we show that under the restriction of the domain of the β-divergence to the
domain of the Bregman-divergence, we can get an equivalence between the β-divergence and the
Bregman-divergence associated with Legendre Φ (19).

Theorem 6. Let us consider the β-divergence (1) and the Bregman-divergence (16) associated with Legendre
Φ (19). If we restrict the domain of the β-divergence with the domain of the Bregman-divergence associated
with Φ (19), which is ΩL ×ΩR = domΦ× int(domΦ) (see Table 1), then the β-divergence is equal to the
Bregman-divergence associated with Legendre Φ (19).

Proof. Since the domain of the β-divergence ΩL × ΩR is set up with domΦ × int(domΦ),
the β-divergence is well defined with the restricted domain. In the following, we show an
equivalence between the β-divergence and the Bregman-divergence under the domain condition
of the Bregman-divergence:
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Dβ(b|u) = 〈
∫ b

u

b− t
t2−β

dt, 1〉 = 〈−
∫ b

u
tβ−1dt, 1〉+ 〈b,

∫ b

u
tβ−2dt〉

= 〈(1− β)
∫ b

u
∇Φ(t)dt, 1〉+ 〈b,

1
β− 1

(bβ−1 − uβ−1)〉

= Φ(b)−Φ(u)− 1
β− 1

uβ−1(b− u)

= Φ(b)−Φ(u)− 〈b− u, ∇Φ(u)〉.

Note that we do not use any ∇Φ(b) information in the above derivation and thus the
above equivalence is well satisfied within the domain of the Bregman-divergence associated with
Legendre Φ (19).

In the following Theorem, we calculate the conjugate function Φ∗ and the corresponding domain
domΦ∗ of the convex function of Legendre type Φ defined in (19). The computation of the domain
of Φ∗ is useful in determining the structure of DΦ(b|u). For instance, as noticed in Theorem 4 (3),
if domΦ∗ is open, then the corresponding Bregman-divergence DΦ(b|u) is coercive with respect to
u ∈ int(domΦ). Surprisingly, when β ∈ [0, 1), DΦ(b|u) is not convex but coercive with respect to u.
This fact is importantly used in SAR speckle reduction problems [12,15,21].

Theorem 7. Let Φ (19) be the convex function of Legendre type with domΦ (20). Then, Φ∗, the conjugate of
Φ, and the corresponding domain domΦ∗ is calculated as follows:

• β = 0 and domΦ = Rn
++: domΦ∗ = Rn

−−

Φ∗(x) = −〈1 + ln(−x), 1〉.

• β = 1 and domΦ = Rn
+: domΦ∗ = Rn

Φ∗(x) = 〈exp(x− 1), 1〉.

• β 6∈ {0, 1} :

Φ∗(x) = 〈 1
β
((β− 1)x)

β
β−1 , 1〉.

In this case, domΦ∗ depends on β:

β > 1, β ∈ Re, and domΦ = Rn : domΦ∗ = Rn,
0 < β < 1, and domΦ = Rn

+ : domΦ∗ = Rn
−−,

0 < β < 1, β ∈ Re, and domΦ = Rn
− : domΦ∗ = Rn

++,
β < 0, and domΦ = Rn

++ : domΦ∗ = Rn
−,

β < 0, β ∈ Re, and domΦ = Rn
−− : domΦ∗ = Rn

+.

(21)

Proof. Since Φ is Legendre, from Theorem 3, if x ∈ int(domΦ∗), then we have

Φ∗(x) = 〈x, ∇Φ−1(x)〉 −Φ(∇Φ−1(x)). (22)

As noticed in (20), the domain of Φ (19) depends on β and thus the domain of its conjugate
function Φ∗ also depends on β. We categorize domΦ∗ below, by using (22):

• β = 0 : Φ(x) = 〈− ln x, 1〉 and domΦ = Rn
++. From (22), the conjugate function Φ∗ is calculated as

Φ∗(x) = 〈x
(
− 1

x

)
+ ln

(
− 1

x

)
, 1〉 = 〈−1− ln(−x), 1〉.
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Therefore, the domain of Φ∗ becomes domΦ∗ = Rn
−−.

• β = 1 : Φ(x) = 〈x ln x, 1〉 and domΦ = Rn
+. From (22), the conjugate function Φ∗ is calculated as

Φ∗(x) = 〈x exp(x− 1)− exp(x− 1) ln(exp(x− 1)), 1〉
= 〈x exp(x− 1)− (x− 1) exp(x− 1), 1〉 = 〈exp(x− 1), 1〉.

