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Abstract: The entropy for a black hole in a de Sitter space is approached within the frame-
work of spacetime foam. A simple model made by N wormholes in a semiclassical ap-
proximation, is taken under examination to compute the entropy for such a case. An exten-
sion to the extreme case when the black hole and cosmological horizons are equal is dis-
cussed.

© 2000 by the authors. Reproduction is permitted for noncommercial purposes.



Entropy 2000 , 2 27

1 Introduction

Black holes have many properties analogous to those of thermodynamics. In particular, four laws
of black holes[1] combined with the generalized second law make up a main framework of the
black hole thermodynamics. In these laws, black hole entropy is defined as

A
E’ (1)

SBH =

where A is the area of black hole horizon. This formula is known as Bekenstein-Hawking formula,
since the concept of black hole entropy was first introduced by Bekenstein[2] as a quantity pro-
portional to the horizon area and the proportionality coefficient was fixed by Hawking’s discovery
of thermal radiation with temperature given by

kpTpy = —. 2
Bl = 5— (2)
k is the surface gravity of a background black hole. This thermal radiation and its temperature are
called Hawking radiation and Hawking temperature, respectively. Let us recall basic properties of
the black hole thermodynamics by taking the example of a one-parameter family of Schwarzschild
black holes, parameterized by the mass M. The first law of thermodynamics[1], in this case is

0Epy = Tsu6Spu, (3)

where Epy, Spy and Tgy are quantities that are identified with the energy, the entropy and
the temperature of a black hole, respectively. The energy of the black hole is simply given by
Epy = Mpgy. A simple relation exists also for the temperature Tgy. Hawking showed that a
black hole with surface gravity s emits thermal radiation of a quantum matter field (which plays
the role of a thermometer) at temperature given by Eq. (2) [3]. Since x = ¢*/4G Mgy, it is natural
to define the temperature of a Schwarzschild black hole with mass Mgy by

hic®
kgTpy = ————. 4
BoBH SWGMBH ( )
Then from Egs.(2)-(4), we get
]{?BC3
Spn = _4hGA +C, (5)

where A = 167G*M%,;/c¢* is the area of the event horizon and C is some constant. Since a
value of C' is not essential in our discussions, we shall set hereafter C' = 0. This is a special
case of the Bekenstein-Hawking formula. It can be shown that classically the area of the event
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horizon cannot decrease in time (the area law([4] or the second law of black hole) just as the
ordinary thermodynamical entropy. This observation was the real motivation of introducing a
black-hole entropy[2]. Moreover, when quantum effects are taken into account, it is believed
that a sum of the black hole entropy and matter entropy does not decrease (the generalized
second law). The zeroth law of black hole thermodynamics states that surface gravity of a Killing
horizon is constant throughout the horizon. This is expected for the Schwarzschild black hole,
because it is a static black hole. What is unexpected is that the same result is valid also for
a Kerr black hole, which is dependent by its temperature, while the surface gravity is not. Of
course we could just check this result but the point is that it is. This supports the choice of
the black-hole temperature. The third law does hold in the sense of Nernst: it is impossible by
any process, no matter how idealized, to reduce the surface gravity to zero in a finite sequence
by operations [1]. Thermodynamics has a well-established microscopic description: the quantum
statistical mechanics. In the thermodynamical description, information on each microscopic degree
of freedom is lost, and only macroscopic variables are concerned. However, the number of all
microscopic degrees of freedom is implemented in a macroscopic variable: entropy S is related to
the number of all consistent microscopic states N as

S =kpInN. (6)

In analogy, it is expected that there might be a microscopic description of the black hole thermo-
dynamics, too. In particular, it is widely believed that the black hole entropy might be related to a
number of microscopic states. This microscopic description seems to require a yet to be developed
quantum theory of gravity. Actually a microscopic derivation of the black hole entropy was given
in superstring theory|[5, 6, 7] by using the so-called D-brane technology. In this approach, the black
hole entropy is identified with the logarithm of the number of states of massless strings attached
to D-branes, with D-brane configuration and total momentum of the strings along a compactified
direction fixed to be consistent with the corresponding black hole[8,; 9]. The analysis along this
line was extended to the so-called M-theory[10]. Recently a different approach based on a foamy
structure of space-time has been proposed [11, 12]. In this approach space-time foam is described
by a collection of N coherent wormholes, whose energy density (Casimir energy) at its minimum,
is

4
A&M@N—MZVA

Y64r? e
A is an U.V. cut-off, V' is the volume of the space and N, is the wormholes number. When we
apply the wormhole model to the area, we obtain the mass quantization of the Schwarzschild black
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hole, namely*

=

S:4WM2G:4WMQZ§:N7T:>M:T. (7)
p
A second consequence is that in de Sitter space, the cosmological constant is quantized in terms
of [, i.e.

