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Abstract: Myocardial infarction (MI) is a silent condition that irreversibly damages the heart
muscles. It expands rapidly and, if not treated timely, continues to damage the heart muscles.
An electrocardiogram (ECG) is generally used by the clinicians to diagnose the MI patients. Manual
identification of the changes introduced by MI is a time-consuming and tedious task, and there is
also a possibility of misinterpretation of the changes in the ECG. Therefore, a method for automatic
diagnosis of MI using ECG beat with flexible analytic wavelet transform (FAWT) method is proposed
in this work. First, the segmentation of ECG signals into beats is performed. Then, FAWT is applied
to each ECG beat, which decomposes them into subband signals. Sample entropy (SEnt) is computed
from these subband signals and fed to the random forest (RF), J48 decision tree, back propagation
neural network (BPNN), and least-squares support vector machine (LS-SVM) classifiers to choose the
highest performing one. We have achieved highest classification accuracy of 99.31% using LS-SVM
classifier. We have also incorporated Wilcoxon and Bhattacharya ranking methods and observed no
improvement in the performance. The proposed automated method can be installed in the intensive
care units (ICUs) of hospitals to aid the clinicians in confirming their diagnosis.

Keywords: Myocardial infarction (MI); electrocardiogram (ECG) beats; flexible analytic wavelet
transform (FAWT); sample entropy; classification

1. Introduction

Myocardial infarction (MI) is a condition that indicates the injury of a heart cell due to the lack of
oxygenated blood in the cardiac arteries [1]. The main cause of MI is coronary heart disease (CHD),
which is responsible for nearly one-third of all deaths in the age group of above 35 years [2,3]. MI is
silent in nature and may lead to fast and non-recoverable damage to the muscles of heart [3]. If MI
is not controlled timely, then myocardial structure and functions of the left ventricle (LV) continue
to be damaged further. For the diagnosis of MI, the electrocardiogram (ECG) is used due to its low
operating cost and non-invasive nature [4]. Vital information related to the functioning of the heart
can be assessed by analyzing the ECG signals. Moreover, the MI results in the ST deviations and T
wave abnormalities in the ECG signal [4]. Manual identification of the changes in the ECG signals is
a difficult task. Only 82% ST-segment elevation in MI subjects may be recognised by the experienced
cardiologists [5]. Therefore, an automated identification system for MI patients is needed to facilitate
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the clinicians in their accurate diagnosis.The classification of ECG signals and the extracted beats from
ECG signals have been studied in the literature for diagnosis of heart disorders [6–8].

In literature, various studies are performed for the detection of MI patients. In [9], a total integral
of one ECG cycle and T-wave integral are suggested as features for the detection of MI. Time-domain
features computed from 12-lead ECG signals are explored with fuzzy multi-layer perception (FMLP)
network to classify the MI ECG signals [10]. In [11], a new multiple instance learning based approach is
proposed for the detection of MI. The Hermite basis functions are used to decompose the multilead ECG
signals and the obtained coefficients are found effective for the detection of acute MI [12]. The phase
space fractal dimension features and the artificial neural network classifier are explored to detect the
MI [13]. In [4], authors have applied neuro-fuzzy approach for the diagnosis of MI patients using
multilead ECG signals. A hybrid approach based on hidden Markov models (HMMs) and Gaussian
mixture models (GMMs) is proposed to distinguish the MI and normal ECG signals in [14].

