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Abstract: The regularity of price fluctuations in exchange rates plays a crucial role in foreign
exchange (FX) market dynamics. In this paper, we quantify the multiply irregular fluctuation
behaviors of exchange rates in the last 10 years (November 2006–November 2016) of eight world
economies with two nonlinear approaches. One is a recently proposed multiscale weighted
permutation entropy (MWPE) and another is the typical quantification recurrence analysis (RQA)
technique. Furthermore, we utilize the RQA technique to study the different intrinsic mode
functions (IMFs) that represents different frequencies and scales of the raw time series via the
empirical mode decomposition algorithm. Complexity characteristics of abundance and distinction
are obtained in the foreign exchange markets. The empirical results show that JPY/USD (followed
by EUR/USD) implies a a higher complexity and indicates relatively higher efficiency of the Japanese
FX market, while some economies like South Korea, Hong Kong and China show lower and weaker
efficiency of their FX markets. Meanwhile, it is suggested that the financial crisis enhances the market
efficiency in the FX markets.

Keywords: nonlinear analysis; complexity; exchange rate; MWPE approach; recurrence behaviors

1. Introduction

Financial markets are some of the most complex systems that have been existed in human society,
which exhibit rich fluctuation behaviors of financial price variations such as the fat tails phenomenon,
power law of logarithmic returns and volumes, volatility clustering, multifractality of volatility, etc.
Various models, techniques, and theoretical methods have been proposed to investigate the financial
dynamics [1–11]. Owing to the great number of interactions among different agents, an almost arbitrary
level of complexity of market segments is arrived upon. Thus, it is extremely meaningful and also
natural that many methods from complex-system-theory and statistical sciences are more and more
applied to analyze and depict these phenomena that are related to this sort of market [12–16]. In the
present paper, we perform the nonlinear complex characteristics study of a certain market share, that
is, the foreign exchange market (FX), which is the world’s largest and most liquid financial market and
has a strong impact on the world economy, not only influencing the individual fortunes of billions but
also directly affecting all other financial markets, since it manages the currencies trading and any price
can be expressed in terms of a currency. Due to the liberalization of global economy, the international
trade and flows of international capital significantly increase. Consequently, the supply and demand
in the FX market experience violent changes, its risk rapidly grows, and the microeconomic and
macroeconomic subject behaviors are dramatically influenced. The considerable growth of the trades
and scales occur in the FX market, making the FX investment rank the second investment field of most
importance. As a result, the risk management of the currency market correspondingly rises. Volatility
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in the foreign exchange market is influenced by numerous factors, like the exchange rate regimes
followed by governments across the world and the transactions costs, which increasingly makes it
of a a dynamic, complex, and unpredictable nature. Moreover, the complexity nature of FX market
dynamic systems also comes from the existence of an independent frame of reference for currency
pricing, i.e., any currency must be expressed in terms of a base currency, and from its sensitivity to
interactions with all other financial markets. The occurrence, formation, and evolution of exchange
rate fluctuations involve complex characteristics and exhibit nonlinear interactions, making it uniquely
challenging in extracting any valuable information, forecasting and modeling.

Entropy, a concept from statistical physics, has become a powerful tool due to its capacity of
capturing the time series’ uncertainty and disorder without exerting any restraints on the theoretical
probability distribution [17]. A family of entropy parameters, such as Shannon entropy [18,19],
Kolmogorov entropy [20], approximate entropy (ApEn) [21], sample entropy (SampEn) [22,23], etc.
have witnessed extensive applications in various fields. Amongst them, permutation entropy was
proposed by Bandt and Prompe [24], which is based on comparison of neighboring values of each point
and mapping them to ordinal patterns. It shows advantages of simplicity, fast calculation, robustness
for analyzing different kinds of time series, including random, chaotic and real-world time series,
which has been employed in the context of neural [25], physiological signals [26–28], climate system [29]
and financial market time series [30]. Despite its powerful ability in distinguishing dynamical behaviors
of nonlinear time series, permutation entropy ignores the amplitude information. Thus, Fadlallah
et al. introduced the weighted-permutation entropy (WPE) retaining the amplitude information of
time series [31]. WPE permutes a vector in a time phase space and calculates the variance of the
vector as a weight to compute the Shannon entropy, which can significantly enhance the robustness
and stability of WPE, especially for the time series that contains substantial amplitude information
because of its immunity to degradation by noise and (linear) distortion. Then, the multiscale weighted
permutation entropy [32,33] was introduced as a combination of multiscale method and WPE, and was
applied to the analysis of the actual signal series from vertical upward oil-in-water two-phase flow
experiments. In this paper, we adopt the multiscale weighted permutation entropy (MWPE) approach
to investigate complexity properties of exchange rates. Another approach we intend to use is recurrence
plot (RP) and recurrence quantification analysis (RQA) [34–37]. RP provides visual insight into the
complex nonlinear deterministic patterns hidden in a time series and shows a graphical description
of recurrences that represent the similar system states obtained at different times. It portrays the
distinct occasions when dynamical systems appear in the same region of phase space. RQA defines a
group of recurrence measures that can be used to quantify important structures that the plot reveals.
In particular, the RQA technique is further utilized in analysis of the IMF (intrinsic mode functions)
series that represents various frequency scales of the original series after performing the empirical
mode composition (EMD) [38] of price variations.