It is trivial to show that domΦ∗ = Rn.
• β 6= 0, 1 : Φ(x) = 〈 1

β(β−1) xβ, 1〉 and domΦ is given in (20). By simple calculation, we get

∇Φ−1(x) = ((β− 1)x)
1

(β−1) , x ∈ int(domΦ∗). (23)

and from (22), the conjugate function Φ∗ is derived as follows:

Φ∗(x) = 〈x((β− 1)x)1/(β−1) − 1
β(β−1) ((β− 1)x)β/(β−1), 1〉

= 〈 1
β ((β− 1)x)β/(β−1), 1〉.

(24)

Now, we need to decide the domain

domΦ∗ = {x ∈ Rn | Φ∗(x) ∈ R}.

While we identify domΦ∗, it should be selected based on the following isomorphism (in Theorem 3)

∇Φ : int(domΦ)→ int(domΦ∗),

where ∇Φ(x) = 1
β−1 xβ−1 = (∇Φ∗)−1 and the following estimation

β/(β− 1) ∈ Re, if β ∈ Re.

With the above information and the classification of domΦ in (20), we are going to decide domΦ∗

based on β.

– β > 1 and β ∈ Re and domΦ = Rn:
We have β/(β − 1) ∈ Re ∩ R++ and thus domΦ∗ = Rn. In addition, for all x ∈ Rn,
∇Φ(x) = 1

β−1 xβ−1 ∈ Rn is well defined.
– 0 < β < 1 and domΦ = Rn

+:
In this case, β/(β− 1) < 0 and β− 1 < 0. Therefore, for all β ∈ (0, 1), we have domΦ∗ = Rn

−−.
In addition, for all x ∈ Rn

++, we have ∇Φ(x) ∈ Rn
−−. That is, the isomorphism between

int(domΦ) and int(domΦ∗) is well defined.
– 0 < β < 1 and β ∈ Re and domΦ = Rn

−:
In this case, β/(β− 1) < 0 and β/(β− 1) ∈ Re and β− 1 < 0. Therefore, the possible domΦ∗

is Rn
−− or Rn

++. However, we need to choose domΦ∗ = Rn
++ from the isomorphic mapping

∇Φ : int(domΦ)→ int(domΦ∗).
– β < 0 and domΦ = Rn

++:
In this case, 0 < β/(β− 1) < 1. Therefore, we have domΦ∗ = Rn

−. Actually, this domain is
well matched with the bijective mapping ∇Φ(x) = 1

β−1 xβ−1 < 0 for all x > 0.
– β < 0 and β ∈ Re and domΦ = Rn

−−:
In this case, β/(β − 1) ∈ (0, 1) ∩ Re. The possible domain is domΦ∗ = Rn. However,
dom∇Φ∗ = Rn

−− ∪ Rn
++. From Theorem 23.4 in [3] , int(domΦ∗) ⊂ dom∇Φ∗. Due to the

convexity constraint of the domain, domΦ∗ = Rn
+ or domΦ∗ = Rn

−. Through the isomorphic
mapping ∇Φ(x) = 1

β−1 xβ−1 > 0, ∀x < 0, we select domΦ∗ = Rn
+.

In the following, the global minimization property of the β-divergence in Theorem 2 is
reformulated with the Bregman-divergence. For more details, see [35,36].
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Theorem 8 ([36]). For all bi ∈ int(domΦ) with an index set i ∈ N, the following inequality is always satisfied,
irrespective of the choice of u ∈ int(domΦ):

∑
i∈N

DΦ(bi|u) ≥ ∑
i∈N

DΦ(bi|µ), (25)

where µ = 1
|N| ∑i∈N bi and |N| is the cardinality of the set N.

Proof. Let us start with the generalized Pythagoras Theorem [35] of the Bregman-divergence:

DΦ(b|u)− DΦ(b|µ) = DΦ(µ|u) + 〈∇Φ(µ)−∇Φ(u), b− µ〉. (26)

For all bi ∈ int(domΦ) with the index set N, let µ = 1
|N| ∑i∈N bi. Then, from (26), we get

1
|N| ∑

i∈N

[
DΦ(bi|u)− DΦ(bi|µ) = DΦ(µ|u) + 〈∇Φ(µ)−∇Φ(u), bi − µ〉

]
.

Since DΦ(µ|u) ≥ 0, we have

∑
i∈N

DΦ(bi|u) ≥ ∑
i∈N

DΦ(bi|µ),

irrespective of the choice of u ∈ int(domΦ).

Note that µ in (25) corresponds to the Bregman centroid, which is extensively studied in [37].
Now, we are ready to jump into the variational model having the Bregman-divergence as its fitting
term. Many various important variational models induced from the statistical distribution are in
this category.

