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Abstract: The quality of an image affects its utility and image quality assessment has been a hot
research topic for many years. One widely used measure for image quality assessment is Shannon
entropy, which has a well-established information-theoretic basis. The value of this entropy can be
interpreted as the amount of information. However, Shannon entropy is badly adapted to information
measurement in images, because it captures only the compositional information of an image and
ignores the configurational aspect. To fix this problem, improved Shannon entropies have been
actively proposed in the last few decades, but a thorough evaluation of their performance is still
lacking. This study presents such an evaluation, involving twenty-three improved Shannon entropies
based on various tools such as gray-level co-occurrence matrices and local binary patterns. For the
evaluation, we proposed: (a) a strategy to generate testing (gray-level) images by simulating the
mixing of ideal gases in thermodynamics; (b) three criteria consisting of validity, reliability, and
ability to capture configurational disorder; and (c) three measures to assess the fulfillment of each
criterion. The evaluation results show only the improved entropies based on local binary patterns
are invalid for use in quantifying the configurational information of images, and the best variant of
Shannon entropy in terms of reliability and ability is the one based on the average distance between
same/different-value pixels. These conclusions are theoretically important in setting a direction for
the future research on improving entropy and are practically useful in selecting an effective entropy
for various image processing applications.

Keywords: Shannon entropy; information entropy; information content; configurational information

1. Introduction

Image quality assessment plays a fundamental role in the field of digital image processing [1–6], where
it is useful in monitoring the quality of image systems, benchmarking image processing applications,
and optimizing image processing algorithms [7,8]. The most reliable approach to assess image quality
is a visual observation with the naked eye [9], but this approach depends largely on individual
interpretations of quality and is thus subjective. For objective image quality assessment, one simple
and widely used approach is to quantify the amount of (syntactic) information contained in an image
using information-theoretic measures [10–17]. It is believed that the more information an image
contains, the better the quality of the image is [12].

The most basic information-theoretic measure is entropy, which was proposed by Shannon [18] in
the area of telecommunication. Shannon entropy (also called information entropy) is widely recognized
as a cornerstone of information theory [19], and it has been used in various fields such as physics
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e.g., [20], chemistry e.g., [21], and biology e.g., [22]. Although Shannon entropy was originally used
to quantify the information (i.e., disorder) of a one-dimensional message (e.g., a telegram message
consisting of a series of letters), it has also been actively utilized as a measure of information content
for gray-level (or grayscale) images, which can be considered as two-dimensional messages, in various
applications including registration, segmentation, and fusion [23–28].

However, the information contained in a gray-level image (hereafter simply image) cannot be
fully characterized by Shannon entropy as it only captures the image’s compositional (or non-spatial)
information such as the proportions and gray values of different pixels. The configurational (or spatial)
information (i.e., the spatial distribution of pixels) of an image is ignored by Shannon entropy; see
an example in Figure 1, where four images with different configurations of pixels have the same
Shannon entropy. In fact, this problem of Shannon entropy has been pointed out by a number of
researchers [29–34], questioning the applicability of Shannon entropy as a measure of information
content of two-dimensional messages such as images, maps, and digital elevation models.
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Figure 1. Four images with the same composition, but different configurations of pixels. These four
images contain a Saturn image (a); two images generated by randomizing either the rows (b); or the
columns (c) of the Saturn image; and an image generated by randomizing both the rows and the
columns of the Saturn image (d). The Shannon entropies of all these four images (a–d) are 3.96 bits.

To overcome the above problem, many improved Shannon entropies have been proposed in
the last few decades to quantify the configurational information of an image, or, more specifically,
the configurational disorder (or configuration) of pixels in an image. Nevertheless, to the best of
our knowledge, no comparative study has been conducted concerning the performance of different
improved Shannon entropies. More seriously, in the original papers on improved Shannon entropies,
evaluations were either omitted e.g., [35] or simply performed in one of the two following ways:

• to check whether the improved Shannon entropies of a few examples of spatial patterns are
different e.g., [36], or

• to examine whether the performance of a Shannon entropy-based image processing algorithm is
improved e.g., [37].

Such evaluations are incomprehensive and sometimes case dependent. This study aims to
systematically evaluate and compare the performance of improved Shannon entropies.