In [15], characterization of the QRS complex of normal and MI subjects is performed using discrete
wavelet transform (DWT). Three different wavelets are used to decompose the ECG signals up to
the fourth level of decomposition. The Daubechies wavelet performed best among the three chosen
wavelets. The DWT technique is incorporated to extract the QRS complex of ECG signals, and it
is found that identification of the MI subject is possible by detecting the QRS complex [16]. In [17],
the phase of the complex wavelet coefficients obtained from the dual tree complex wavelet transform
(DTCWT) of 12-lead ECG signals is computed. Then, multiscale phase alteration values are used
as features to identify the normal, MI, and other abnormal ECG signals. In [18], the ECG signals of
normal, MI, and coronary artery disease (CAD) are applied to DWT, empirical mode decomposition
(EMD), and discrete cosine transform (DCT) techniques. The authors in this study achieved the best
performance when features obtained using DCT technique are subjected to the k-nearest neighbour
classifier (k-NN) classifier. Contourlet transform (CT) and shearlet transform (ST) based technique
is proposed to distinguish normal, MI, CAD, and congestive heart failure (CHF) subjects using ECG
beats in [19]. The performance of the CT based technique is found to be better in comparison to the ST
based method.

Our aim is to develop a method for automated diagnosis of MI patients in this work. We have
analyzed normal and ECG beats using sample entropy (SEnt) in flexible analytic wavelet transform
(FAWT) [20,21] framework. First, preprocessing is performed to remove the baseline wandering
and other noise present in the ECG signals. Then, ECG signals are segmented into the beats.
Furthermore, these beats are decomposed up to the 24th level of decomposition using FAWT. Sample
entropy (SEnt) is computed from each subband signal, which is reconstructed from the corresponding
coefficients of the FAWT based decomposition. The computed features are subjected to the
random forest (RF) [22], J48 decision tree [23,24], back propagation neural network (BPNN) [25],
and least-squares support vector machines (LS-SVM) [26] classifiers for separating the ECG beats of
MI and normal classes. The steps performed in the present work are shown in Figure 1.
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Figure 1. The proposed method to diagnose the myocardial infarction (MI) patients.
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The organization of the remaining sections of the paper is as follows: the dataset used,
preprocessing and segmentation of the ECG signals into beats, FAWT, SEnt, and classification methods
are provided in Section 2. The obtained results in this work are given in Section 3 and discussed in
Section 4. Finally, Section 5 presents the conclusions of the work.

2. Methodology

2.1. Dataset Studied in This Work

The dataset, containing normal and MI ECG signals, has been obtained from Physikalisch
Technische Bundesanstalt (PTB) diagnostic ECG database from the Physiobank [27,28]. Each signal was
acquired at the sampling rate of 1000 Hz. The dataset contains normal ECG recordings of 52 subjects
and MI ECG recordings of 148 subjects. The ECG signals obtained from the lead-2 have been used in
present work.

2.2. Preprocessing and Segmentation of ECG Signals

We have used Daubechies 6 (db6) wavelet basis function to eliminate baseline wander and
noise present in the ECG signals [29]. After preprocessing, each ECG signal is segmented into beats
based on R-peak detection. The Pan–Tompkins algorithm is applied to identify the R-peaks [30].
The 250 samples from the left and 400 samples from the right of the R-point are considered as one
ECG beat [3]. Thus, each ECG beat contains 651 samples. Finally, we have 40,182 MI ECG beats and
10,546 normal ECG beats.

2.3. Computation of Features in FAWT Framework

In this work, we have computed SEnt in FAWT domain to classify MI and normal ECG beats.
The brief explanation of FAWT method is given below.

• FAWT

The FAWT is a rational-dilation wavelet transform, which allows one to easily adjust the dilation
factor, Quality (Q)-factor, and redundancy (R). The FAWT employs the fractional sampling rate in
high pass and low pass channels. Moreover, it provides analytic bases by separating positive and
negative frequencies in high-pass channels [20]. Employing fractional sampling rate and analytic bases
in FAWT provides shift-invariance, tunable oscillatory bases, and flexible time-frequency covering [21].
These properties make this transform suitable for analysing the transient and oscillatory components
of the signals. Q-factor controls the frequency resolution of FAWT. The high Q-factor provides finer
filter banks for analysing the signals in the frequency domain. For fixed dilation and Q-factors,
the redundancy controls the position of the wavelet.

The mathematical expressions of the filter banks for FAWT are given in Table 1. This table also
provides expression for perfect reconstruction condition for FAWT.

