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Abstract: The simplest cosmology—the Friedmann–Robertson–Walker–Lemaître (FRW) model—
describes a spatially homogeneous and isotropic universe where the scale factor is the only dynamical
parameter. Here we consider how quantized electromagnetic fields become entangled with the scale
factor in a toy version of the FRW model. A system consisting of a photon, source, and detector is
described in such a universe, and we find that the detection of a redshifted photon by the detector
system constrains possible scale factor superpositions. Thus, measuring the redshift of the photon
is equivalent to a weak measurement of the underlying cosmology. We also consider a potential
optomechanical analogy system that would enable experimental exploration of these concepts.
The analogy focuses on the effects of photon redshift measurement as a quantum back-action on
metric variables, where the position of a movable mirror plays the role of the scale factor. By working
in the rotating frame, an effective Hubble equation can be simulated with a simple free moving mirror.
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1. Introduction

Quantum mechanics provides several key mechanisms for proposed explanations of cosmological
structure [1]. For example, one of the major observational discoveries in cosmology is that the universe
is expanding [2,3]. Many puzzles about this expansion, particularly at early time, seem to hinge upon
the quantum behavior of the universe’s structure, that is, its metric [4]. A key question in these puzzles
is the role decoherence may play in freezing-in quantum fluctuations [5]. In establishing a model for
the universe, one would expect macroscopic objects/events to behave classically [6]. Equivalently,
one would expect macroscopic objects to be highly entangled such that the state of an object can be
easily restricted by making any related measurement. Thus, any quantum treatment of cosmological
variables should result in states highly entangled with that variable.

Some simple models consider various toy cosmologies in which parameters of the metric are
treated as quantum variables. For example, reference [7] assumes that the universe’s metric is described
by a position wavefunction and considers the resulting implications. Another approach is to describe
the cosmology using quantum Brownian motion in a parametric bath as in [8,9]. Here we consider a
toy cosmology based upon the Friedmann–Robertson–Walker–Lemaître (FRW) model, where the scale
factor is quantized, and a wavefunction describing the state of the metric is defined. This wavefunction
is often explored in the context of its dynamics as constrained by the Wheeler–DeWitt equation [10–14].
Recently, there has been some suggestion that weak measurement of metric variables might act
analogously to dark energy, again in this quantized FRW setting [15].
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In this paper, the properties of a simple but quantum metric are explored to help us illustrate the
role weak measurements—here mediated by photon emission and absorption—play in stabilizing the
metric towards a “classical” state. Thus, all of the underlying factors driving cosmological dynamics
(e.g., a perfect fluid [10], imperfect fluid [11], Chaplygin gas [12,13], or field [14]) are ignored, and we
do not assume any constraints on dynamics (e.g., the Wheeler–DeWitt equation). Instead, the dynamics
of the metric are treated in a general manner as some (specified) unitary evolution, without reference
to the source of this cosmological evolution. As such, our approach is, on the one hand, general,
but on the other hand, does not provide any answers to questions regarding the meaning of time
and related challenges implicit in quantum cosmology. Working in conformal time, we show how
photon emission and later absorption leads to a strong entanglement between sources, detectors,
and the metric variables. This provides a tool for examining the intuitive result that redshifted photons
convey information about the universe’s past and effectively decohere potential superpositions of
metric variables.

Direct cosmological experiments are highly limited due to the space and time scales associated with
the dynamics. Thus, various analogies are experimentally implemented to explore cosmological effects.
For example, superfluid helium models are used to describe freezing-in quantum fluctuations [16,17].
In addition, experiments with Bose–Einstein condensates (BEC) have demonstrated an analogy to
Hawking radiation found with black holes [18]. Other analogies consider emulating the space-time,
such as with BEC [19], graphene impurities [20], and in an optical lattice [21]. Recently, there was a
proposal to emulate an FRW cosmology with circuit-QED using SQUIDS [22]. Using the toy FRW
model detailed in this paper, we describe an optomechanical system which possesses analogous
properties to an expanding universe. The motion of a mirror in an optical cavity induces a redshift in
cavity photons. This process leads to entanglement between an effective scale factor and the sources
and detectors that emulates cosmological redshift. Thus we can envision testing quantum cosmology
concepts in this toy model setting.

2. The Toy FRW Cosmology

Consider the classical Friedmann-Robertson-Walker (FRW) metric, defined by the line element

ds2 = −dt2 + a2(t)
(

dr2

1− κr2 + r2dΩ2
)

, (1)

where a is the scale factor and κ is the curvature. Proper time and distance for this metric are described
in Figure 1a for an exponentially expanding universe. Naturally, the dynamics of this metric will affect
the motion and other dynamics of objects within the metric.