The remainder of this article is organized as follows: Section 2 presents a critical review of
Shannon entropy and its improvements. Section 3 describes the design of the experiments to evaluate
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the performance of various improved Shannon entropies. A strategy to simulate configurational
disorder (used as the experimental data) and a set of measures for evaluation is also proposed in
this section. Then, Section 4 reports the experimental results and the analysis in terms of validity,
reliability, and ability. It is found that the improved Shannon entropies based on local binary patterns
are invalid for use in quantifying the configurational information of images, and the best variant of
Shannon entropy in terms of reliability and ability is the one based on the average distance between
same/different-value pixels. Section 5 presents a further discussion, followed by some concluding
remarks in Section 6.

2. A Critical Review of Improved Entropies

The formula of Shannon entropy (referred to as Sh48, which is a short name formed from the
letters of the author’s surname and digits of the year of publication) is given as follows:

H(X) = −
n

∑
i=1

P(xi) log2 P(xi) (1)

where X is a discrete random variable with possible values of {x1, x2, · · · , xi, · · · , xn}, and P(xi) is the
probability of X taking the value of xi. When Sh48 is used for an image, X denotes the pixel of the
image, and P(xi) is the proportion of the pixels with a gray value of xi.

To make Shannon entropy capable of quantifying the configurational information of an image,
one should first characterize the configuration of image pixels using a certain tool and then reflect the
characterization in the computation of Shannon entropy. Six tools have been used in the literature,
leading to six categories of improved Shannon entropies as follows:

1. Entropies based on the gray-level co-occurrence matrix of an image;
2. Entropies based on the gray-level variance of the neighborhood of a pixel;
3. Entropy based on the Sobel gradient of a pixel;
4. Entropy based on the local binary pattern of an image;
5. Entropy based on the Laplacian pyramid of an image; and
6. Entropy based on the distance between pixels of the same/different value.

These six categories are reviewed in the remainder of this section.

2.1. Entropies Based on the Gray-Level Co-Occurrence Matrix of an Image

The gray-level co-occurrence matrix (GLCM) was first proposed by Haralick, et al. [35] and is still
widely used in image processing e.g., [38,39]. The basic idea behind it is the co-occurrence of two gray
levels in an image. For example, there are nine co-occurrences of gray levels when scanning the image
in Figure 2 from left to right and pixel by pixel. The GLCM of the image, also shown in Figure 2, is
a matrix that records the frequency of such co-occurrence of every two gray levels. In this example,
the element fij of the matrix indicates that the j-th gray level occurs fij time (s) at the immediate right
of the i-th gray level.
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Formally, the GLCM of a M × N image with L gray levels is given as a L × L matrix,{
fij
∣∣1 ≤ i ≤ L, 1 ≤ j ≤ L

}
, the element of which is computed according to Equation (2):

fij =
M

∑
m=1

N

∑
n=1

{
1 I(m, n) = G(i) and I(m + ∆x, n + ∆y) = G(j)

0 otherwise
(2)

where G(x) is the value of the x-th gray level in the image, I(m, n) denotes the gray value of the pixel
located at (m, n), and (∆x, ∆y) is a pair of pre-set parameters called the displacement operator (denoted
as d). Haralick, et al. [35] provided a total of eight displacement operators (Figure 3), which can be
used to generate GLCMs along eight different directions, i.e., right (R), right-down (RD), down (D),
left-down (LD), left (L), left-up (LU), up (U), and right-up (RU).
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Based on the GLCM of an image, Haralick, et al. [35] developed a new method to compute
Shannon entropy (denoted as Ha73), as shown in Equation (3). Note that according to this equation,
a total of eight GLCM-based improved Shannon entropies can be obtained because there are eight
directions (R, RD, D, LD, L, LU, U, and RU; see Figure 3) along which a GLCM can be generated.
In this study, these eight improved Shannon entropies are referred to as Ha73-R, Ha73-RD, Ha73-D,
Ha73-LD, Ha73-L, Ha73-LU, Ha73-U, and Ha73-RU, respectively:

Ha73 = −∑
i

∑
j

(
fij

∑i ∑j fij

)
· log

(
fij

∑i ∑j fij

)
(3)

It should be pointed out that all eight improved Shannon entropies by Haralick, et al. [35]
are computed based on the GLCM generated along only one direction. One may argue that the
configurational information quantified by such Shannon entropies is incomplete. For this reason, three
other methods to generate a GLCM were proposed for the computation of a GLCM-based improved
Shannon entropy using Figure 3.