4. Bregman Variational Model—Bregman-TV

In this section, we study the β-sparse model (13) with TV regularization via Bregman
divergence (16) associated with Legendre (19) under the domain condition in (20). First,
we introduce Bregman proximity operators in Section 4.1 and then we demonstrate how to use
dual Bregman-divergence with the negative domain for convex reformulation of the nonconvex β-TV
model [12] in Section 4.2.

The image data in general is observed in 2D array and have a limited dynamic range, due to
physical constraints of the image capturing system. Therefore, let us assume that the observed image
data is bounded and also column-wise stacked. That is, b ∈ B ⊂ Rn

+, where B is an open and bounded
convex set. Now, we start with the following Bregman variational model with total variation, i.e.,
Bregman-TV.

min
u∈B

DΦ(b|Lu) + λTV(u), (27)

where TV(u) = ∑n
i=1 ‖∇ui‖ is a typical sparsity constraint in image processing, L : Rn

+ → Rn
+ is

a linear mapping, λ > 0, and B ⊆ int(domΦ) ⊂ Rn
+. Although the domain B is nonnegative in real

applications, through the dual formulation of the Bregman-divergence (17), the nonpositive domain
is very common and sometimes is useful for convex reformulation of nonconvex variational models
appearing in SAR image enhancement problems. See Theorem 7 for the negative domain of the
conjugate function Φ∗.

We note that L is a matrix with nonnegative entries and it is designed based on various applications
of image processing, e.g., for the image deblurring problem, L is a blur or a convolution matrix; for an
image inpainting problem, L is a binary mask matrix; for an image denoising problem, L is an
identity matrix. See [39,40] for more details on image denoising, deblurring, and inpainting problems
with total variation or other sparsity constraints such as wavelet frames. The following are typical
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examples of the Bregman-TV induced from the various physical noise sources, e.g., Gaussian, Poisson,
and Speckle noise:

• β = 2: Image restoration problems (e.g., denoising, deblurring, inpainting) under Gaussian
noise [25,26,41]

min
u∈B

1
2
‖b− Lu‖2

2 + λTV(u). (28)

• β = 1: Image restoration problems (e.g., denoising, deblurring, inpainting) under Poisson
noise [32]

min
u∈B
〈Lu− b ln (Lu) , 1〉+ λTV(u). (29)

• β = 0: Image restoration problems (e.g., denoising, deblurring, inpainting) under Gamma
multiplicative noise (or speckle noise) [15]

min
u∈B
〈
(

b
Lu

)
+ ln (Lu) , 1〉+ λTV(u). (30)

• β ∈ (0, 1) : A convex relaxed model [12] for the above SAR image restoration model (30).
Additionally, this region is related to the compound Poisson distribution [8]

min
u∈V
〈 b(Lu)β−1

1− β
+

(Lu)β

β
, 1〉+ λTV(u). (31)

For the remainder of this article, we only consider the image denoising problem (L = I). It is also
known as the (nonconvex) right Bregman proximity operator [10].

4.1. Bregman Proximity Operators

In this section, we introduce the right and left Bregman proximity operator [9,10,30] based on the
Bregman-divergence associated with Φ (19). In this section, let us assume that Φ (19) is convex, smooth,
and (dimensionally) separable function (not necessarily Legendre). That is, the Bregman-divergence
DΦ(b|u) associated with Φ (19) also exists in the positive domain domΦ = Rn

+ with β > 1. See Table 1.
We note that the Bregman-divergence DΦ(b|u) associated with Φ (19) is strictly convex with

respect to b (see Theorem 4). On the other hand, convexity of DΦ(b|u) with respect to u strongly
depends on the observed data b and β in Φ (19). Based on [9,12,28], we present three different
convexities of the Bregman-divergence associated with Φ. Let Ω = domΦ. Then, we have the following:

• The Bregman-divergence DΦ (16) is jointly convex if DΦ(b|u) is convex with respect to (b, u) on
int(Ω)× int(Ω).

• The Bregman-divergence DΦ (16) is separately convex if DΦ(b|u) is convex with respect to
u ∈ int(Ω) for all b ∈ int(Ω).

• The Bregman-divergence DΦ (16) is conditionally convex if DΦ(b|u) is convex with respect to u ∈ B
for all b ∈ B, where B ⊆ int(Ω) is an open convex set and depends on b.