The rest of this paper is organized as follows. Section 2 describes the adopted data sets from the
FX market. Section 3 introduces the multiscale weighted permutation entropy and the quantification
recurrence analysis methods. In Section 4, the empirical complexity analysis results of price returns are
presented, while Section 5 discusses the nonlinear recurrence performances of IMF time series. Finally,
conclusions are drawn in Section 6.

2. Data Description and Processing

The analyzed dataset consists of the exchange rates from eight different world economies, which
are China renminbi yuan (CNY/USD), Hong Kong dollar (HKD/USD), Japanese yen (JPY/USD),
South Korea won (KRW/USD), Indian Rupee (INR/USD), Euro (EUR/USD), U.K. pound sterling
(GBP/USD) and Swiss franc (CHF/USD), respectively. The exchange rate is defined as local currency
per US dollar, and covers the last 10-year time period from 30 November 2006 (just before the beginning
of the financial crisis) to 29 November 2016, with 2457 data points. The nominal quotations are selected
that are intended for statistical or analytical purposes Let xt denote the daily price of the exchange
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rate at day t. In this paper, we investigate the daily price changes (called logarithmic returns) of the
exchange rate, which is calculated as its logarithmic difference, rt = log xt − log xt−1. Figure 1 displays
the time series graphs of daily prices and price returns of the exchange rates for eight world important
economies, while Table 1 exhibits the descriptive statistics of the prices. The values of kurtosis for
CNY/USD, HKD/USD, KRW/USD and GBP/USD are more than three (kurtosis > 3 = leptokurtic
distribution) while the values for others are less than three (kurtosis < 3 = platykurtic distribution).
These values clearly indicate the exchange rate data for the sample period is not normally distributed.

Table 1. Descriptive statistics of daily prices of the exchange rate data.

Symbol Mean Std. Min. Median Max. Mode Kur. Skew.

CNY/USD 6.6241 0.4487 6.0409 7.8346 6.8276 6.8276 3.3777 1.0076
HKD/USD 7.7677 0.0202 7.7474 7.8288 7.7501 7.7501 3.2079 1.1966
JPY/USD 99.5427 14.3627 75.7186 100.0821 125.5933 76.6822 1.8443 0.0441

KRW/USD 1111.5366 108.0174 903.8059 1111.5366 1570.0365 923.9899 4.8571 0.6416
INR/USD 52.7574 8.9675 39.1129 50.2955 68.8737 39.1667 1.6737 0.2335
EUR/USD 0.7682 0.0753 0.6246 0.7521 0.9503 0.7552 2.7133 0.6841
GBP/USD 0.6206 0.0669 0.4738 0.6288 0.8228 0.6240 3.4634 −0.1852
CHF/USD 1.0042 0.1037 0.7299 0.9755 1.2535 0.9349 2.6815 0.6531

(a) CNY/USD (b) HKD/USD

(c) JPY/USD (d) KRW/USD

Figure 1. Cont.
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(e) INR/USD (f) EUR/USD

(g) GBP/USD (h) CHF/USD

Figure 1. Daily logarithmic return time series of the exchange rates for eight world economies from
30 November 2006 to 29 November 2016. The inset plots show the daily price time series with the same
time period.

3. Methodologies

3.1. The MWPE Method

Permutation entropy (PE) [24] has been recently suggested as a complexity measure of nonlinear
systems. It is based on the order relations among values of a time series, the permutation
patterns. Though PE shows a number of advantages in distinguishing complex and dynamic
properties of nonlinear time series, its ignorance of the amplitude information was pointed out [31],
and correspondingly the weighted permutation entropy was developed by incorporating amplitude
information. Later, the multiscale weighted permutation entropy (MWPE) was proposed by taking the
multiple scales into consideration [32,33], which can be described as follows [33]:

(i) For a time series x(t) = {x(1), x(t), · · · , x(N)}, its consecutive coarse-grained series, determined
by the scale factor s, is constructed

ys(t) =
1
s

js

∑
i=(j−1)s+1

x(t), 1 ≤ t ≤ N/s. (1)
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(ii) For ys, given an embedding dimension m and a time delay η, an m-dimensional space is
transformed from ys(t),

Ys(t) = [ys(t), ys(t + η), · · · , ys(t + (m− 1)η)], 1 ≤ t ≤ N/s−m + 1. (2)

(iii) The components of Ys(t) are placed in an ascending order

ys(t + (k1 − 1)η) ≤ ys(t + (k2 − 1)η) ≤ · · · ≤ ys(t + (km − 1)η).

When confronting an equality, e.g.,

ys(t + (ki − 1)η) = ys(t + (k j − 1)η)(i, j ∈ {1, 2, · · · , m}),

we consider the quantities y by the k values, namely if ki ≤ kj, we set ys(t + (ki − 1)η) ≤ ys(t +
(kj − 1)η). Thus, any vector Ys(t) has a permutation πt = [k1, k2, · · · , km], which is one of the
permutations of m distinct symbol set {1, 2, · · · , m}.