(1) GLCM generated along two directions

In computing a GLCM-based improved Shannon entropy, Pal and Pal [40] proposed generating a
GLCM with displacement operators along two directions, namely “R” and “D”. In other words, the
element ( fij) of such a GLCM is derived using Equations (4)–(6). The resultant improved Shannon
entropy is referred to as PP89 in this study:

fij =
M

∑
m=1

N

∑
n=1

(δ1(m, n) + δ2(m, n)) (4)

δ1(m, n) =

{
1 I(m, n) = G(i) and I(m + 1, n) = G(j)

0 otherwise
(5)
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δ2(m, n) =

{
1 I(m, n) = G(i) and I(m, n + 1) = G(j)

0 otherwise
(6)

(2) GLCM generated along eight directions

Abutaleb [41] proposed considering all eight directions when generating a GLCM with an image.
In his method, the element ( fij) of the GLCM of an image is computed using Equations (7) and (8).
Note that in this way, the term “gray-level co-occurrence” in “GLCM” is actually redefined to be the
co-occurrence of the gray level of a pixel and the average gray level of the pixel’s eight neighbors.
The resultant improved Shannon entropy is referred to as Ab89:

fij =
M

∑
m=1

N

∑
n=1

{
1 I(m, n) = G(i) and Ave(m, n) = G(j)

0 otherwise
(7)

Ave(m, n) =
1
8

(
1

∑
k=−1

1

∑
l=−1

I(k, l)− I(m, n)

)
(8)

(3) GLCM generated along four directions

Brink [42] proposed the use of only four directions containing “R”, “RD”, “D”, and “LD” when
computing the GLCM-based Shannon entropy (referred to as Br95) of an image; that is, each element
of the GLCM of an image is derived using Equations (9)–(13). In this way, the GLCM employed
by Brink [42] is based on the asymmetrical neighborhood of a pixel, rather than the symmetrical
neighborhood used by Abutaleb [41]. It is worth noting that such asymmetrical neighborhoods are
now widely used in generating the GLCM of an image [43]:

fij =
M

∑
m=1

N

∑
n=1

4

∑
p=1

δp(m, n) (9)

δ1(m, n) =

{
1 I(m, n) = G(i) and I(m, n + 1) = G(j)

0 otherwise
(10)

δ2(m, n) =

{
1 I(m, n) = G(i) and I(m + 1, n + 1) = G(j)

0 otherwise
(11)

δ3(m, n) =

{
1 I(m, n) = G(i) and I(m + 1, n) = G(j)

0 otherwise
(12)

δ4(m, n) =

{
1 I(m, n) = G(i) and I(m + 1, n− 1) = G(j)

0 otherwise
(13)

2.2. Entropies Based on the Gray-Level Variance of Neighborhoods of a Pixel

The configuration of pixels of an image can also be captured by the gray-level variance (GLV)
computed for the neighborhood of each pixel. This is because two pixels with the same gray value, but
different neighbors are likely to have different GLVs, as shown in Figure 4. In the literature, there are
two improved Shannon entropies based on the GLVs of pixels.

The first GLV-based improved Shannon entropy (referred to as Br96) was proposed by Brink [44]
in the form of Equations (14)–(16):

Br96 = −
n

∑
i=1

pi· log
(

pi
mi

)
(14)
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mi = 1 + δi = 1 + ∑
i∈N3

(
gi − µN3

)2

9
(15)

pi =
gi
G

= gi/
n

∑
i=1

gi (16)

where n is the number of pixels in an image; N3 is the 3× 3 neighborhood (including the pixel itself)
of a pixel; µN3 is the average gray value of pixels in N3; δi is the GLV of N3; and gi is the gray value
of pixel i. Note that in this improved Shannon entropy, the probability pi is computed for each pixel
rather than for each gray level in the original Shannon entropy.

The other GLV-based improved Shannon entropy (referred to as Qu12-V) was proposed by
Quweider [37] and computed using the following equations:

Qu12−V = −
n

∑
l=1

pl · log
(

pl
ml

)
(17)

Qu12−V = −
n

∑
l=1

pl · log
(

pl
ml

)
(18)

where n is the number of gray levels in an image; l denotes a gray level; Ωl is the collection of
coordinates of pixels with a gray value of l; |Ωl | is the number of elements in Ωl ; and δ(i, j) is the GLV
of the 3× 3 neighborhood of pixel (i, j). Note that the probability pl in Equation (17) is computed for
all pixels at the same gray level, rather than for a single pixel in Equation (14). In the literature, the
parameter ml is commonly referred to as the busyness or activity of the gray level l [37,45].
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2.3. Entropy Based on the Sobel Gradient of a Pixel

Different configurations of pixels may lead to different edges, which can be detected by computing
the gradient of each pixel [46,47]. One of the commonly used tools to determine the gradient of a pixel
is the Sobel operator [48], which consists of two 3× 3 kernels (Figure 5) used to convolve an image
(denote the convolved images as Gx and Gy, respectively).