In Table 1, A and B are used to adjust the sampling rate of the low-pass channel, and C and D are
used to adjust the sampling rate of high-pass channels. The ωp and ωs are the cutoff frequencies of the
pass-band and stop-band for the low pass filter, respectively. The ω0 and ω3 are the stop-band cutoff
frequencies for the high pass filter, and ω1 and ω2 are the pass-band cutoff frequencies.

The relation between β and the Q-factor is as follows [20]:

Q =
2 − β

β
. (1)

Redundancy is defined as follows [20]:

R =

(
C
D

)
1

1 − (A/B)
. (2)
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We have used A = 5, B = 6, C = 1, D = 2 and β = (0.8 × C)/D [21,31,32] in the
present work. Level of decomposition is kept at J = 24. The selection procedure of J is given in
Section 3. FAWT has been utilized for detecting the CAD in [31,32], in order to diagnose CHF in [33],
to identify electroencephalogram (EEG) signals of focal and non-focal classes in [34], and for the
faults identification in rotating machinery [21]. We have used the Matlab toolbox (İ Bayram, İstanbul
Technical University, İstanbul, Turkey) available for FAWT implementation at [35].

Table 1. Mathematical expressions for filters and perfect reconstruction condition of flexible analytic
wavelet transform (FAWT).

Filters and Parameters
Mathematical Expressions

Used in FAWT

Low pass filter [20]

H(w) =



(AB)1/2, |w| < wp

(AB)1/2θ
(

w − wp
ws − wp

)
, wp ≤ w ≤ ws

(AB)1/2θ
(

π − w + wp
ws − wp

)
, −ws ≤ w ≤ −wp

0, |w| ≥ ws

where,

wp =
(1 − β)π

A + ε
A , ws =

π
B

High pass filter [20]

G(w) =



(2CD)1/2θ
(

π − w − w0
w1 − w0

)
, w0 ≤ w < w1

(2CD)1/2, w1 ≤ w < w2

(2CD)1/2θ
(

w − w2
w3 − w2

)
, w2 ≤ w ≤ w3

0, w ∈ [0, w0) ∪ (w3, 2π)

where,

w0 =
(1 − β)π + ε

C , w1 = Aπ
BC , w2 = π − ε

C ,

w3 = π + ε
C , ε ≤ A − B + βB

A+B π.

Condition for perfect

|θ(π − w)|2 + |θ(w)|2 = 1

reconstruction [20]

(
1 − A

B

)
≤ β ≤

(
C
D

)
where,

θ(w)= [2 − cos(w)]1/2[1 + cos(w)]
2 for w ∈ [0, π]

2.4. Sample Entropy

SEnt [36] measures the complexity of the time series. It improves the performance by excluding
the bias due to the self matches counted in the computation of approximate entropy. Higher values of
SEnt indicate more complexity of the signal; on the other hand, the lower value of SEnt shows less
complexity of the signal.

Let us consider a time-series (y1, y2, ..........., yP) of length P for which the SEnt can be
computed as [37]:

SEnt(m, r, P) = − ln
(

Im+1(r)
Im(r)

)
, (3)

where Im(r) is defined as follows [37]:

Im(r) =
1

(P−mτ)

P−mτ

∑
j=1

Cm
j (r) (4)
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and

Cm
j (r) =

Sr
j

P− (m + 1)τ
, (5)

where Sr
j is the total count for which L [Y(j), Y(k)] ≤ r without considering the self-matches.

The parameter L [Y(j), Y(k)] is the distance between Y(j) and Y(k) vectors. Y(j) and Y(k) can be
given as [37]:

Y(j) = {yj, yj+τ , .........., yj+(m−1)τ},

Y(k) = {yk, yk+τ , .........., yk+(m−1)τ},

where j and k vary from 1 to P−mτ and k 6= j.
In this work, we have experimentally chosen threshold (r) = 0.35, delay (τ) = 1, and embedding

dimension (m) = 5. Parameter selection procedure has been explained in the Section 3.