(iv) Of every permutation πl(l ∈ {1, 2, · · · , m!}), the relative frequency with weight for πl is given as

ps
w(l) =

∑
N/s−(m−1)η
t=1 w(t)Il(Ys(t))

∑
N/s−(m−1)η
t=1 w(t)

, (3)

where w(t) is the weighted value of Ys(t) and can be computed

w(t) =
1
m

m

∑
j=1

[ys(t + (j− 1)η)− Ȳs(t)], (4)

where Ȳs(t) = 1
m ∑m

j=1 ys(t + (j− 1)η) is the arithmetic mean of Ys(t). Il(Ys(t)) is the indicator
function of Ys(t) for permutation πl , defined as Il(Ys(t)) = 1 if πt = πl and Il(Ys(t)) = 0 if
πt 6= πl .

(v) The MWPE hs
w is defined as the Shannon entropy

hs
w = −

m!

∑
l=1

ps
w(l) ln ps

w(l). (5)

When ps
w(l) = 1/m!, then ps

w gets the maximum value ln(m!), thus ps
w can be normalized through

ln(m!). The normalized MWPE Hs
w is defined as Hs

w = hs
w/ ln(m!).

3.2. The RQA Approach

Recurrence quantification analysis (RQA) is a well-known nonlinear approach that is capable
of investigating the complex deterministic properties of the dynamical systems. It offers numerical
measures allowing for quantifying the structures and complexities that are embodied in the recurrence
plot (RP) [34–37]. Considering a time series X(t), its phase space is constructed into the discrete time
delay vector X(t) = {X(t), X(t− η), X(t− 2η), · · · , X(t− (m− 1)η)}, where η denotes the time delay,
and m is embedding dimension. RP emerges as a point in the phase space is approaching another
point (at a distance lower than a certain threshold). Afterwards, the recurrence matrix R is given by
combination of the Heaviside step function Θ(·) and the norm || · ||

Rij = Θ(ε− ||X(i)− X(j)||), i, j = 1, 2, · · · , NR, (6)
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where NR = N − (m− 1)η is the number of considered states, and ε reflects the recurrence tolerance,
called threshold value. R is comprised of zeros and ones corresponding to the state of the system
(1—recurrence and 0—no recurrence).

Then, a number of complexity measures that are based on recurrence points’ densities, diagonal
and vertical line structure [34,37] are provided in the RQA technique. The recurrence rate (RR)

RR =
1

N2
R

NR

∑
i,j=1

Ri,j (7)

shows the density of recurrence points in an RP, and can be considered as the recurring probability
of any state. The measure determinism (DET) comes from the line parallel to the main diagonal,
defined by

DET =
∑NR

l=lmin
lP(l)

∑NR
l=1 lP(l)

, (8)

where P(l) is a histogram of diagonal lines of the length l, and lmin is the minimal length of a diagonal
line, which is set lmin = 2. DET offers an expression of determinism and predictability in the system,
so the higher DET value is, the more predictable of the system with diagonal lines. Another measure
defined for diagonal line collections is Shannon entropy LENT

LENT = −
NR

∑
l=lmin

p(l) ln p(l), (9)

where the probability of line distribution is p(l) = P(l)/∑l≥lmin
P(l). The increase of LENT suggests the

rise complexity of the time series. Moreover, the mean length of the diagonal lines LMean = ∑NR
l=lmin

lp(l)
is a measure that indicates the stability of the system. In the place of diagonal lines, the vertical
recurrence lines are considered. Analogous to the determinism, the laminarity (LAM) is defined for
vertical line patterns

LAM =
∑NR

v=vmin vP(v)

∑NR
v=1 vP(v)

, (10)

where P(v) denotes a histogram of vertical lines of the length v with the minimum line length vmin = 2.
The larger value of the laminarity parameter reflects the the more stability of the system. Lastly, the
average vertical line length, called “trapping time” TT = ∑NR

v=vmin vp(v), measures the mean time that
the system remains at a specific state.

4. Empirical Results of Price Returns

4.1. Complexity Analysis by the MWPE

In this subsection, we apply the MWPE approach to investigate complexities of the price return
series for the exchange rates introduced in Section 2. Figure 2 presents the empirical results of the
MWPE analysis with time scale factor s from 1 to 30. In the MWPE algorithm, we choose the same
time delay η = 1 for all the analyzed time series. The embedding dimension m plays an important
role in measurement of the permutation of probability distribution, since it determines the number
of accessible states [39]. Bandt and Prompe [24] recommended m = 3, 4, · · · , 7, and we compare the
results for m = 3, 5, 7, respectively. The influence of embedding dimension m on the estimation of
MWPE values is very obviously observed in Figure 2. On one hand, when m = 3, the MWPE values
experience very significant oscillations for different scale factors, but with m increasing, the oscillations
become less and less. In other words, the increase of m reduces the estimation errors of permutation
entropies. On the other hand, the MWPE values become smaller with the m increasing but more stable.
In practice, our applying of the MWPE analysis shows that increasing embedding dimension m beyond
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6 affects indistinctly the tendency of obtained entropies values but greatly enlarges the running time.
This to some extent provides the idea for choosing the embedding dimension of a nonlinear system.
Table 2 clearly illustrates the average running time of one exchange rate series corresponding to various
embedding dimension m from 3 to 9 when s ranging from 1 to 40. It is seen that the increasing of m
will hugely raise the running time of the entropy algorithm.