The first kernel aims to detect the edges of the image in the horizontal direction, whereas the
second kernel operates in the vertical direction. Based on Gx and Gy, the (Sobel) gradient of a pixel
(i, j) is computed as follows:

G(i, j) =
√
(Gx(i, j))2 +

(
Gy(i, j)

)2 (19)
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Quweider [37] proposed a Sobel gradient-based Shannon entropy, referred to as Qu12-G. This
entropy is also computed using Equation (17), but the busyness ml in Equation (17) is redefined as the
average Sobel gradient of all pixels with a gray value of l, as shown in Equation (20):

ml =
1
|Ωl |
· ∑
(i,j)∈Ωl

G(i, j) (20)

where Ωl denotes the collection of coordinates of pixels with a gray value of l; |Ωl | is the number of
elements in Ωl ; and G(i, j) is the Sobel gradient computed according to Equation (19).
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2.4. Entropy Based on the Local Binary Pattern of an Image

A specific configuration of pixels may form a specific local binary pattern (LBP), which is a
popular local texture descriptor that was first introduced by Ojala et al. [49] and is widely used in
image analysis e.g., [50,51]. The LBP of an image is expressed as a series of integers called the LBP
values, which are assigned to each pixel of an image. The procedure to determine the LBP value of a
pixel is as follows (an example is shown in Figure 6).

1. Read the gray value (y) of the pixel and that of the pixel’s eight immediate neighbors from the
left top in clockwise order (denoted as x0, x1, · · · , x7).

2. Create an 8-digit binary number, b0b1b2b3b4b5b6b7, where bi (0 ≤ i ≤ 7) is a binary digit with a
value of either 0 or 1.

3. Compare each neighbor to the pixel; set bi = 1 if xi > y. Otherwise, set bi = 0.
4. Convert the binary number to its decimal equivalent, which is the LBP value of the pixel.

Entropy 2018, 20, x  7 of 24 

 

where Ω௟ denotes the collection of coordinates of pixels with a gray value of ݈; |Ω௟| is the number 
of elements in Ω௟; and ܩ(݅, ݆) is the Sobel gradient computed according to Equation (19). 

2.4. Entropy Based on the Local Binary Pattern of an Image 

A specific configuration of pixels may form a specific local binary pattern (LBP), which is a 
popular local texture descriptor that was first introduced by Ojala, et al. [49] and is widely used in 
image analysis e.g., [50,51]. The LBP of an image is expressed as a series of integers called the LBP 
values, which are assigned to each pixel of an image. The procedure to determine the LBP value of a 
pixel is as follows (an example is shown in Figure 6). 

 
Figure 6. A pixel and its local binary pattern (LBP) value. 

1. Read the gray value (ݕ) of the pixel and that of the pixel’s eight immediate neighbors from the 
left top in clockwise order (denoted as ݔ଴, ,ଵݔ ⋯ ,  .(଻ݔ

2. Create an 8-digit binary number, ܾ଴ܾଵܾଶܾଷܾସܾହܾ଺ܾ଻, where ܾ௜ (0 ≤ ݅ ≤ 7) is a binary digit with 
a value of either 0 or 1. 

3. Compare each neighbor to the pixel; set ܾ௜ = 1 if ݔ௜ > Otherwise, set ܾ௜ .ݕ = 0. 
4. Convert the binary number to its decimal equivalent, which is the LBP value of the pixel. 

An LBP-based Shannon entropy (referred to as Qu12-L) was suggested by Quweider [37] in the 
same form as Equation (17), but the busyness ݉௟ in Equation (17) is computed as follows: ݉௟ = |௟ߗ|1 ∙ ෍ ,݅)ܲܤܮ ݆)(௜,௝)∈ఆ೗  (21) 

where ܲܤܮ(݅, ݆)  is the LBP value of pixel (݅, ݆) , and Ω௟ = ሼ(݅, ,݅)ܫ|(݆ ݆) = ݈ሽ  is the collection of 
coordinates of pixels with a gray value of ݈. 
2.5. Entropy Based on the Laplacian Pyramid of an Image 

Rakshit and Mishra [52] pointed out that the configuration of pixels in an image can be captured 
by its Laplacian pyramid, which is proposed by Burt and Adelson [53] and has been widely used for 
image analysis [54]. The Laplacian pyramid is a type of multi-scale representation for images, and it 
is constructed by decomposing an image into multiple scales (or levels, denoted as ܮ଴, ,ଵܮ ⋯ , ,௜ܮ ⋯ , ,୬ିଵܮ   .୬), as shown in Figure 7ܮ

 
Figure 7. The gray-level Lena image ܩ଴  (256 ×  256  pixels) and its Laplacian pyramid, which 
consists of nine levels: ܮ଴, ,ଵܮ ,ଶܮ ,ଷܮ ,ସܮ ,ହܮ ,଺ܮ  .଼ܮ ଻, andܮ

Figure 6. A pixel and its local binary pattern (LBP) value.