A N4rl?
ST = 7T10—]\77T:>

DU, ~ —_ — A (8)
ZN, 42 48 ZN

In this paper we would like to apply the same wormhole model of spacetime foam, to compute
the entropy of a black hole embedded in a de Sitter space whose line element is described by the
Schwarzschild-de Sitter metric (SdS). We will also look at its extreme version, the so-called Nariai
metric[13]. The plan of the paper is the following: in section 2, we will briefly report our model of

space-time foam, in section 3, we give a simple example of application of the resulting discretized
(foamy) spacetime to the computation of the entropy in the Schwarzschild and in de Sitter case;
in section 4, we discuss the entropy quantization in the case of the SdS case. We summarize and
conclude in section 5.

2 Constructing the Foam

When we try to merge General Relativity with Quantum Field Theory at the Planck scale, space-
time could be subjected to topology and metric fluctuations [14]%. Such a fluctuating spacetime
is known under the name of “spacetime foam” which can be taken as a model for the quantum
gravitational vacuum. At this scale of lengths (or energies) quantum processes like black hole
pair creation could become relevant. To establish if a foamy spacetime could be considered as
a candidate for a Quantum Gravitational vacuum, we can examine the structure of the effective
potential for such a spacetime. There are some examples showing that flat space cannot be con-
sidered as the true ground state for General Relativity [16, 17, 18, 19]. In the case of Ref.[19], the
whole spacetime has been considered as a black hole-anti-black hole pair formed up by a black
hole with positive mass M in the coordinate system of the observer and an anti black-hole with
negative mass —M in the system where the observer is not present. In this way we have an
energy preserving mechanism, because flat space has zero energy and the pair has zero energy
too. However, in this case we have not a cosmological force producing the pair: we have only

!Units in which & = ¢ = k = 1 are used throughout the paper.
°Tt is interesting to note that there are also indications on how a foamy spacetime can be tested

experimentally[15].
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pure gravitational fluctuations. The black hole-anti-black hole pair has also a relevant pictorial
interpretation: the black hole with positive mass M and the anti black-hole with negative mass
—M can be considered the components of a virtual dipole with zero total energy created by a
large quantum gravitational fluctuation[20]. Note that this is the only physical process compatible
with the energy conservation. The importance of having the same energy behaviour (asymptotic)
is related to the possibility of having a spontaneous transition from one spacetime to another one
with the same boundary condition [21]. This transition is a decay from the false vacuum to the
true one[22, 23]. However, if we take account of a pair of neutral black holes living in different
universes, there is no decay and more important no temperature is involved to change from flat
to curved space. To see if this process is realizable we need to compute quantum corrections to
the energy stored in the boundaries. These quantum corrections are pure gravitational vacuum
excitations which can be measured by the Casimir energy, formally defined as

ECasimir [aM] - EO [aM] - EO [0] 5 (9)
where Ej is the zero-point energy and dM is a boundary. We begin to consider the following line

element (Einstein-Rosen bridge) related to a single wormhole

2
ds® = —N? (r) dt* + L + 72 (d#* + sin® Odp? 10
1 2MG

T

We wish to compute the Casimir-like energy

(| ES W) (0| W)
W) (W)

(11)

by perturbing the three-dimensional spatial metric g;; = §i; + hi;. AE (M) is computed in a
WKB approximation, by looking at the graviton sector (spin 2 or TT tensor) in a Schrodinger
representation with trial wave functionals of the Gaussian form by means of a variational approach.
The Spin-two operator is defined as

(D)2 i= — 8% + 2R? (12)

J

where A is the Laplacian on a Schwarzschild background and Rf is the mixed Ricci tensor whose

components are:

(13)

? Y

R?:diag{_2MG MG MG}.

r3 r3 r3
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The total energy at one loop, i.e., the classical term plus the stable and unstable modes respectively,
is

AE,, + AE, + AE,

where AE,; is the quasilocal energy. For symmetric boundary conditions with respect to the
bifurcation surface Sy (such as this case E;; = E; — E_ = 0. When the boundaries go to spatial
infinity £+ = Mapys. The Stable modes contribution is

V. [(3MG\?, [ r3A?

A is a cut-off to keep under control the UV divergence, we can think that A < m,. For the

unstable sector, there is only one eigenvalue in S-wave. This is in agreement with Coleman
arguments on quantum tunneling: the presence of a unique negative eigenvalue in the second
order perturbation is a signal of a passage from a false vacuum to a true vacuum. The Rayleigh-
Ritz method joined to a numerical integration technique gives E? = —.17541/(MG)*[19], to
be compared with the value E2 = —. 19/ (MG)* of Ref.[16]. How to eliminate the instability?