(a) (b)

(c)
Figure 2. The multiscale weighted permutation entropy (MWPE) results for price returns of the
exchange rates data when embedding dimension m is set 3 (a), 5 (b), 7 (c), respectively, and the time
scale factor s varies from 1 to 30.

Table 2. Running time (seconds) of the multiscale weighted permutation entropy (MWPE) method
performed on one piece of exchange rate data.

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

0.31337 0.70738 2.80653 16.02005 113.01158 928.67353 8421.36806

We take the MWPE results when m = 7 for analysis in Figure 2c, it is evident to observe a
decreasing trend of MWPE values with the rise of scale factor s, indicating that the increasing of s
can lead to the reducing complexity of local order structure of the price returns of all the analyzed
exchange rates. The weighted permutation entropy values for JPY/USD on the whole scales are larger
than those of other exchange rates and its curve is close to that of Gaussian data, implying a higher
complexity of local order structure and indicating that the Japanese FX market is high efficient. This
may be explained by its more flexibility of exchange rate regime. The MWPE curves of KRW/USD,
HKD/USD fluctuate notably and deviate from the curve of Gaussian series, showing lower complexity
properties of local order structures, which suggests that their market efficiencies are lower than the
ones of other FX markets. To mention that the lower complexity of HKD/USD is quite understandable,
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since the HKD/USD is not a freely floating exchange rate and is essentially fixed against the USD
through a currency board. Then, the CNY/USD follows. It is specially noticed that the INR/USD
shares not very small MWPE values and is close to entropy values of EUR/USD and GBP/USD,
suggesting a relatively not low market efficiency. Table 3 shows that the MWPE values of the exchange
rates at different multiple scales s, which further illustrates the above empirical results.

Table 3. MWPE values of price reruns of the exchange rates and Gaussian data at different scale factors
s when m = 7.

s = 1 s = 3 s = 5 s = 7 s = 9 s = 11 s = 13 s = 15 s = 17 s = 20

CNY/USD 0.7967 0.6696 0.6272 0.5962 0.5731 0.5682 0.5318 0.5145 0.5164 0.4932
HKD/USD 0.7645 0.6302 0.6258 0.5966 0.5280 0.5627 0.5301 0.5033 0.4960 0.4844
JPY/USD 0.8363 0.7298 0.6865 0.6467 0.6118 0.6008 0.5791 0.5638 0.5550 0.5207
KRW/USD 0.7316 0.5850 0.5818 0.5705 0.5016 0.5233 0.5138 0.4725 0.4767 0.5048
INR/USD 0.8161 0.7132 0.6486 0.6304 0.5970 0.5904 0.5778 0.5627 0.5486 0.5201
EUR/USD 0.8342 0.7286 0.6808 0.6255 0.5916 0.5895 0.5610 0.5377 0.5239 0.5204
GBP/USD 0.8114 0.6895 0.6508 0.6255 0.5874 0.5940 0.5679 0.5471 0.5348 0.5103
CHF/USD 0.7863 0.6622 0.6136 0.5816 0.5732 0.5777 0.5581 0.5237 0.5151 0.5160
Gaussian 0.8678 0.7618 0.6987 0.6571 0.6329 0.6099 0.5909 0.5759 0.5582 0.5423

(a) (b)

Figure 3. (a) Comparisons of the MWPE values obtained during the financial crisis and after the
financial crisis for the exchange rates. (b) The mean MWPE values with error bars representing the
standard deviation for 30 scale factors s.

In the following, we divide the data set into two periods: one is from November 2006 to March 2009
(during the financial crisis) and another is from April 2009 to November 2016 (post-crisis), and then
perform the MWPE analysis on them with the parameters m = 7 and η = 1. Figure 3a shows
the empirical results, from which the detailed changing and improvement of market efficiency can
be observed. It is obvious that all the FX markets share larger MWPE values after financial crisis,
displaying higher market efficiency. This illustrates that the financial crisis notably promotes the
market efficiency in FX markets. Figure 3b manifests the mean values and error bars of MWPEs
for the scale factors from 1 to 30 with regard to the two time periods. Once again, we see that the
mean values of MWPE for each exchange rate data in post-crisis periods are larger than those in crisis
periods. To have a clear view of the variation degrees of MWPE values between these two time periods,
Table 4 presents the differences of the mean values and the MWPE values at scale factor s = 20 for
the exchange rates. It is seen from the table that, after the financial crisis, the market efficiency of the
JPY/USD, the EUR/USD, the GBP/USD and the KRW/USD has improved significantly, which may
be explained by one possible reason of high liquidity or trading volumes in the markets, especially
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after more than seven years of development. The variation degree of the HKD/USD is the smallest,
then the CNY/USD FX market, followed by the CHF/USD and the INR/USD.