2.5. Studied Classification Techniques

We have used RF, J48 decision tree, BPNN, and LS-SVM in this work to perform the classification
of normal and MI ECG beats based on the extracted features. In this work, we have used Waikato
environment for knowledge analysis (WEKA) toolbox (version 3.7.13, The University of Waikato,
Hamilton, New Zeland) for the implementation of RF, J48 decision tree, and BPNN classifiers [38].
We have used default parameters provided in WEKA toolbox for RF, J48 decision tree, and BPNN
classifiers. Recently, RF, J48 decision tree, and BPNN classifiers have been used to analyze the sleep
stages from EEG signals in [39].

Mathematical expression for decision making function of LS-SVM is given as follows [26]:

I = sign

[
Z

∑
z=1

αzwzE(y, yz) + b

]
. (6)

In the above expression, E(y, yz), αz, yz, b, wz, and Z represent a kernel function, Lagrangian
multiplier, the z-th input vector of D-dimensions, bias term, target vector, and total data points,
respectively.

Kernel functions are used with LS-SVM to map the input space to the higher dimension space and
the two classes can be separated using an optimal hyperplane [26]. In this work, linear, polynomial,
radial basis function (RBF), and Morlet wavelet kernels are employed with LS-SVM to perform the
classification. The mathematical expressions of these kernels are provided in Table 2. In Table 2,
x represents the order of the polynomial kernel, σ determines the width of RBF kernel, and q and D
represent the scale factor of the Morlet wavelet kernel and the dimension of the feature set, respectively.
LS-SVM is widely used in various biomedical signals classifications [40–44].

In the present work, we have evaluated the classification performance in terms of accuracy,
specificity, and sensitivity [45].

Table 2. Different kernel functions and their mathematical expressions.

Kernel Functions Mathematical Expressions

Linear [26] E(y, yz) = yT
z y

Polynomial [26] E(y, yz) = (yT
z y + 1)x

Radial basis function (RBF) [46] E(y, yz) = e
−‖y − yz‖2

2σ2

Morlet wavelet [47,48] E(y, yz) = ∏D
n=1 cos

[
k0

yn − yn
z

q

]
e
−‖yn − yn

z ‖
2

2q2



Entropy 2017, 19, 488 6 of 14

3. Results

First, we have segmented the MI and normal ECG signals into the beats. Each ECG beat of both
classes is decomposed into different subband signals using FAWT. The sample entropies are computed
from these different subband signals. We start performing the experiments with J = 5 and initial
parameters for SEnt m = 2, τ = 1, and r = 0.15 are choosen [37]. Typical subband signals extracted
from the decomposition of normal and MI ECG beats at the 5th level of decomposition using FAWT
are shown in Figure 2a,b, respectively. In Figure 2, subband signals SB1 to SB5 are reconstructed from
the detail coefficients from level 1 to level 5, and SB6 is reconstructed from the approximate coefficients
at level 5.

We fed the features to the RF classifier for selecting the suitable parameters. Variation of classification
accuracies for various values for m and τ is provided in Table 3. It can be inferred from the table
that accuracy of classification is highest for m = 5 and τ = 1. Classification accuracy for various
values of r is shown in Figure 3. We have achieved the maximum classification accuracy for r = 0.35.
Hence, we have used the parameters m = 5, τ = 1, and r = 0.35 to compute the sample entropies
in this work. Moreover, we have increased the decomposition level to J = 6, and observed that the
classification accuracy is increased to 91.95%. Hence, we further increased the decomposition level
up to the maximum possible decomposition level using FAWT with parameters values A = 5, B = 6,
C = 1, D = 2 and β = (0.8× C)/D, which is J = 24 [35]. The plot of classification accuracy versus
decomposition levels is shown in Figure 4. We can observe that accuracy is increasing with increase in
the decomposition level. The highest classification accuracy of 97.10% is achieved with RF classifier
at J = 24. We have employed a 10-fold cross-validation procedure for the training and testing of the
classifier [49]. The classification accuracy achieved using J48 decision tree and BPNN classifiers are
93.97% and 92.85%, respectively.
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Figure 2. Plot of decomposed subband signals: (a) normal electrocardiogram (ECG) beat, (b) MI ECG beat.
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Table 3. Classification accuracies computed using random forest (RF) classifier for different values of
m and τ using Sample entropy (SEnt) with r = 0.15.