Photons, for example, are known to be affected by the cosmological scale factor. In particular,
the expanding universe results in a cosmological redshift from distant objects [2,3]. Classically,
if a photon is emitted at frequency ω0 at a scale factor of a0 and is later observed at a scale factor of a1,
its observed frequency will be a0

a1
ω0. This frequency shift can be described in the frame of quantum

mechanics as entanglement between the universe’s metric and the photon. That is, the dynamics
of the photon become “tied” to the dynamics of the metric via entanglement. The entanglement
between photons and the metric implies that measuring (the redshift of) a photon will restrict the
metric’s wavefunction. In a setting with many photons being emitted and detected, as in our actual
universe, one would immediately anticipate that observation of redshifted photons tightly constrains
the allowed metric, which would dephase superpositions of the metric that are inconsistent with the
observed behavior. In that sense, this rapid decoherence of metric superpositions corresponds to a
particularly ‘classical’ universe metric. We note that the actual scale factor is not directly observed;
rather, it is the proportional change of the scale factor over time that is measured. The manner in which
information from the metric is encoded in the photon will be explored.

The FRW metric (Equation (1)) is a simple and highly-symmetric choice, since it is homogeneous
and isotropic in spatial slices (i.e., at constant time). Moreover, a single scale factor, a(t), describes the
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dynamics of the metric. Now, a reparametrization can be applied to the metric to make quantization of
the electromagnetic field trivial. Specifically, we move to conformal time, described by the line element:

ds2 = a2(t)
[
−dη2 +

(
dr2

1− κr2 + r2dΩ2
)]

, (2)

where dη2 = (a(t))−2 dt2 describes the conformal time. This coordinate transformation is described
in Figure 1b.

Figure 1. The Friedmann–Robertson–Walker–Lemaître (FRW) for an exponentially expanding universe
in (a) coordinate and (b) conformal time. Blue vertical lines are separated by one unit of proper distance,
while horizontal lines are separated by one unit of proper time. The universe is populated by comoving
particles (black disks) which exchange a photon. Color is used to emphasize which frequencies shift.

Consider the frequency of a photon in an FRW universe. Denote the phase of the photon with θ.
Then, the coordinate frequency is ω = dθ

dt . If a(t0) = 1, then the coordinate frequency is given by

ω(t) =
1

a(t)
dθ

dt

∣∣∣∣
t0

=
1

a(t)
ω0 , (3)

where ω0 is a nominal frequency (taken at some t0). Moving to conformal time, the conformal frequency

ω̃(η) =
dθ

dη
(4)

is then constant in time. This invariance follows from Maxwell’s equations being conformal [23].
Thus, when our only degrees of freedom are photons and the scale factor, it is natural to build the
cosmology in conformal time, leading to a simple picture for Hilbert space.

The goal now is to describe a universe in which the scale factor is treated as a quantum variable.
After promoting a to an operator â, with a corresponding Hilbert space of allowed states, we can define
a metric wavefunction in terms of the scale factor eigenbasis

|u0〉 =
∫

h0(a) |a〉 da , (5)

where h0(a) is the metric wavefunction and |a〉 is an eigenvector of â, satisfying

â |a〉 = a |a〉 . (6)
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We would also like to define a logarithmic scale factor, ẑ, according to

â = eẑ (7)

Observer that this relation is a homeomorphism because the scale factor is always positive;
the logarithmic scale factor can be any real number. The logarithmic scale factor has the advantage of
possessing translational symmetry in which adding a term corresponds to scaling.

A universe with only a metric and photon degrees of freedom is an extremely poor representation
of our own cosmology. Thus, we add matter, but make a simplifying assumption: we assume the
matter adiabatically follows the scale factor. We only break this basic story for the photons, which
we will allow to be excited away from this nominal matter-universe state. In a fundamental sense,
this is looking at only the very lowest energy excitations: photons and gravity. We will denote this
matter-simplified toy cosmology “tFRW”.

Consider a simple quantum system consisting of a photon source, detector, vacuum (containing
photon modes), and metric. Denote the initial state corresponding to each of these components as

|e〉S |g〉D |vac〉 |u0〉 , (8)

where |g〉 and |e〉 refer to the ground and excited states of the source and detector, respectively. Unlike
typical treatment of the photon mode, the photon’s conformal frequency is recorded instead of its
coordinate frequency. The system will undergo the following process: a photon is emitted from the
source, traverses the universe for some time, and then is absorbed/measured by the detector.