Table 4. Differences of MWPE values between post-crisis and crisis periods for the exchange rate data.

CNY/USD HKD/USD JPY/USD KRW/USD INR/USD EUR/USD GBP/USD CHF/USD

mean 0.1069 0.0884 0.1549 0.2335 0.1520 0.1924 0.1783 0.1327
s = 20 0.1270 0.1003 0.1661 0.1995 0.1364 0.1709 0.1975 0.1316

4.2. Determinism Analysis by the RQA

In the recurrence plot, it is significant to determine the time delay, embedding dimension and
recurrence threshold. In the present paper, we apply the false nearest neighbors (FNNs) method [40] to
calculate the embedding dimension (The optimal embedding is chosen as the one where the amount
of the FNNs almost vanishes.), and m = 8 seems to be suitable for all of the exchange rates. The time
delay is fixed to η = 1 by the average mutual information approach [41]. With regard to the recurrence
tolerance ε, it is taken as approximately 10% of the maximal phase space diameter of price returns
for each exchange rate data. Table 5 gives their ε values in performance of the recurrence analysis.
It is observed that that the maximal phase space diameter of the HKD/USD (∼= 0.000852) is much
smaller than others. The KRW/USD shares the largest maximal phase space diameter, followed by
the CHF/USD. ε values of the JPY/USD, the INR/USD and the GBP/USD are around 0.01, while the
values of the CNY/USD and the EUR/USD are smaller than 0.1. Figure 4 displays the recurrence plots
of the exchange rate returns, which clearly visualize the recurrence properties of the dynamical system.
In a recurrence plot, the dot at coordinate (i, j) is darkened if the distance ||X(i)−X(j)|| is smaller than
a specified threshold. The recurrence structures roughly comprised of vertical and horizontal patterns
and different distribution densities of recurrence points can be obviously observed. For example, the
JPY/USD and the EUR/USD evidently have smaller recurrence density than others.

Table 5 shows the numerical calculations of the RQA measures for the exchange rates, providing
a better quantification and understanding of the recurrences that are revealed in RP. It is noticeable
that the RR value of the KRW/USD is much greater than other data, indicating the higher density of
its recurrence points, which is also clearly revealed in Figure 4. The larger values of DET and LAM
refer to the fraction of recurrence points forming diagonal lines and vertical lines for the KRW/USD
being larger than those for the others, verifying that the KRW/USD is more deterministic and stable.
LENT provides information as to the diversity of diagonal lines. The increasing LENT of the KRW/USD
means a rise of the system’s complexity property. The larger TT measure suggests its longer mean
time remaining at the specific state of the system. On the whole, the KRW/USD holds the highest
values of RQA measure among these exchange rates, exhibiting a relatively stronger deterministic
characteristic of the dynamic system of the returns. Following the KRW/USD are the HKD/USD,
the CHF/USD (except RR value of the CHF/USD is smaller than the HKD/USD), the CNY/USD
(except its TT values is larger than the CHF/USD), the INR/USD and the GBP/USD according to the
values of RQA measures, and the JPY/USD and EUR/USD have the close but relatively smaller of the
RQA measures, implying that their determinism properties are similar but relatively weaker among
the analyzed data sets. This can illustrate relatively more efficiency of the EUR/USD and JPY/USD
markets as one aspect, which may be explained by their market conditions, like high liquidity (A liquid
market enhances competition among informed traders, and the speed of price discovery is much
faster than in an illiquid market.) and information asymmetry (an excessive response by uninformed
market makers to incoming order flows leads to weak predictive power of order imbalances in a high
information asymmetry situation) [42].



Entropy 2018, 20, 17 10 of 16

Figure 4. The recurrence matrix plots of the price returns for the eight analyzed exchange rates with
m = 8 and η = 1, which are comprised of zeros and ones that correspond to the state of the system
(1—recurrence and 0—no recurrence).
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Table 5. Recurrence quantification analysis (RQA) parameters of the price returns for the exchange rates.
RR: recurrence rate; DET: determinism; LAM: laminarity; TT: trapping time.

Data ε RR DET LENT LMean LAM TT

CNY/USD 0.0030 0.3439 0.9665 2.9517 9.4494 0.8653 8.4481
HKD/USD 0.000852 0.4713 0.9842 3.4302 15.9962 0.9457 16.5285
JPY/USD 0.0104 0.0346 0.8471 1.8694 3.9859 0.4149 3.0828

KRW/USD 0.0280 0.7529 0.9955 4.2750 35.8296 0.9784 25.2570
INR/USD 0.0125 0.2467 0.9499 2.6748 7.0894 0.7608 5.3144
EUR/USD 0.0099 0.0319 0.8329 1.8931 4.0782 0.4170 3.1038
GBP/USD 0.0147 0.2094 0.9336 2.5286 6.3789 0.6928 4.6615
CHF/USD 0.0229 0.5309 0.9746 3.2140 11.6567 0.8779 7.9887