We note that the conditional convexity is first introduced in this article based on the previous
analysis of the β-TV model [12]. The reason we are interested in conditional convexity is that, in real
applications, the dynamic range of the observed data is very limited. For instance, the observed image
data via an optical camera have 8-bit resolution (i.e., b ∈ [0, 28]) [41] and the intensity level of the
backscattered radar signal in SAR system is 32-bit resolution (i.e., b ∈ [0, 232]) at most [21]. Therefore,
it is natural to consider convexity depending on the given data b.

The following Theorem, mostly based on Theorem 3.3 in [28], is useful in characterizing convexity
of the Bregman-divergence DΦ(b|u) associated with Φ (19). We note that Diag(A) is a vector with
diagonal entries of a matrix (or tensor) A. Also, a function f is concave if and only if f (αu+(1− α)v) ≥
α f (u) + (1− α) f (v), for all α ∈ [0, 1].
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Theorem 9. Let DΦ(b|u) be the Bregman-divergence associated with convex, smooth, and (dimensionally)
separable function Φ. In addition, we assume that h = Diag(∇2Φ) > 0, then we have the following useful
criterion for the convexity of DΦ(b|u). Here, Ω = domΦ.

(i) DΦ(b|u) is jointly convex if and only if 1/h is concave. Note that, since h = (h1, ..., hn) is (dimensionally)
separable, 1/h is defined as 1/h(u) = (1/h1(u), ..., 1/hn(u)), it is concave if and only if h satisfy the
following inequality:

h(u) +∇h(u)(u− b) ≥ h2(u)
h(b)

, ∀b, u ∈ int(Ω). (32)

Moreover, if ∇2h exists, then DΦ(b|u) is jointly convex if and only if

h(u)Diag(∇2h(u)) ≥ 2(Diag(∇h))2. (33)

(ii) DΦ(b|u) is separately convex if and only if

h(u) +∇h(u)(u− b) ≥ 0, ∀b, u ∈ int(Ω). (34)

(iii) DΦ(b|u) is conditionally convex if and only if

h(u) +∇h(u)(u− b) ≥ 0, ∀b, u ∈ B, (35)

where B is an open convex set in int(Ω) and depends on b [12,42].

Proof. The proof of the first two convexities are given in Theorem 3.3 in [28]. For the conditional
convexity, let us take second derivatives of DΦ(b|u) with respect to u. Then, we get

h(u) +∇h(u)(u− b) ≥ 0.

For each b ∈ Bb ⊂ int(domΦ), we can find the domain of u ∈ Bu ⊂ int(domΦ) satisfying the
above condition. Let B be a convex and open set satisfying B ⊆ Bb ∩ Bu. Then, we have the conditional
convexity condition in (35).

The following Theorem shows an interesting result that DΦ(b|u) associated with Φ (19) is convex
on its whole domain with respect to u in a very limited region β ∈ [1, 2]. From a statistical point of
view, this region is a little bit curious. In fact, if β ∈ (1, 2) then the Bregman-divergence DΦ(b|u) does
not have the corresponding statistical Tweedie distribution [8].

Theorem 10. Let Φ be a convex and smooth function in (19) (not necessarily Legendre). Then, DΦ(b|u) is
separately convex (and also jointly convex) with the following domain conditions:

int(Ω) =


Rn
++, if β ∈ [1, 2),

Rn
−−, if β ∈ [1, 2) ∩Re,

Rn, if β = 2.
(36)

Due to the physical constraints of the observed data b, if we further restrict the domain of b, then we have
conditional convexity of DΦ(b|u). Let α = (β− 2)/(β− 1), if β 6= 1 and B±m/M be a constant vector in Rn

representing B±m/M1. Then, we have the following:

• Case I: Let us assume that the given data b be positive and have the following limitation in measurement

b ∈ int(Ω+
b ) = {b ∈ Rn

++ | b ∈ (B+
m , B+

M)}. (37)

Then, DΦ(b|u) is conditionally convex on B, which is given below:
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– β ∈ (2,+∞) : B = {u ∈ Rn
++ | u ∈ (max(B+

m , αB+
M), B+

M), } where α ∈ (0, 1).
– β ∈ (−∞, 1) : B = {u ∈ Rn

++ | u ∈ (B+
m , min(αB+

m , B+
M)), } where α ∈ (1,+∞).

• Case II: Let us assume that the given data b is negative and has the following limitation in measurement

b ∈ int(Ω−b ) = {b ∈ Rn
−− | b ∈ (B−m , B−M)}. (38)

Then, DΦ(b|u) is conditionally convex on B, which is given below:

– β ∈ (2,+∞) ∩Re : B = {u ∈ Rn
−− | u ∈ (B−m , min(αB−m , B−M)), } where α ∈ (0, 1).