m−→ 2 3 4 5
τ↓
1 87.716% 89.353% 89.353% 89.629%
2 88.92% 89.128% 89.32% 89.075%
3 89.126% 88.84% 88.739% 88.84%

0.1 0.15 0.2 0.25 0.3 0.35 0.4
89

89.5

90

90.5

91

91.5

r

A
cc

ur
ac

y 
(%

)

Figure 3. Plot of accuracy (%) versus r of SEnt with RF classifier.
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Figure 4. Plot of accuracy (%) versus level of decomposition with RF classifier.

Furthermore, we have also tested the features with LS-SVM classifier with different kernel
functions, namely, polynomial, linear, RBF, and Morlet wavelet kernels at J = 24. Variation of
classification accuracy (%) with the RBF kernel parameter σ is shown in Figure 5. We can observe from
Figure 5 that classification accuracy of LS-SVM is at a maximum for RBF kernel parameter σ = 2.2.
Plot of changes in the value of accuracy (%) for variation in the parameter q of Morlet wavelet kernel
is shown in Figure 6. LS-SVM showed maximum accuracy with Morlet wavelet kernel at q = 11.
The performance of LS-SVM, using four different kernels used in our work, is summarized in Table 4.
LS-SVM yielded the highest classification performance with RBF kernel, and achieved an accuracy,
specificity, and sensitivity of 99.31%, 98.12%, and 99.62%, respectively.

We have also employed Wilcoxon and Bhattacharya ranking methods for improving the
performance of the proposed system [50,51]. The plots of the classification accuracy (%) for various
ranked features are shown in Figures 7 and 8 for RBF and Morlet wavelet kernels, respectively.
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It can be noted that the ranking methods are not able to improve the classification performance.
The discrimination ability of the features is determined by computing the p-values using the
Kruskal–Wallis (KW) test [52]. Recently, the KW test has been explored to test the statistical significance
of the features in various biomedical signal analysis applications [53–55]. The p-values are found
significantly low (p < 0.0001) for all the features (SEnt computed from 25 subband signals), which
indicate good discrimination ability of all the computed features. Mean and standard deviation values
for features are provided in Table 5. In Table 5, SEnt refers to the sample entropy and the subscript
refers to the corresponding subband signal from which SEnt is computed.
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Figure 5. Plot of accuracies versus σ of RBF kernel.
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Figure 6. Plot of accuracies versus q of Morlet wavelet kernel.

Table 4. Classification accuracy (%) of least-squares support vector machine (LS-SVM) for different
kernel functions.

Kernel Function Parameters Accuracy (%) Sensitivity (%) Specificity (%)

Linear 83.32 81.83 89.02

Polynomial x = 2 96.30 96.01 97.43
x = 3 96.74 96.44 97.92

RBF σ = 2.2 99.31 99.62 98.12

Morlet wavelet q = 11, k0 = 0.25 99.30 99.64 97.92
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Figure 7. Plot of accuracy (%) versus number of features using LS-SVM with RBF kernel.

5 10 15 20 25
50

60

70

80

90

100

Number of features

A
cc

ur
ac

y 
(%

)

 

 

Wilcoxon
Bhattacharya

99.3%

Figure 8. Plot of accuracy (%) versus number of features using LS-SVM with Morlet wavelet kernel.

Table 5. Mean (M), standard deviation (SD) for normal and MI classes.