5. Complexity Study of EMD-Based IMF Series

In this section, the MWPE approach is applied to investigate the determinism characteristics
and recurrence behaviors of the exchange rates after performing the empirical mode decomposition
(EMD) [38]. The essence of the EMD is to distinguish the intrinsic oscillatory modes, to empirically
identify the local temporal and structural characteristic time scales in the data and then to decompose
the data into the sum of a finite number of intrinsic mode functions (IMFs) and a final residual that
expresses the trend fluctuations of the time series. With no pre-defined basis functions, IMFs are the
time functions and make ideal for analyzing the non-stationary and nonlinear data. For more details
about the EMD algorithm, see [38]. There are 10 IMF modes with one residual for the exchange rates.
Figure 5 shows the residual from the EMD algorithm, which has been recognized as the trend of
the given data. The first six IMFs are discussed in the present paper. Table 6 shows the embedding
dimension m and time delay η in the phase space reconstruction. To save space, only the results for the
EUR/USD are displayed, but IMFs of other exchange rates share the same embedding dimension and
time delay with the EUR/USD. m value of the IMF1 is equal to that of the original ones (m = 8 and
m = 9, respectively) while m of other IMFs are smaller (but m for IMF3 and IMF4 are the same). Every
IMF holds evidently larger η value compared to that of the returns (η = 1), especially for IMF5 and
IMF6. About 10% of the maximal diameter of phase space is considered as the recurrence threshold ε.
The calculation results of the EUR/USD are listed as a representative in Table 6. It is seen that ε values
become gradually smaller from IMF1 to IMF6.

Figure 6 describes the graphs of the first six IMF time series and their distance plots for the
EUR/USD. RP depicts all the times at which a phase space trajectory visits roughly the same area in
the phase space for a given moment in time. Its visual appearance brings insights into the dynamics of
the system. Diverse and distinctive behaviors embodied in IMF systems are observable in the figure.
IMF1 seems to share similarity of the recurrence pattern to that of the return series (see Figure 4), which
may be explained by the fact that IMF1 holds the most information and properties of the original
returns. Grid textures of recurrences consisting of vertical and horizonal lines for IMF1 to IMF5 can be
observed. More and more visible recurrence points along the main diagonal lines are shown. Especially,
IMF6 has quite a distinguishing recurrence pattern from the first five IMFs because of its sharing
much more obvious recurrence points parallel to the main diagonal line. A great deal of information
from the original returns are lost for the IMF4, IMF5 and IMF6, which is also revealed in their time
series’ graphs.

Table 6 demonstrates the RQA results of the first six IMFs of the EUR/USD. IMF1 shows the
lowest recurrence density (RR values), while IMF6 displays the highest one, which is also manifested
in their RPs. In terms of the measures on diagonal recurrence lines, a significant increase of DET and
LMean for IMF4, IMF5 and IMF6 is noticed in comparison with the first three IMFs, suggesting that the
predictability time of the dynamical systems are longer. LENT shows information as to the diversity of
diagonal lines and indicates the complex characteristics of the system. The larger LENT value of IMF6
suggests its higher complexity features. The IMF2 and IMF3 have approaching LENT, implying close
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complexity. With regard to measures of of vertical recurrence lines, the very large LAM values from
IMF3 to IMF6 illustrate their very high fractions of recurrence points in the vertical lines, representing
that their systems are more stable in contrast with IMF1 and IMF2. Similar to LMean, IMF5 and IMF 6
display a dramatic increase of the TT measures, which reflects the longer mean time for the system
to remain at a specific state and further the stability of the system. Generally, IMF6 distinctly shares
the highest values of overall RQA measures among these IMFs, which means that the determinism
property of IMF6 is the strongest and most significant.

Figure 5. The trend components (the residual series through the empirical mode decomposition (EMD)
decomposition) of the returns for the exchange rates during November 2006 and November 2016.

Table 6. RQA parameters of the intrinsic mode functions (IMFs) of the price returns for the EUR/USD.

Data m η ε RR DET LENT LMean LAM TT

IMF1 8 1 0.0079 0.0347 0.9008 2.1014 4.6083 0.2144 3.4507
IMF2 5 3 0.0047 0.1781 0.5657 1.5994 4.5146 0.7487 3.6681
IMF3 4 4 0.0025 0.1454 0.8715 1.8186 5.1570 0.9308 4.5780
IMF4 3 6 0.0016 0.1069 0.9823 2.7571 8.8940 0.9822 5.9583
IMF5 3 9 0.0011 0.1148 0.9987 3.8455 19.6199 0.9982 10.9299
IMF6 2 19 0.000708 0.1917 0.9999 4.6898 46.0817 0.9999 29.6150

Figure 7 fully displays the variations of the RQA parameters, in which a comparison analysis of
the fluctuation behaviors of overall time series dynamical systems is made. For instance, with regard
to the LMean value of IMF1, the KRW/USD is markedly the largest (55.2825), followed by the HKD/USD
(19.6320) and CHF/USD (12.3546). Then, the INR/USD and the GBP/USD are close, and are larger
than CNY/USD. The EUR/USD is the lowest and very close to the JPY/USD, indicating less stability
and determinism of their FX markets.
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Figure 6. Top: the plots of the intrinsic mode function (IMF) series obtained from EMD decomposition
of the exchange rate EUR/USD. Bottom: comparisons of recurrence distances of IMF1 to IMF6 for the
EUR/USD returns.
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(a) (b)

(c) (d)

(e) (f)

Figure 7. Comparisons of RQA measures ((a) recurrence rate (RR), (b) determinism (DET), (c) LENT,
(d) LMean, (e) laminarity (LAM) and (f) trapping time (TT)) of IMF1 to IMF6 series obtained from the
EMD decomposition of the exchange rate returns.