– β ∈ (−∞, 1) ∩ Re \ {0} : B = {u ∈ Rn
−− | u ∈ (max(B−m , αB−M), B−M), } where α ∈ (1, 2) ∪

(2,+∞).

Proof. Since Φ in (19) is sufficiently smooth, we use (34) with h(u) = uβ−2. To find separately convex
region, we need to find β satisfying

h(u) +∇h(u)(u− b) = uβ−3[(β− 1)u− (β− 2)b] ≥ 0, ∀b, u ∈ int(Ω), (39)

where we need to decide the corresponding domain Ω based on Table 1. In the case of conditional
convexity, let us assume that the domain of b is limited as (37) or (38). In the following, we summarize
the separate and conditional convexity of DΦ.

• int(Ω) = Rn with β > 1 and β ∈ Re:
We simplify (39) as

u ≥ 0 and u ≥ αb or u ≤ 0 and u ≤ αb.

Then, we have

– β = 2 : α = 0 and thus u does not depend on b in (39). In fact, for any b ∈ int(Ω), we can
select arbitrary u ∈ int(Ω).

– β 6= 2 : In this case, the domain of u depends on b. For instance, if β = 3 and b > 0, then the
domain of u bounded below, i.e., u ≥ 0.5b > 0. Therefore, the domain of u cannot be the
whole region int(Ω) = Rn. This restriction is related to conditional convexity of DΦ and is
given in the following cases; int(Ω) = Rn

++ (β ∈ R) and Rn
−− (β ∈ Re \ { 0 }).

• int(Ω) = Rn
++ and β ∈ R:

We simplify (39) as
(β− 1)u ≥ (β− 2)b. (40)

– β > 1: (40) is simplified as u ≥ αb and we get

∗ β ∈ (1, 2): Since α ∈ (−∞, 0), u ≥ αb is satisfied for all u, b ∈ int(Ω) = Rn
++.

∗ β > 2 : Let us assume that the given data b is bounded, i.e., (37) is satisfied. From u ≥ αb
and α ∈ (0, 1), we have to satisfy the condition u ≥ αB+

M and thus the restricted domain
B corresponding to (37) is given as

B = {u ∈ Rn
++ | u ∈ (max(B+

m , αB+
M), B+

M)}.

In fact, for all b ∈ B, DΦ(b|u) is convex in terms of u ∈ B.
– β = 1 : (40) is satisfied for all u, b ∈ int(Ω) = Rn

++.
– β < 1: Let us assume that b satisfies (37). Then, from u ≤ αb with α ∈ (1,+∞), we get

u ≤ αB+
m and thus the restricted domain B corresponding to (37) is given as

B = {u ∈ Rn
++ | u ∈ (B+

m , min(αB+
m , B+

M))}.

• int(Ω) = Rn
−− and β ∈ Re \ {0}:

We simplify (39) as
(β− 1)u ≤ (β− 2)b. (41)
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– β > 1 : (41) is simplified as u ≤ αb and we get

∗ β ∈ (1, 2) : α ∈ (−∞, 0) and u ≤ αb is satisfied for all u, b ∈ int(Ω) = Rn
−−∗ β > 2 : Let us assume that b satisfies (38). Then, from u ≤ αb with α ∈ (0, 1), we get

u ≤ αB−m and thus the restricted domain B corresponding to (38) is given as

B = {u ∈ Rn
−− | u ∈ (B−m , min(αB−m , B−M))}.

– β < 1: Let us assume that b satisfy (38). Then, from u ≥ αb with α ∈ (1, 2) ∪ (2,+∞), we get
u ≥ αB−M and thus the restricted domain B corresponding to (38) is given as

B = {u ∈ Rn
−− | u ∈ (max(B−m , αB−M), B−M)}.

In addition, we note that it is not difficult to see that DΦ(b|u) is jointly convex on its domain
int(Ω)× int(Ω), where int(Ω) is given in (36). From the joint convexity condition in (33), we get the
following condition

(β− 2)(β− 1)u2(β−3) ≤ 0.

Since the exponent of u is even, i.e., u2(β−3) ≥ 0 for all u ∈ int(Ω) (36), if β ∈ [1, 2],
then (β− 2)(β− 1) ≤ 0 and thus DΦ(b|u) is jointly convex under the domain constraints in (36).