Photon emission must then be described in terms of conformal frequency. In coordinate time,
the photon frequency is given by the wavepacket, f (ω). The emitted wavepacket (in coordinate
frequency) is invariant of the scale factor [24,25]. This is equivalent to saying that the local behavior
of atoms is independent of the present cosmology. Moving into conformal frequency, ω 7→ ω/â,
the photon’s conformal frequency wavepacket generator (normalized) becomes

b̂†
(ω0)

=
∫ 1√

â
f
(ω

â

)
b̂†

ωdω , (9)

where b̂†
ω generates a single conformal frequency mode. Similarly, the photon packet annihilator is

b̂(ω1)
=
∫ 1√

â
g∗
(ω

â

)
b̂ωdω (10)

which annihilates the (coordinate frequency) wavepacket given by g(ω). Observe that physicality
demands the scale factor be strictly positive; a negative scale factor is non-physical, and a zero scale
factor corresponds to a singularity (e.g., the Big Bang). In this construction, the sources/detectors
will be time-dependent (via coupling to the time-varying metric wavefunction) while the photon
mode is time-independent. The wavepacket creation/annihilation operators entangle the photon
frequency with the scale factor; the magnitude of a given photon mode is dependent on the state of the
metric wavefunction.

A few more operators are needed to fully describe the system. First, the creation operator will
have a |g〉〈e|S factor to reflect the source moving to its ground state with the emission of a photon.
Similarly, the annihilation operator will have a |e〉〈g|D factor to reflect the absorption of the photon.
After detection, the system is projected into the detected state with Π̂ = |e〉〈e|D. Events in which no
photon is detected are thrown out as inaccessible; they are inaccessible in the sense that one does not
gain any information on the scale factor when no measurement occurs. Thus, the act of measuring
is equivalent to post-selecting the universe’s metric in which the measured event occurred. Finally,
the metric evolves according to the general (unitary) operator
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U |ã〉 =
∫

B(ã, a) |a〉 da (11)

for some evolution function B : R+ × R+ → C given in the â eigenbasis. The behavior of B is
determined by the cosmological equations of state, which in turn could be a complicated system
determined by adiabatically following matter-energy state |Ψ(a)〉. Here we will neglect the specific
role the emitters and detectors play in this equation of state, appropriate for the FRW assumptions.

The system’s evolution is described by

Π̂b̂(ω1)
U b̂†

(ω0)
. (12)

The final state of the metric wavefunction is then

h1(a) ∝
∫

q(c, a)B(c, a)h0(c)dc . (13)

The function
q(c, a) =

1√
ac

∫
g∗
(ω

a

)
f
(ω

c

)
dω (14)

describes how the source/detector wavepackets affect the final state of the universe’s metric. Equation (14)
can also be expressed as a function of a

c —this is clear when applying the change-of-variables ω 7→ cω. This
property is expected because photon measurement yields information about the proportion between
initial and final scale factors. Observe that Equation (13) demands a proportionality constant. This is
to account for the non-zero probability that the photon is not detected. The not-detected state is either
removed when applying Π̂ or throwing out the event altogether as inaccessible via post-selection.

2.1. Simple Examples

Consider a simple evolution in which all scale factors scale by a constant, s. Thus,

B(ã, a) ≈ δ(a− sã) . (15)

where additional corrections necessary to maintain probability (that make B unitary) are neglected for
simplicity. Solving for Equation (13):

h1(a) ∝
1

a
√

s

(∫
g∗
(ω

a

)
f
( sω

a

)
dω

)
h0

( a
s

)
. (16)

As one would expect, if h0 is centered around a0, then h1 is centered around a1 = sa0. Moreover,
the coefficient is maximized for g(ω/s) =

√
s f (ω). That is, if f is centered around ω0, then g is

centered around ω0/s. This is the case when the absorption wavefunction perfectly aligns with the
shifted packet so equality now holds in Equation (16).

Now, consider a simple case for the photon wavefunctions. According to Weisskopf–Wigner
theory on spontaneous emission, the photon wavefunctions should be Lorentzian [26]:

f (ω) =
iγ∗0

Γ0/2− i(ω−ω0)

and
g∗(ω) =

−iγ1

Γ1/2 + i(ω−ω1)
.

Solving for Equation (14) (integrating over positive and negative frequencies for simplicity) yields

q(c, a) =
2πγ∗0 γ1

√
a/c

(Γ0/2 + iω0) + (Γ1/2− iω1)a/c
. (17)
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Figure 2 describes this function. The peak in this function reflects how the back-action from
measuring the photon restricts the final state of the metric; the peak is centered near the expected scale
factor proportion given the photon measurement.