Feature Normal Class MI Class
(M± SD) (M± SD)

SEntSB1 0.0111± 0.0248 0.0448± 0.0651
SEntSB2 0.0250± 0.0385 0.0742± 0.0664
SEntSB3 0.0030± 0.0039 0.0071± 0.0112
SEntSB4 0.0032± 0.0026 0.0058± 0.0070
SEntSB5 0.0282± 0.0298 0.0660± 0.0491
SEntSB6 0.0625± 0.0431 0.0971± 0.0483
SEntSB7 0.0727± 0.0390 0.0973± 0.0420
SEntSB8 0.0696± 0.0388 0.0965± 0.0413
SEntSB9 0.0501± 0.0324 0.0722± 0.0338
SEntSB10 0.0493± 0.0246 0.0596± 0.0257
SEntSB11 0.0569± 0.0251 0.0680± 0.0244
SEntSB12 0.0674± 0.0305 0.0902± 0.0205
SEntSB13 0.0627± 0.0354 0.0928± 0.0288
SEntSB14 0.0599± 0.0340 0.0754± 0.0374
SEntSB15 0.0501± 0.0305 0.0663± 0.0380
SEntSB16 0.0480± 0.0221 0.0597± 0.0329
SEntSB17 0.0521± 0.0162 0.0607± 0.0247
SEntSB18 0.0894± 0.0151 0.0978± 0.0227
SEntSB19 0.1437± 0.0129 0.1442± 0.0157
SEntSB20 0.1491± 0.0056 0.1515± 0.0070
SEntSB21 0.1501± 0.0066 0.1475± 0.0087
SEntSB22 0.1230± 0.0100 0.1197± 0.0104
SEntSB23 0.0904± 0.0030 0.0911± 0.0038
SEntSB24 0.0665± 0.0010 0.0663± 0.0013
SEntSB25 0.0420± 0.0087 0.0363± 0.0107
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Furthermore, we test the classification performance with balanced dataset (10,546 beats of each
class) with the same parameter values of SEnt and FAWT. Classification accuracy for this case using
LS-SVM classifier is presented in Table 6.

Table 6. Classification accuracy (%) of LS-SVM with different kernel functions for balanced dataset.

Kernel Function Parameters Accuracy (%) Sensitivity (%) Specificity (%)

Linear 85.74 84.64 86.83

Polynomial x = 2 94.06 92.61 95.52

x = 3 96.88 95.98 97.77

RBF σ = 2.2 98.27 99.13 97.40

Morlet wavelet q = 11, k0 = 0.25 98.19 99.20 97.17

4. Discussions

In the present work, the ECG beats are decomposed into the 24th level of FAWT for obtaining
subband signals. Furthermore, SEnt is computed from each of the subband signal. We can observed
from Table 5 that SEnt computed from the lower frequency subband signals (SB21, SB22, SB24,
and SB25) showed higher values for normal ECG beats in comparison to the MI ECG beats. Therefore,
lower frequency subband signals show higher complexity for normal ECG beats than MI ECG beats.
However, lower values of SEnt are observed for higher frequency subband signals extracted from
normal ECG beats. Hence, complexity of higher frequency subband signals is lower for normal ECG
beats. Finally, our method achieved 99.31% accuracy using LS-SVM classifier with RBF kernel.