Based on joint (and separate) convexity of DΦ associated with Φ (19) on the domain (36),

we can define the right Bregman proximity operator
→
PλTV : int(Ω)→ int(Ω) associated with Φ (19)

as follows: →
PλTV(b) = arg min

u∈int(Ω)

DΦ(b|u) + λTV(u), (42)

where DΦ(b|u) associated with Φ (19) is strictly convex, smooth, and coercive with respect to u and total
variation is also convex and a coercive function [40]. We note that DΦ(b|u) with the domain int(Ω)(36)

is coercive with respect to u, due to the joint convexity condition in (32) and h2(u)
h(b) > 0. For more details

on the right Bregman proximal operator, see [10,24]. We should be cautious that, although the right

Bregman proximal operator
→
PλTV(b) (42) is well defined for the given data b ∈ int(Ω), its usefulness

in real applications is limited, due to the separately convex condition β ∈ [1, 2]. Actually, in the case
of β = 2, it is just an ordinary proximal operator [9]. Note that, in real applications such as SAR [12],
DΦ(b|u) with β ∈ [0, 1) and the positive domain constraints (37) (i.e., DΦ(b|u) is conditionally convex)
is used. In this case, it corresponds to not convex but coercive right Bregman proximity operator.
See Theorem 4 (3) for the coercivity of the operator on its domain int(Ω).

Now, let us consider Φ (19) with the domain condition in Table 1. Then, DΦ(b|u) is coercive and
strictly convex in terms of b (see Theorem 4). Hence, we can also define the left Bregman proximity

operator
←
PλTV : int(Ω)→ int(Ω) as follows:

←
PλTV(u) = arg min

b∈int(Ω)

DΦ(b|u) + λTV(b). (43)

Unlike the right Bregman proximity operator, the left Bregman proximity operator (43) associated
with the base function Φ in (19) is strictly convex and coercive for all β ∈ R on its domain int(Ω),
where Ω = domΦ. We note that the left Bregman proximity operator can be characterized in a more
simple way as

←
PλTV = (∇Φ + λ∂TV)−1 ◦ ∇Φ,

where ∂TV is a subgradient of TV. Actually,
←
PλTV is a maximal monotone operator. See [30,43] for

more details on Bregman proximity operator and the corresponding Bregman–Moreau envelopes.
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Remark 2. We could use β-divergence to define proximity operators. For instance, the right β-divergence
proximity operator can be defined as

→
P

β

λTV(b) = arg min
u∈ΩR

Dβ(b|u) + λTV(u). (44)

Instead of TV in (44), if we use an indicator function

ιS(u) =

{
0 , if u ∈ S,
+∞ , if u 6∈ S,

for a convex set S, then we get the right β-divergence projection operator for S as follows:

→
P

β

ιS
(b) = arg min

u∈ΩR

Dβ(b|u) + ιS(u). (45)

It is interesting that the robustness of β-divergence [7] can be explained through the right
β-divergence projection operator (45). Let us assume that b, u in (45) are probability distributions (i.e.,
∑i bi = 1 and ∑i ui = 1) and S is a set of Gaussian distributions. Here, the notation is slightly abused, since the
Gaussian distribution is a continuous probability distribution and it is not a convex set. We note that the
(generalized) Kullback–Leibler (KL) divergence (i.e., Dβ(b|u) with β = 1), which is a commonly used similarity
measure between two probability distributions, is undefined at zero probability (u = 0). See Figure 1a and
Table 1. However, outliers (i.e., rare events) have extremely low probability and thus they exist near zero
probability. In this case, KL-divergence amplify the value near zero, i.e., limu→0 Dβ=1(b|u) = +∞. However,
when β > 1, as noticed in Figure 1a and Table 1, limu→0 Dβ>1(b|u) < +∞. Thus, outliers which exist near
zero are not weighted too much. Hence, the right β-divergence projection operator (45) with β > 1 is more
robust to outliers than the KL-divergence-based operator. For more details, see [4,5,7]. Note that we can also
define the left β-divergence proximity operator as

←
P

β

λTV(u) = arg min
b∈ΩL

Dβ(b|u) + λTV(b). (46)

4.2. Dual Bregman-Divergence-Based Left Bregman Operator for a Convex Reformulation of the Bregman-TV
with β < 1

In this section, we introduce a convex reformulation of the nonconvex Bregman-TV (27) (β < 1
and L = I) associated with Φ (19), which is the convex function of Legendre type and its domain is
given in Table 1. Note that the problems we study in this section are related to the speckle reduction
problem [12,15].