Figure 2. The result of q(c, a) for the simple example with the Lorentzian wavefunctions. Here,
γ0 = γ1 = Γ0 = Γ1 = c = 1, ω0 = 10, and ω1 = 5.

2.2. As a Measurement of Scale Factor

One can see from Equation (13) that measuring the photon’s frequency (partially) collapses the
metric wavefunction. Consider, the extreme case where f (ω) = δ(ω − ω0) and g(ω) = δ(ω − ω1),
hence a scaling of s = ω0/ω1. This results in

q(c, a) =
1

s
√

ac
δ(cω0 − aω1) (18)

and
h1(a) ∝

1
ω0a
√

s
B
( a

s
, a
)

h0

( a
s

)
, (19)

which implies the scale factors scale by s from the initial state. Observe that the final state is still
affected by evolution effects, though these effects are trivial for the simple evolution (Equation (15)).

2.3. Multiple Measurements

Consider the case in which multiple photons are emitted and later measured. In particular, say
N photons are detected, such that all photons are emitted before any are measured. Assume that some
time passes between each emission, measurement, and between the emissions and measurements. Thus,
there are 2N − 1 total periods of evolution; label these with the functions Bi for i = 0, 1, . . . , 2(N− 1).
Assume that the photons do not interfere (i.e., they are spatially separated) so we can define qj, for
j = 0, 1, . . . , N− 1, to describe the effects of measuring the jth photon; if the photons interfered, we
would not be able to separate the qj’s into functions that consider only one photon. The wavefunction
of the metric after k photon measurements, tracing over photon modes, is

hk(a) ∝
∫ N+k−2

∏
i=0

dci Bi(ci, ci+1) ∗
k−1

∏
j=0

qj(cj, cj+N) ∗ h0(c0) , (20)

where cN+k−1 = a. Equation (20) reduces to Equation (13) when N = k = 1.
Assume that the metric is approximately static between emissions and between measurements.

That is, the metric only evolves between the last emission and first measurement. Then, we can assume
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Bi(c, a) ≈ δac for i 6= N − 1. To make an additional simplification, assume that all the detectors are the
same and that all the emitters are the same, i.e., qj ≡ q, independent of j. Thus, Equation (20) becomes

hk(a) = N
∫

dc qk(c, a)BN−1(c, a)h0(c) , (21)

for normalization constant N . Observe that q, in general, describes a function that peaks around
the expected scale factor. Thus, in the limit k → ∞, N qk(c, a) acts like a Dirac-delta function of a

c
centered around the least suppressed scale factor; i.e., the maximum of q. The scale factor can then be
determined to arbitrary accuracy with sufficiently many measurements.

2.4. Classical Dynamics

Metric dynamics are typically described in classical terms, thus it may be useful to describe the
dynamics in terms of deviation from classical dynamics. To do this, we can move into a rotating
frame in which the classical evolution is “subtracted-out”. For this, it is useful to use the logarithmic
scale factor (Equation (7)). Denote the classical (logarithmic) scale factor in conformal time with zc(η).
Then, define the unitary

Ŵη = e−iπ̂z
∫ η

0 z′c(η̃)dη̃ , (22)

for the canonical momentum π̂z satisfying [ẑ, π̂z] = ih̄.
Starting with the ket, |ψ(η)〉, we define the rotating-frame ket |φ(η)〉 by

|ψ(η)〉 = Ŵη |φ(η)〉 . (23)

The metric evolution (Equation (11)) is then transformed to the rotating frame according to

|φ(η)〉 = Ũη |φ(0)〉 = Ŵ†
η ÛηŴη |φ(0)〉 . (24)

Using the fact that Ŵ†
η ẑŴη = ẑ + zc(η), we have

ẑ |ψ(η)〉 = (φ(η) + zc(η)) |ψ(η)〉 , (25)

where we make the simplifying assumption that |φ(η)〉 is an eigenket of ẑ. Thus, the rotating frame
|φ(η)〉 describes the “quantum-part” of the metric. If the dynamics are entirely classical, then we
would expect trivial dynamics for the quantum-part: Ũη = Id.