6. Conclusions

This paper intends to explore the nonlinear complexity properties of foreign exchange markets,
in which eight exchange rates from eight important world economies are selected. Firstly, in the
multiscale weighted permutation entropy analysis, it is observed that the MWPE values have very
intensive oscillations when m = 3 at different scale factors, but an increase of m can reduce the
estimation errors of permutation entropies despite its greatly lengthening the running time. Among
the exchange rates studied, the JPY/USD implies a higher complexity of local order structure and
indicates higher efficiency of the Japanese FX market. The KRW/USD, HKD/USD show relatively
lower complexity properties of local order structures, which suggests that their market efficiencies are
lower than the ones of other FX markets, following the CNY/USD. Moreover, the comparisons study
of MWPE values for the crisis and post-crisis periods shows that the market efficiency of FX markets is
notably promoted after the financial crisis, especially for the JPY/USD, the EUR/USD, the GBP/USD
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and the KRW/USD. The HKD/USD displays the lowest degree of variation of the market efficiency.
In Section 4, we utilize the RQA approach to discuss the complex determinism properties of the
exchange rates. From the empirical results, the KRW/USD shows a relatively stronger determinism
property of the dynamic system, followed by the HKD/USD, the CHF/USD, and the CNY/USD.
The JPY/USD and EUR/USD imply similar and weaker determinism properties, which suggests that
their FX markets are less predictable and more efficient. Through the EMD decomposition of the
exchange rates in Section 5, diverse and distinctive nonlinear deterministic characteristics of IMFs that
represent different scales and frequencies of returns being revealed. From IMF1 to IMF6, information
held in the original series gradually lose and the system becomes more stable and predictable.

Acknowledgments: We greatly appreciate the financial grant from the China Postdoctoral Science Foundation
(No. 2017M610045) and the Fundamental Research Funds for the Central Universities (No. FRF-BR-17-007A).

Author Contributions: Hongli Niu conceived and designed the experiments, and wrote the paper; Lin Zhang
collected the data and preliminarily processed the data sets. The two authors performed together the MWPE and
RQA analysis of the exchange rates.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Calvet, L.E.; Fisher, A.J. Multifractal Volatility: Theory, Forecasting, and Pricing (Academic Press Advanced
Finance); Academic Press: Cambridge, CA, USA, 2008.

2. Fang, W.; Wang, J. Statistical properties and multifractal behaviors of market returns by Ising dynamic
systems. Int. J. Mod. Phys. C 2012, 23, 1250023.

3. Gabaix, X.; Gopikrishnan, P.; Plerou, V.; Stanley, H.E. A theory of power-law distributions in financial market
fluctuations. Nature 2003, 423, 267–270.

4. Lu, Y.F.; Wang, J.; Niu, H.L. Nonlinear multi-analysis of agent-based financial market dynamics by epidemic
system. Chaos 2015, 25, 103103.

5. Lux, T. Financial Power Laws: Empirical Evidence, Models and Mechanisms; Cambridge University Press:
Cambridge, UK, 2008.

6. Mandelbrot, B.B. Fractals and Scaling in Finance: Discontinuity, Concentration, Risks; Springer:
Berlin/Heidelberg, Germany, 1997.

7. Mantegna, R.N.; Stanley, H.E. Scaling behaviour in the dynamics of an economic index. Nature 2002,
376, 46–49.

8. Niu, H.L.; Wang, J. Volatility clustering and long memory of financial time series and financial price model.
Digit. Signal Process. 2013, 23, 489–498.

9. Niu, H.L.; Wang, J. Quantifying complexity of financial short-term time series by composite multiscale
entropy measure. Commun. Nonlinear Sci. Numer. Simul. 2015, 22, 375–382.

10. Niu, H.L.; Wang, J.; Lu, Y.F. Fluctuation behaviors of financial return volatility duration. Physica A 2016,
448, 30–40.

11. Vodenska, I.; Becker, A.; Zhou, D.; Kenett, D.; Stanley, H.E.; Havlin, S. Community analysis of global financial
markets. Risks 2016, 4, 13.

12. Junior, L.S.; Asher, M.; Kenett, D. Dependency relations among international stock market indices. J. Risk
Financ. Manag. 2015, 8, 227–265.

13. Maasoumi, E.; Racine, J. Entropy and predictability of stock market returns. J. Econom. 2002, 107, 291–312.
14. Roman, H.E.; Porto, M.; Giovanardi, N. Anomalous scaling of stock price dynamics within ARCH-models.