Due to the Theorem 4, we have the following reformulated Bregman-TV:

min
u∈B

DΦ∗(∇Φ(u)|∇Φ(b)) + λTV(u), (47)

where B = {x ∈ Rn
++ | x ∈ (B+

m , B+
M)} with B+

m ≥ ε1 for some ε > 0. See [12,42] for real SAR data
processing applications where the box constraint B is a critical element of the performance. Now,
let w = ∇Φ(u) and the corresponding domain ∇Φ(B), then we have the left Bregman proximity
operator associated with the dual Bregman-divergence:

←
PλTV◦∇Φ∗(∇Φ(b)) = arg min

w∈∇Φ(B)
F(w) = DΦ∗(w|∇Φ(b)) + λTV(∇Φ∗(w)), (48)
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where ∇Φ(B) ⊆ int(domΦ∗) and we use ∇Φ ◦ ∇Φ∗(w) = w. Since β < 1, ∇Φ = 1
β−1 xβ−1 is strictly

increasing on its domain int(domΦ) = Rn
++. Therefore, we have the transformed domain defined on

Rn
−− as

∇Φ(B) = {x ∈ Rn
−− | x ∈ (∇Φ(B+

m),∇Φ(B+
M))}, (49)

where −∞ < ∇Φ(ε) ≤ ∇Φ(B+
m) < ∇Φ(B+

M) < 0 and it is also a convex set. Moreover, ∇Φ∗ is also a
strictly convex function by the following Lemma.

Lemma 2. Let us assume that β < 1 and int(domΦ) = Rn
++. Then, we have

∇Φ∗(w) = [(β− 1)w]1/(β−1),

where w ∈ int(domΦ∗) = Rn
−−. Note that ∇Φ∗ is strictly increasing and strictly convex on its domain

int(domΦ∗). However, it is not coercive but bounded below. In fact, we have∇Φ∗(w) ≥ 0, ∀w ∈ int(domΦ∗).

Proof. Let f (w) = ∇Φ∗(w). Then, since β < 1 and w ∈ Rn
−−, we have

∇2 f (w) = (2− β)[(β− 1)w]
3−2β
β−1 > 0.

Since Φ∗ is Legendre, ∇Φ∗ is strictly increasing on its domain. We note that, although ∇Φ∗ is
strictly convex and strictly increasing, it is not coercive but bounded below, i.e.,

lim
w→−∞

∇Φ∗(w) = 0. (50)

Finally, by using strict convexity and strictly increasing property of ∇Φ∗, we have a unique
solution of the minimization problem in (48).

Theorem 11. Let Φ (19) be the convex function of Legendre type and its domain is given in Table 1. In addition,
we assume that β < 1 and B = {x ∈ Rn

++ | x ∈ (B+
m , B+

M)}. Then, for the given data b ∈ B, the left Bregman
proximity operator (48) associated with the dual Bregman-divergence is well-defined. That is, there is a unique
solution w∗ = arg minw∈∇Φ(B) F(w).

Proof. Since Φ (19) is Legendre, Φ∗ is also Legendre on the domain Rn
−−(= int(domΦ∗)).

Therefore, DΦ∗(w|x) is strictly convex and coercive in terms of w by Theorem 4 (2). In addition,
TV is a composition of ‖ · ‖1 ◦ D, where D is a linear matrix (i.e, first order difference matrix) [44] and
‖a‖1 = ∑i |ai|. Hence, we have

TV(∇Φ∗(w)) = ‖ · ‖1 ◦ D ◦ ∇Φ∗(w),

where ∇Φ∗(w) is strictly convex (Lemma 2) and D is a linear operator and ‖ · ‖1 is a simple metric
(convex and increasing). Therefore, TV(∇Φ∗(w)) is also a convex function (see Section IV.2.1
in [38]). In addition, since ∇Φ∗(w) is lower bounded (Lemma 2), TV(∇Φ∗(w)) is also lower bound.
Then, the objective function F(w) in (48) is coercive (see Lemma 2.12 in [10]) and strictly convex. In the
end, the left Bregman proximity operator associated with dual Bregman-divergence has an unique
solution (see Proposition 3.5 in [10]) as

w∗ =
←
PTV◦∇Φ∗(∇Φ(b)),

where b ∈ B and w∗ = arg minw∈∇Φ(B) F(w) in (48). Regarding the domain ∇Φ(B), since Φ∗ is
Legendre, |∇Φ∗(x)| → ∞ as |x| → 0. Therefore, we need to keep a distance from {0} to assure
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|∇Φ∗(x)| < +∞. In fact, as noticed in (49), the transformed domain ∇Φ(B) is a convex set and away
from {0}.