3. Analogy: Optomechanical Cavity

Direct experimental probes of cosmological expansion are limited due to the spatial and temporal
scales involved. However, it may be possible to emulate cosmological processes with accessible
experimental apparatus. Such an experiment must possess the same or analogous properties of the
cosmology being emulated. For example, one may want to consider a process in which photon redshift
occurs: such as Doppler shift, gravitational redshift, and cosmological redshift. Here, we will consider
the frequency shift induced in an optical cavity by a variable cavity length.

3.1. Cavity as Space

Consider a Fabry–Pérot interferometer: an optical cavity consisting of two mirrors. The cavity
only permits integral frequencies,

ωcav,n =
nπc
2L

, (26)

where n is some positive integer (the frequency mode), c is the speed of light, and L is the length of the
cavity. Typically, the cavity is populated by only one mode, denoted simply ωcav, when e.g., the free
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spectral range is large. This is because a source will populate the cavity by supplying a bandwidth of
frequencies much smaller than the free spectral range of the cavity ∆ωFSR = πc

2L around ωcav.
If the position of one of the mirrors is classically fixed while the other is allowed to move (within

some potential), the optical cavity becomes coupled to the mechanical motion of the second mirror.
This is seen in ωcav which is dependent on the length of the cavity. Choosing coordinates where the
fixed mirror is at x = 0, the Hamiltonian of the system becomes

Ĥ = h̄ωcavb̂† b̂ + Ĥmech(x̂, p̂)

= h̄
nπc
2x̂

b̂†
n b̂n +

p̂2

2M
+ V̂mech(x̂) , (27)

where x̂ and p̂ are the operators associated with the position and momentum of the mirror’s mechanical
motion, and b̂n and b̂†

n are the annihilation and creation operators of the ωcav,n mode (subscript n
sometimes omitted for single-mode case). If additional modes are present in this system, one would
sum over n on the first term for all possible modes. The energy associated with the mechanical

system (with mass M) is given by Ĥmech = p̂2

2M + V̂mech(x̂). Observe that the singularity at x = 0 is
avoided, because this is associated with a zero-length cavity. A harmonic oscillator is often used for
the mechanical system (such as a mirror on a spring) due to its symmetry with the optical modes and
experimental realization (for a review of optomechanical cavities, see, e.g., ref. [27]). However, we will
consider a general mechanical potential that may or may not include harmonic terms. For much of this
analysis, we find the case of freely moving mirrors sufficiently complex to enable intriguing analogies.
In practice, a freely moving mirror can be well approximated by a mirror on a spring with a low
stiffness, conditional on the dynamics of the experiment occur much faster than the nominal resonance
frequency of the mirror’s motion.

Motivated by the FRW universe, consider defining the scaling operator

âOM =
x̂
x0

(28)

for an arbitrarily chosen position x0. Likewise define π̂ = x0 p̂ to obey the canonical commutation
relation, [âOM, π̂] = ih̄. Now, if a physical Ĥmech can be chosen such that the evolution of the analogy
system is consistent with that of the (FRW) universe, this system can be experimentally explored.

In the Heisenberg picture, solving for the evolution of the âOM and π̂ operator yields:

˙̂aOM(t) =
π

x2
0 M

, (29)

˙̂π(t) =
i
h̄

(
h̄[ωcav, π̂]b̂†

n b̂n + [V̂mech, π̂]
)

, (30)

where Ĥmech = p̂2

2M + V̂mech. The dot, �̇, denotes the derivative in (coordinate) time. Combining these
equations, and noting the commutation relation [ f (x̂), p̂] = ih̄ f ′(x̂), yields the equation of motion

x0 ¨̂aOM(t) =
h̄nπc
2x2

0 M
b̂†

n b̂n

â2
OM
− 1

M
V̂′mech(x̂) . (31)

Consider the simple case of a free mirror (i.e., V̂mech = 0). Then ¨̂aOM = h̄nπc
2x3

0 M
Nâ−2

OM for a cavity

with N photons—assume N 6= 0 to avoid trivial case. Observe that, regardless of initial conditions,
this corresponds to an (eventually) expanding cavity. After a long time, the mirror will move outward
at a constant velocity. One can think of this as radiation pressure pushing the mirrors apart. As the
mirrors separate, the cavity frequency decreases. Thus there is less pressure on the mirror. Eventually,
the mirror will move at an approximately constant velocity, as if no longer being accelerated by the
low-energy photons. Observe that the redshift and period of the photon traversing the cavity each
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contribute a â−1
OM factor to the acceleration of the mirror, hence ¨̂aOM ∝ â−2

OM. As with the FRW model,
the presence of radiation drives the dynamics of the system.