Eur. Phys. J. B 2001, 21, 155–158.
15. Stanley, H.E.; Mantegna, R. An Introduction to Econophysics; Cambridge University Press: Cambridge, UK, 1999.
16. Tang, L.H.; Huang, Z.F. Modelling high-frequency economic time series. Physica A 2000, 288, 444–450.
17. Tenreiro Machado, J.A. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010,

62, 371–378.
18. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423.
19. Stosic, D.; Ludermir, T.; Oliveira, W.; Stosic, T. Foreign exchange rate entropy evolution during financial

crises. Physica A 2016, 449, 233–239.



Entropy 2018, 20, 17 16 of 16

20. Benettin, G.; Galgani, L.; Strelcyn, J.M. Kolmogorov Entropy and Numerical Experiments. Phys. Rev. A 1976,
14, 2338–2345.

21. Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991,
88, 2297–2301.

22. Richmann, J.S.; Moorman, J.R. Physiological time series analysis using approximate entropy and sample
entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, 2039–2049.

23. Silva, L.E.V.; Cabella, B.C.T.; Nevesc, U.P.C.; Junior, L.O.M. Multiscale entropy-based methods for heart rate
variability complexity analysis. Physica A 2015, 422, 143–152.

24. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett.
2002, 88, 174102.

25. Li, Z.; Ouyang, G.; Li, D.; Li, X. Characterization of the causality between spike trains with permutation
conditional mutual information. Phys. Rev. E 2011, 84, 021929.

26. Bruzzo, A.; Gesierich, B.; Santi, M.; Tassinari, C.; Birbaumer, N.; Rubboli, G. Permutation entropy to detect
vigilance changes and preictal states from scalp EEG in epileptic patients. A preliminary study. Neurol. Sci.
2008, 29, 3–9.

27. Cao, Y.; Tung, W.W.; Gao, J.B.; Protopopescu, V.A.; Hively, L.M. Detecting dynamical changes in time series
using the permutation entropy. Phys. Rev. E 2004, 70, 046217.

28. Graff, B.; Graff, G.; Kaczkowska, A. Entropy measures of heart rate variability for short ECG datasets in
patients with congestive heart failure. Acta Phys. Pol. B 2012, 5, 153–157.

29. Sacoa, P.M.; Carpia, L.C.; Figliolad, A.; Serranoe, E.; Rosso, O.A. Entropy analysis of the dynamics of El
Nino/Southern Oscillation during the Holocene. Physica A 2010, 389, 5022–5027.

30. Zunino, L.; Zanin, M.; Tabak, B.; Perez, D.; Rosso, O.A. Forbidden patterns, permutation entropy and stock
market inefficiency. Physica A 2009, 388, 2854–2864.

31. Fadlallah, B.; Principe, J.; Chen, B.; Keil, A. Weighted-permutation entropy: A complexity measure for time
series incorporating amplitude information. Phys. Rev. E 2013, 87, 02291.

32. Chen, X.; Jin, N.D.; Zhao, A.; Gao, Z.K.; Zhai, L.S.; Sun, B. The experimental signals analysis for bubbly
oil-in-water flow using multi-scale weighted-permutation entropy. Physica A 2015, 417, 230–244.

33. Li, R.; Wang, J. Interacting price model and fluctuation behavior analysis from Lempel-Ziv complexity and
multi-scale weighted-permutation entropy. Phys. Lett. A 2016, 380, 117–129.

34. Aparicio, T.; Pozo, E.F.; Saura, D. Detecting determinism using recurrence quantification analysis: Three test
procedures. J. Econ. Behav. Organ. 2008, 65, 768–787.

35. Kwuimy, C.A.K.; Samadani, M.; Nataraj, C. Bifurcation analysis of a nonlinear pendulum using recurrence
and statistical methods: Applications to fault diagnostics. Nonlinear Dyn. 2014, 76, 1963–1975.

36. Marwan, N.; Romano, M.C.; Thiel, M.; Kurths, J. Recurrence Plots for the Analysis of Complex Systems.
Phys. Rep. 2007, 438, 237–329.

37. Zbilut, J.P.; Zaldivar-Comenges, J.M.; Strozzi, F. Recurrence quantification based on Lyapunov exponents for
monitoring divergence in experimental data. Phys. Lett. A 2002, 297, 173–181.

38. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.G.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H.
The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series
analysis. Proc. R. Soc. Lond. A 1998, 454, 903–995.

39. Ribeiro, H.V.; Zunino, L.; Mendes, R.S.; Lenzi, E.K. Complexity-entropy causality plane: A useful approach
for distinguishing songs. Physica A 2012, 391, 1421–1428.

40. Hsieh, D.A. Chaos and nonlinear dynamics: Application to financial markets. J. Financ. 1991, 46, 1839–1877.
41. Frazer, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information.

Phys. Rev. A 1986, 33, 1134–1140.
42. Kitamura, Y. Simple measures of market efficiency: A study in foreign exchange markets. Jpn. World Econ.

2017, 41, 1–16.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Data Description and Processing
	Methodologies
	The MWPE Method
	The RQA Approach

	Empirical Results of Price Returns
	Complexity Analysis by the MWPE
	Determinism Analysis by the RQA

	Complexity Study of EMD-Based IMF Series
	Conclusions
	References