We consider N,, coherent wormholes (i.e., non-interacting) in a semiclassical approximation and
assume that there exists a covering of ¥ such that ¥ = UM ¥, with ¥; N ¥, = 0 when i # j.
Each ¥; has the topology S? x R! with boundaries 82? with respect to each bifurcation surface.
On each surface ¥;, quasilocal energy is zero because we assume that on each copy of the single
wormhole there is symmetry with respect to each bifurcation surface. Thus the total energy for
the collection is E‘t;t = N, H; and the total trial wave functional is the product of N, t.w.f.

Uy, =07 @0 @...... 5 (15)

(o}

By repeating the same calculations done for the single wormhole for the N,, wormhole system,
we obtain

a) The total Casimir energy (stable modes), at its minimum, is

Vo At

N2
AB, (M) ~ N —.

The minimum does not correspond to flat space — AE, (M) # 0.

b) The initial boundary located at R. will be reduced to Ry /N,,.

c) Since the boundary is reduced there exists a critical radius p. = 1. 1134 such that : VN > N, 3
re s.t. ¥V rog <r <r. o(Az) = 0. This means that the system begins to be stable[11, 12].
To be compared with the value p. = 1.445 obtained by B. Allen in Ref.[24].
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3 Area Spectrum, Entropy and the Cosmological constant

Bekenstein has proposed that a black hole does have an entropy proportional to the area of its
horizon Sy, = const X Ap,r[2]. In natural units one finds that the proportionality constant is
set to 1/4G = 1/42, so that the entropy becomes S = A/4G = A/4l>. Another proposal always
made by Bekenstein is the quantization of the area for nonextremal black holes a,, = al2 (n +n)
n>-—1 n =1,2,... The area is measured by the quantity

A(Sy) = /5 P1r/5. (16)

We would like to evaluate the mean value of the area

vp Al wp) (W[, Paya|vr
s~ <\PL\\LF> 2 ‘<\DF\\DF>‘ ! .

computed on the foam state
V) =01 @ ¥y @...... Ty . (18)
Consider oq, = Gap + 60404 is such that |, s d*x\/G = 477 and 7 is the radius of Sy

U, ‘A‘ \IIF>

A(Sy) = < T = 4772 (19)

Suppose to consider the mean value of the area A computed on a given macroscopic fixed radius

N
R. On the basis of our foam model, we obtain A = |J A;, with A; N A; = 0 when ¢ # j. Thus

i=1

N N
A=4rRP =" A; =) 4n7}. (20)
i=1 =1
When 7; — [,, A; — A, and[12]
A N4xl?
= = 2 = — = p =
A= NA,, = Nirl, = S = iz 12 Nr. (21)

Thus the macroscopic area is represented by N microscopic areas of the Planckian size. In this
sense we will claim that the area is quantized. The first consequence is the mass quantization of
the Schwarzschild black hole, namely

2

S =47M*G = Ar Ml = Nm = M = TR (22)
P
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To be compared with Refs.[25, 26, 27, 28, 29, 30]. A second consequence is that in de Sitter space,
the cosmological constant is quantized in terms of [, i.e.[31, 32]

3r A N47Tl§ 3
BN, 42 4P 2N

It is possible to give an estimate of the total amount of Planckian wormholes needed to fill the
space beginning from the Planck era (A ~ (10% — 1018G€V)2> up to the space in which we now

live A < (1072GeV).
1
N1038G6V2 =10"%GeV? — N = 10'%, (24)

in agreement with the observational data A, < 107!22]5% coming from the Friedmann-Robertson-
Walker cosmology constraining the cosmological constant[33].

4 Entropy for black holes in de Sitter space

The Schwarzschild-de Sitter metric (SdS) is defined as

IMG A, IMG A, 5\
ds® = — (1 - ¢_ —7"2) dt* + (1 — ¢_ —7"2) dr® + r?dQ?. (25)
r 3 r 3
For A, = 0 the metric becomes
2M 2MG\ !
ds® = — (1 — G> dt* + (1 — G> dr® 4 r*dQ? (26)
r r
and it describes the Schwarzschild metric, while for M = 0, we obtain
A Ae )\
ds? = — (1 — ?TQ) dt* + (1 — ?T2> dr® + r?dQ?, (27)

namely the de Sitter metric (dS). The gravitational potential go (r) of (25) admits three real
roots. One is negative and it is located at

2 0 2
r_ = \/_A_C COS (g —+ ?ﬁ) 3 (28)
while the other ones are associated to the black hole and cosmological horizons respectively located
at

_ 2 9 _ 2 0 4r (29)
r+—\/A_Ccos 3 ,r++—\/A_Ccos st3 )
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where

cosf = —3MG+/A., (30)
with the condition

0<9(MG)*A, < 1. (31)

Eq.(30) implies that 0 € [g, 37“} . In this interval r is a monotonic decreasing function of #, while

r, is a monotonic increasing one with

rh € 10,1/3/A.
rhy € (0,/3/A| .