The above Theorem is quite surprising. We can get a unique solution of the nonconvex
Bregman-TV (27) (β < 1 and L = I) through the left Bregman proximity operator (48) with
an additional isomorphic transformation mapping ∇Φ∗ ◦ ∇Φ = I as

u∗ ∈ ∇Φ∗ ◦
←
P (λTV◦∇Φ∗) ◦ ∇Φ(b). (51)

However, in general, due to the severe nonlinearity of ∇Φ∗ within the non-smooth regularizer,
i.e., TV(∇Φ∗(w)), it is not easy to design a stable numerical algorithm to find a solution u∗ in (51).
To overcome this drawback, we can directly modify (47) with a constraint w = ∇Φ(u) as

min
w,u

DΦ∗(w|∇Φ(b)) + λTV(u), (52)

subject to the following constraints:
u ∈ B,
w ∈ ∇Φ(B),
w = ∇Φ(u) (or u = ∇Φ∗(w)).

(53)

Since w = ∇Φ(u) is a nonlinear constraint and thus we cannot directly apply highly sophisticated
augmented Lagrangian-based optimization algorithm. As a heuristic, to remedy these nonlinear
constraints, we may consider the following penalty method [45]:

(w(k+1), u(k+1)) = arg minw∈∇Φ(B),u∈B DΦ∗(w|∇Φ(b)) + ρ
2‖w−∇Φ(u(k))‖2 + τ

2 ‖u−∇Φ∗(w(k))‖2 + λTV(u). (54)

This model is convex in terms of w and u, respectively. However, it is not convex with respect
to (u, w). In case of speckle reduction problems (30), nonlinearity of ∇Φ could be reduced by using
a shifting technique in [42].

In the following example, we show how (51) can be applied to relax nonconvex speckle reduction
problems (30) with L = I.

Example 1. Let us consider the following nonconvex minimization problems. For a given b ∈ B,

min
u∈B

DΦ(b|u) + λTV(u), (55)

where B = {x ∈ Rn
++ | x ∈ (B+

m , B+
M)} is an open convex set with B+

m ≥ ε1 for some ε > 0. Note that
Φ(u) = 〈− ln u, 1〉 is the convex function of Legendre type (β = 0) and

DΦ(b|u) = 〈
(

b
u

)
− ln

(
b
u

)
− 1, 1〉

is the Bregman-divergence associated with Φ (Burg entropy) function. This model is known as AA-model [15].
It is well known that it is not easy to find a global minimizer of (55), due to the severe nonconvexity
of DΦ(b|u) in terms of u [15,21]. Therefore, various transform-based convex relaxation approaches are
introduced [12,16–21,42]. In this example, we are going to use dual Bregman-divergence to find a solution of (55).
We note that Φ(u) = 〈− ln u, 1〉 is the convex function of Legendre type on its domain int(domΦ) = Rn

++.
Hence, by Theorem 7, we get the following corresponding conjugate function:

Φ∗(w) = 〈−1− ln(−w), 1〉.
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This function is also the convex function of Legendre type on its domain int(domΦ∗) = Rn
−−. Now,

by using the dual Bregman-divergence, we get a convex reformulated version of (55) as{
w∗ = arg minw∈Bw

F(w),
u∗ = − 1

w∗ ,
(56)

where

F(w) = −〈ln(−w), 1〉 − 〈w, b〉+ TV
(
− 1

w

)
and

Bw =

{
x ∈ Rn

−− | x ∈
(
− 1

B+
m

,− 1
B+

M

)}
.

We note that Bw = ∇Φ(B) is a convex set and TV(− 1
w ) is also convex for all w ∈ Rn

−−. Therefore,
the objective function F(w) in (56) is strictly convex on its domain Bw. In addition, due to the Theorem 4 (2),
F(w) is coercive in the domain Rn

−−. Therefore, we have a unique solution u∗ of (55). A similar inverse
transformation on the positive domain Rn

++ itself is introduced in [45,46].

5. Conclusions

In this article, we introduced the extended logarithmic function and, based on that, we could
redefine the domain of the β-divergence. In fact, we have found that if β is in the class
Re = {x ∈ R | x = 2k/(2l + 1), k, l ∈ Z}, then the negative region Rn

−− should be included into the
domain of the β-divergence. In addition, if we use the integral of the extended logarithmic function
as a base function of the Bregman-divergence, then we have a partial equivalence between the
β-divergence and the Bregman-divergence associated with the Legendre base function. Last but
not least, by using dual formulation of the Bregman-divergence associated with convex function of
Legendre type and the negative domain of it, we have shown that we could make a convex reformulated
model of the nonconvex variational model that appears in the SAR speckle reduction problem.
The approaches in this article could be extended to other divergences, such as α- and γ-divergences [2].
In addition, we could plug the presented model into various segmentation problems [11,47,48].
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