In this single-cavity construction, the cavity can be thought of as the space through which light
travels. A source populates the cavity with a given (“coordinate”) frequency. The photons populate the
cavity for some time at the same cavity mode (“conformal frequency”) then are emitted to a detector.
The detector may measure a different frequency than what the source output, as the cavity frequencies
change. Measuring the shift from the emitted to the detected frequency yields information on how the
cavity position changed. The choice in mechanical potential determines the dynamics of the system.

Various connections can be made between the tFRW cosmology and optomechanical system
described here. The coordinate frequency (analogy) of the cavity is ω = nπc

2L , which scales correctly
with the scale factor (analogy), âOM. The conformal frequency is analogous to the cavity mode
n—a constant quantity associated with a traversing photon that is essentially inaccessible to an
observer that cannot measure the mirror position (scale factor) directly. Equivalently, one can define
ω0 = πc

2x0
n as the analogous conformal frequency.

Observe that the evolution of the metric is described in terms of the optomechanical equations of
motion instead of the reverse. Thus, one wants to start with a model for cosmological equations of
motion then choose an optomechanical system that can mimic these equations. The optomechanical
system is modified via the potential on the mechanical system, V̂mech.

3.2. Cavities as Atoms

Consider a system with two coupled cavities (see Figure 3). In this system, two cavities each
share a mechanical coupling on one mirror. The other two mirrors are classically fixed, though not
necessarily at the same relative position. The cavities are also allowed to transfer photon modes. In this
analogy, the cavities will be shown to behave like atoms in the tFRW model.

Figure 3. A schematic of the coupled two-cavity system. Mirrors to the left of the cavities enable
photons to transfer between cavities. The right cavity mirrors share a coupling to a mechanical system
(denoted as a spring in the schematic). In addition, the top mirror is driven by a source, while the
bottom mirror has an attached detector.

In this optomechanical system, one cavity (say the upper cavity) can serve as a source,
while the other (lower cavity) serves as the detector. The cavity frequency is analogous to the conformal
frequency while the cavity mode is analogous to the coordinate frequency. Thus, the emission spectrum
of the cavities is constant with respect to cavity modes (as with the coordinate frequency wavepackets
in Equations (9) and (10)). The shared mechanical mode reflects the metric wavefunction.

Consider a process in which a photon is emitted by the upper cavity, the cavities are allowed
to shrink, then the photon is absorbed by the lower cavity. The lower cavity would see a redshifted
photon in this process as the respective cavity modes increase in frequency, while the en route photon
frequency is constant. This could be thought of as atoms appearing “smaller” as the universe expands.
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We remark here that the reverse process (detector to source) is in principle allowed both in the real
universe and our toy model, but we will assume no emission from the detector cavity at present.
Crucially, we assume a relatively long delay (larger than the inverse linewidths of the cavities) for the
photon path that exits one cavity and enters the other.

Denote the frequency in the cavities as ωk = nkπc
2(x̂+xk)

for k = 1, 2 and xk refer to the relative
positions of the fixed mirrors to the equilibrium position of the moving mirrors. As defined, x̂ yields a
position relative to the mechanical equilibrium. Considering the energy from the photons in the cavities,

Ĥopt =
2

∑
k=1

h̄ωk b̂†
k b̂k , (32)

where b̂k are the respective annihilation operators.
We note that this equation, as stands, will not be able to explore a wide range of redshifts. However,

we can do substantially better by moving to a rotating frame, e.g., by having a weak, narrowband thermal
or coherent source at a frequency νk coming into the source cavity. More specifically, the simplest example
would be a series of excited, broad linewidth atoms near the cavity frequency in the Purcell-enhanced
regime, such that photon emission occurs preferentially at the cavity frequency. A more interesting
option for sources for future experiments might include having an induced chemical potential µ = h̄νk
for light using parametric coupling to a bath [28]. On the detector side, we can consider putting a
broadband photodetector on the transmitting side of the detector cavity.

3.3. Hubble Expansion in the Rotating Frame

In the cavities-as-atoms picture, we can move to a rotating frame according to the unitary
transformation V̂ = ∏2

k=1 e−itνk b̂†
k b̂k . Then, performing a linear expansion about small displacements of

the cavity modes gives:

Ĥopt =
2

∑
k=1
−h̄(Gk x̂ + ∆k)b̂†

k b̂k , (33)

where Gk =
∂ωk
∂x̂ , and ∆k = νk −ωk(0) is the detuning for x̂ = 0. We assume that ∆k + Gk x̂ < 0 for the

entire range of dynamics that follows to maintain a semblance of physicality for our model.
We now examine the spectrum of emission and absorption, as defined in Equations (9) and (10).