Summary of the comparison of the present work with the other existing work is provided in
Table 7. In [56], and time-domain features are computed from 12-lead ECG signals. The computed
features are fed to the BPNN classifier, which yielded sensitivity of 97.5%. In [57], the time-domain
method is used for extracting the features from the ECG signals to diagnose the MI patients. The authors
have used 12-lead ECG signals of 20 normal and 20 MI subjects. They achieved a sensitivity of 85%
to detect the MI subjects. In [58], the authors proposed a method based on the spectral differences
of cross wavelet transform (XWT) of the ECG signals. Furthermore, they proposed threshold based
classifier and achieved 97.6% classification accuracy. In [5], an algorithm based on the parametrization
of ECG signal is developed. In this algorithm, a 20th order polynomial is fitted with the ECG signal.
Their method showed 94.4% classification accuracy with J48 decision tree model for the diagnosis
of MI. The approach presented in [59] utilized the evaluation of multiscale energy and eigenspace
(MEES) features. The suggested method used support vector machine (SVM) classifier with RBF
kernel and achieved 96.15% classification accuracy. In [3], ECG beats are decomposed up to the 4th
level of decomposition using DWT. From the DWT coefficients, 12 nonlinear parameters are extracted.
The authors achieved 98.8% accuracy using a k-NN classifier. They also performed statistical tests for
determining the significance levels of the studied features. A method to automatically detect the MI
using ECG signals is also proposed in [60]. The achieved accuracies were 93.53% and 95.22% using
convolutional neural network (CNN) algorithms for the ECG beats with noise and without noise
removal, respectively.

We have achieved highest accuracy in comparison to the existing methods that are mentioned
in Table 7. Moreover, the methods suggested in [5,56–59] used ECG recordings of the multiple leads.
However, our method uses only lead-2 ECG recordings, which makes our method less complex
than multiple leads methods. The method suggested in [3] also requires ECG records of one lead
(lead-11) only. However, the method in [3] achieved 98.8% classification accuracy with 47 features.
In comparison to the method in [3], our method has achieved 99.31% accuracy with 25 features.
Our method showed better results than the method in [3] with a lesser number of features. The study
proposed in [60] also used lead-2 ECG signals and achieved 95.22% accuracy with an 11-layer deep
neural network. This method is more complex than our method and also time-consuming.
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Table 7. Summary of automated diagnosis of MI using ECG.

Author Year Dataset Analyzing Number Classification 10-Fold Cross Classification
Method of Leads Method Used Validation Performance (%)

Arif et al. [56] 2010 PTB diagnostic Time-domain 12-lead BPNN No Sensitivity = 97.5
ECG dtabase method

Al-Kindi et al. [57] 2011 PTB diagnostic Time-domain 12-lead - No Sensitivity = 85
ECG dtabase method

Banerjee et al. [58] 2014 PTB diagnostic XWT based 3-lead Threshold based No Accuracy = 97.6
ECG dtabase method classifier

Liu et al. [5] 2015 PTB diagnostic ECG polynomial 12-lead J48 No Accuracy = 94.4
ECG dtabase fitting decision tree

Sharma et al. [59] 2015 PTB diagnostic MEES based 12-lead SVM with No Accuracy = 96.15
ECG dtabase method RBF kernel

Acharya et al. [3] 2016 PTB diagnostic DWT, Nonlinear One lead k-NN Yes Accuracy = 98.8
ECG dtabase features (lead-11)

Acharya et al. [60] 2017 PTB diagnostic No feature extraction One lead CNN Yes Accuracy = 95.22
ECG dtabase and selection (lead-2)

Present method PTB diagnostic FAWT and One lead LS-SVM Yes Accuracy = 99.31
ECG dtabase SEnt (lead-2)

5. Conclusions

In this work, normal and MI ECG beats are analyzed using SEnt in FAWT framework. We have
achieved the highest classification performance using lead-2 ECG signals as compared to the reported
works. We have identified the suitable parameters to compute the SEnt in FAWT domain for the
detection of MI subjects accurately. Parameters for the computation of SEnt and the decomposition
level in FAWT domain are selected on the basis of classification accuracy computed using an RF
classifier. Achieved classification accuracies with RF, J48 decision tree, BPNN, and LS-SVM classifiers
are 97.10%, 93.97%, 92.85%, and 99.31%, respectively, using the entire dataset. Our method achieved
classification accuracy of 98.27% with LS-SVM using balanced data set. Therefore, we can conclude
that our methodology has performed well for the detection of MI patients using both balanced and
unbalanced (entire) datasets. Our automated system can be used to assist cardiologists to cross check
their diagnosis. It can be extended to diagnose the severity of MI. Along with the echocardiography,
it can be used to localize the MI.
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