They have a common value when 7, = r ., = 1/y/A,, where 9(MG)*A = 1 and § = «. This
means that the cosmological horizon and the black hole horizon have merged. The relation between

(32)

the three roots is
r_ + Ty + Tyy = 0 (33)

and furthermore

S/AC:T3_+T+T+++T3_+ (34)
6MIZ/Ae = (rirsq) (ry +144).
The gravitational entropy in the SdS case is
Abh + AC s
SIT:TQ(T?HFTL)’ (35)
P P
namely it is the sum of the black hole and cosmological entropy[34]. By means of Eqs.(29) one
gets,
A 5 (0 o (0 Am A
S = E (cos (§> + cos (§ + ?>> = Aclgc(e). (36)

For 6 € [£,2], ¢ () € [3,2] and the entropy is bounded by

<
_S_Acl
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The lower bound of inequality (37) corresponds to the entropy of the Nariai metric, whose
(Lorentzian) line element is

A5 = — (1= Ap?) de* + (1~ Ap?) " dp? + 2, (38)

Thus the entropy in the SAS case has an upper bound represented by the de Sitter entropy and a
lower bound represented by the Nariai entropy. By means of Eq.(23), the Nariai entropy is

27 2rN
S=NET TS (39
and the relative black hole mass is
(rores) (ry +r44) (40)

C22(r 4y 3

where we have used Eqgs.(34) to express the mass and the cosmological constant in terms of the
roots of the gravitational potential go (r). When r, = r,, = 7, the black hole mass is equal to
the “cosmological mass” M.

% ¢ 1 [1
== (41)

M,=M — /=,
32\ A,

612r2 3l

2
p

i.e. Eq. (31) for # = . Recalling Eq.(23) we obtain

[ 1 | N VN
LA, 2712 3v3l,

Therefore the black hole mass is bounded by

o<m< L Lo YN
32V A, 3\/§zp

Note that the black hole mass in the Nariai case is lower than the Schwarzschild case: this is the

(43)

effect of having a spacetime with a positive cosmological constant which describes a S® topology.
This means that also the black hole radius cannot exceed the cosmological radius. Thus the black
hole mass has an upper bound deriving from the extreme case.

5 Conclusions

On the basis of the model of spacetime foam described in section 3, in this paper an attempt
to compute the entropy for the Schwarzschild-de Sitter metric has been performed including also
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its extreme case or Nariai metric. It is known that semiclassically, one can assign a probability
measure that leads to computing the logarithm of the number of microstates as in the case of a
thermal system with an entropy

S =log P. (44)

The SdS case entropy is described by Eq.(35). The associated probability is

T 4
Psgs ~ exp S = exp B (ri + riJr) = €XP ¢ (0) . (45)
p c'p

This value interposes two special cases, as seen. The first is the de Sitter case where M = 0 and
S =3n/l3A,, ie.

3
Pdszexp<

ZQ_X> =expmN (46)
Pile

and the second is the Nariai case where M = M, and S = 27/I%A. with probability

2 2r N
PN:exp< W) T

Thus the probability is an exponentially decreasing function in terms of the mass parameter and

2rN 47N
Py < Psgs < Pys — eXPWT < exp i

c(f) <expmN, (48)

where we have expressed the probability in terms of the wormholes number. As expected the pres-
ence of the cosmological constant modifies the property of the black hole mass and consequently
of its horizon. This modification is given by directly comparing the Schwarzschild metric and the
Schwarzschild-de Sitter metric.Moreover from Eq.(48), we realize that the de Sitter space has the
best probability to be realized when compared with the SAS or Nariai spaces. Nevertheless, we
can see that the SAS space has a probability that can be driven close to the de Sitter probability.
Moreover, when we compare Psgg with Py we can see that the SdS space has a major probability
with respect to the extreme space, namely the Nariai space. This conclusion seems to be in conflict
with the request that only regular Euclidean Einstein solutions close to the horizon have to be
considered; in this case only the Nariai solution. A possibility that can be investigated to better
understand this situation is given by the computation of the Casimir-like energy for the SdS space
with the de Sitter space as a reference space. This has been done for the Schwarzschild space with
flat space as a reference space in Ref.[19] and it has led to the N-wormhole approximation of the
foam we have used to compute the entropy for the SdS and Nariai spaces. The same steps can be



Entropy 2000, 2 37

repeated to better understand the process of black hole pair creation in presence of a cosmological term
and its consequences on the foam structure.
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