The cavity resonance should move with scale factor according to ωk(x) = ωk(0)/a, where x = 0 is
chosen to reflect a = 1. Thus, we can define the optomechanical scale factor according to

âOM =
∆

∆ + Gx̂
, (34)

which can be written as

x̂ =
∆
G

(
1

âOM
− 1
)

. (35)

Observe that the allowed Hilbert space is restricted such that a, x > 0 because the mechanical mirror
cannot move past the fixed mirror.

Applying this change-of-variables to Equation (33) yields

Ĥopt =
2

∑
k=1
−h̄
[(

∆k −
Gk
G

∆
)
+ Gk

∆
G

1
âOM

]
b̂†

k b̂k . (36)

From this hamiltonian, we would like to emulate the frequency scaling described in Equation (3).
This can be achieved by demanding the first term in the above hamiltonian vanish. To achieve this,
the constraint ∆k/Gk = const is applied to the system. That is, freely choose, say, ∆1/G1 = ∆/G
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and set νk = ωk(0) +
Gk
G ∆ as the rotating frame frequencies. Now, we can set ∆k/Gk ≡ ∆/G to be

independent of k. Then, the optical part of the hamiltonian is simply

Ĥopt =
2

∑
k=1

h̄
(

ω̃k
âOM

)
b̂†

k b̂k , (37)

where each cavity has, in the rotating frame, an effective ‘atomic’ frequency

ω̃k = −∆k . (38)

Connecting to the tFRW model, ω̃k is analogous to the coordinate frequency wavepacket (single-valued
in this scenario) in Equations (9) and (10).

Consider the dynamics of this system. It is first useful to consider the Hubble parameter as
defined in cosmology

H =
1
a

∂a
∂t

=
1
a2

∂a
∂η

. (39)

Thus, the conformal time derivative of x̂ from Equation (35) (taking âOM as the analogous scale factor)
can be written

∂x̂
∂η

=

(
−∆

G

)
H . (40)

Observe that, in this analogy, the time is conformal time because the photon traverses between the
cavities at constant frequency. Conventionally, the Hubble parameter is approximated as a constant.
With this assumption, the above dynamics implies that the mirror has constant velocity, or that the
mirror’s motion is free. A free mirror in the system can be obtained by considering short time scales
while the mirror is near equilibrium position so that the mirror has negligible acceleration.

Speaking more practically, we can now consider the following experiment: a photon is created in the
source cavity, then detected at a later time at the detector cavity. If we start with a combined wavefunction
of the source, detector, and mirror of the form |s〉 |d〉 |ψ(a)〉, the post-selected wavefunction after the
detection has selected a narrow range of allowed a values, according to |q(c, a)|2. At the same time,
the intuitive explanation—that detection yields information about the position of the mirror—explains
the same experiment. Thus by looking for the position-based dephasing of the mirror using weak
homodyne measurement of the mirror quadratures, one can estimate this ‘cosmological analog’
decoherence.

3.4. Logarithmic Scale-Factor

We present here methods to describe the previous optomechanical analogies in terms of the
logarithmic scale factor (Equation (7)). In some sense, this is a trivial (albeit possibly cumbersome)
calculation as one can simply apply the defining homeomorphism to alternate between the two
scale factors. To make the problem more interesting, we would like to consider a different type of
optomechanical system than the conventional cavtity. In particular, we may consider one in which the
coupling term is given by

Ĥopt = h̄
(

ω0 + ge−x̂/ξ0
)

b̂† b̂ . (41)

This describes an optical system at resonance ω0 in which a mechanical mode evanescently modifies
the energy of the system. The exponential term is a natural choice when dealing with a logarithmic
scale factor. Moreover, this Hamiltonian has experimental potential [29–31].

First, we look at the single-system case. Still treating the mechanical system as controlling the
metric, we would like the optical term to be of the form e−ẑOM ω0b̂† b̂ where ẑOM is the analogous
logarithmic scale factor. The obvious choice is then to define

ẑOM = x̂/ξ0 . (42)
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Adding the mechanical terms and moving into a rotating frame with the unitary V̂ = e−itω0 b̂† b̂ to
eliminate the resonance term, we obtain the full Hamiltonian:

Ĥ = ge−ẑOM b̂† b̂ +
p̂2

2M
+ V̂mech(x̂) , (43)

which is of the appropriate form—observe that g now fulfills the role of ω.
Next, we would like to consider the two-system analogy. To couple the systems, we will assume

that they share the same x̂. Moreover, to simplify the problem, we will assume that the evanescent
couplings have the same characteristic length, ξ0, though the coupling strengths g may be different.
As before, we move into a rotating frame with the unitary, V̂ = ∏2

k=1 e−itνk b̂†
k b̂k . Labeling the systems

with k ∈ {1, 2} the rotating-frame optical Hamiltonian is then

Ĥopt =
2

∑
k=1

h̄
(
−∆k + gke−x̂/ξ0

)
b̂†

k b̂k . (44)

Desiring the relationship ωk(x) = ωk(0)e−z (so z = 0 occurs at x = 0), we obtain

eẑOM =
−∆ + g

−∆ + ge−x̂/ξ0
. (45)

which can be written as
e−x̂/ξ0 =

∆
g
+
−∆ + g

g
e−ẑOM . (46)

Taking Equation (46) and using Equation (44) yields

Ĥopt =
2

∑
k=1

h̄
[(
−∆k + ∆

gk
g

)
+

gk
g
(−∆ + g)e−ẑOM

]
b̂†

k b̂k . (47)

Demanding, then, that the first term vanishes, we have ∆k/gk = ∆/g for all k. As before, this is simply
a constraint on one’s choice of νk when moving to the rotating frame. Finally, we have a Hamiltonian
of the appropriate form,

Ĥopt =
2

∑
k=1

h̄ω̃ke−ẑOM b̂†
k b̂k . (48)

for the effective frequency,

ω̃k =
gk
g
(−∆ + g) . (49)

Consider the Hubble Equation (39). In terms of the logarithmic scale factor in conformal time,
this is given by H = e−z dz

dη . Using Equation (45) yields the dynamics

x = x0 − ξ0 log
1
g

(
∆ +
−∆ + g
1− Hη

)
≈ x0 + ξ0

H
g
(∆− g)η + ξ0

H2

2g2 (∆
2 − g2)η2 . (50)

A system following these dynamics will mimic the behaviour of an FRW metric undergoing Hubble
expansion. Observe that η is bounded above by H−1 due to the heat death of the universe, hence
it is reasonable to assume that Hη << 1 and consider only the first lower-order terms. That is, we
can consider a free particle with velocity ξ0

H
g (∆− g). We recover again a mapping of free particle

evolution to expansion of the universe.



Entropy 2017, 19, 485 13 of 14

4. Conclusions

A toy FRW quantum cosmology was proposed in which a metric variable was treated as a
quantum variable. The scale factor in the tFRW model was promoted to the quantum operator â,
and a metric wavefunction was defined as a superposition of scale factor eigenstates. In this
construction, it is natural to describe events in terms of conformal time, dη = dt

a . In particular,
the photon modes were defined by their conformal frequency in lieu of their coordinate frequency.
In doing so, the photon wavefunction is invariant upon time evolution, while a process that
generates/annihilates a photon gains a time-dependence via a coupling to the time-dependent
scale factor.

A simple process in which a photon is emitted then measured is described. The act of measurement
restricts the possible values of the universe scale factor such that the measured redshift agrees with
the change in scale factor. The metric becomes entangled with the photon resulting in a wavefunction
collapse upon measurement. As photons are constantly being measured throughout the universe,
one would expect the scale factor to behave classically—in agreement with observation. This is one
potential explanation for the apparent classical behavior of the universe at large scales, though we
anticipate that photons are the least entangling aspects of the problem. In this sense, our approach will
heavily underestimate actual entanglement between the metric and matter/energy.

Motivated by the toy cosmology, two optomechanical analogies were proposed to emulate the
cosmology. In these analogies, a mechanical system serves as the expanding universe. Optical modes
couple to the mechanical system and experience frequency shifts analogous to cosmological redshift.
Measuring a photon from the system induces a particular, measurable back-action on the system,
providing a lower bound on potential decoherence mechanisms for the mirror system. Thus, if we can
observe such back-action, the system may help elucidate our cosmological analogy.

The analogies provided approach cosmological scaling in different ways. In the analogy in which
the cavity was treated as the space through which photons traveled, the dynamics of the system are
most immediately described in terms of coordinate time. That is, the en route photons’ frequency shifts
directly as the mechanical system evolves. In contrast, when treating cavities as atoms, the dynamics
are described in terms of conformal time, because the en route photons remain static while the cavity
modes shift. In either case, there is some freedom to adjust the system to reflect various cosmological
dynamics (e.g., consider Equations (31) and (40)). With further considerations, these optomechanical
systems may be used to provide a testbed for experiments in quantum cosmology.
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