An LBP-based Shannon entropy (referred to as Qu12-L) was suggested by Quweider [37] in the
same form as Equation (17), but the busyness ml in Equation (17) is computed as follows:

ml =
1
|Ωl |
· ∑
(i,j)∈Ωl

LBP(i, j) (21)

where LBP(i, j) is the LBP value of pixel (i, j), and Ωl = {(i, j)|I(i, j) = l} is the collection of
coordinates of pixels with a gray value of l.
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2.5. Entropy Based on the Laplacian Pyramid of an Image

Rakshit and Mishra [52] pointed out that the configuration of pixels in an image can be captured
by its Laplacian pyramid, which is proposed by Burt and Adelson [53] and has been widely
used for image analysis [54]. The Laplacian pyramid is a type of multi-scale representation for
images, and it is constructed by decomposing an image into multiple scales (or levels, denoted as
L0, L1, · · · , Li, · · · , Ln−1, Ln), as shown in Figure 7.
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In a Laplacian pyramid, the size of the first level (L0) is the same as that of the original image,
whereas the size of each of the other levels is half of that of its previous level (please see [55] for more
technical details on the Laplacian pyramid).

The assumption behind Rakshit and Mishra [52]’s argument is that two different images with the
same composition of pixels are likely to have different Laplacian pyramids; thus, the difference in the
configuration of pixels in the two images can be reflected in measures based on the Laplacian pyramid.
Based on this assumption, they proposed an improved Shannon entropy (referred to as RM06) that is
computed as follows:

RM06 =
n

∑
i=0

H(Li) (22)

where H(Li) is the Shannon entropy of the i-th level (denoted as Li where i = 0, 1, · · · , n) of the
Laplacian pyramid of an image.

2.6. Entropy Based on the Average Distance between Same/Different-Value Pixels

The configuration of pixels (or geographic features in general) determines their correlation, which
can be estimated, according to Claramunt [36], by using the Euclidean distance. Following this line of
thought, Claramunt [36] proposed an improved Shannon entropy based on the distance between two
pixels, or the geographic features in general.

The distance between two pixels, as pointed out by Claramunt [36], can be considered as the key
factor in determining the correlation between them, because the First Law of Geography [56] states that
“everything is related to everything else, but near things are more related than distant things” [57].
This key, according to Claramunt [36], should also be used in determining the correlation among all
the pixels of an image, or the configurational disorder of an image. He assumed that the degree of the
configurational disorder of an image would decrease if the average distance between every two pixels
of the same gray value (or same-value pixels in short) becomes shorter and/or the average distance
between every two pixels of different gray values (or different-value pixels) becomes longer. With this
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assumption, Claramunt [36] proposed an improved Shannon entropy (referred to as Cl05) which is
computed by the following three equations:

Cl05 = −
n

∑
i=1

ds(i)
dd(i)

·pi· log pi (23)

ds(i) =


1

Ni ·(Ni−1)

Ni
∑

j=1,j∈Ci

Ni
∑

k=1,k 6=j
djk Ni > 1

λ Ni = 1
(24)

dd(i) =


1

Ni ·(N−Ni)

Ni
∑

j=1,j∈Ci

N−Ni
∑

k=1,k/∈Ci

djk Ni 6= N

λ Ni = N
(25)

where i denotes the i-th gray level; and n and N are the total number of gray levels and that of pixels,
respectively. pi, Ni, and Ci are the proportion, the total number, and the collection of pixels at the i-th
gray level, respectively. j and k denote the j-th and k-th pixel in Ci, respectively, and the Euclidean
distance between them is denoted by djk. λ is a pre-set parameter taking a small value such as 0.1
or 0.2.

The nature of the ds(i) computed using Equation (24) is the average of the distances between
every two pixels at the i-th gray level. Therefore, ds is termed the average distance between the
same-value pixels in this study. In contrast, dd(i) is actually the average of the distances between each
of the pixels at the i-th gray level and each of the pixels at the other gray levels, so dd is referred to as
the average distance between the different-value pixels. In the work by Leibovici, et al. [58], ds/dd is
termed discriminant ratio.

It is worth noting that, although a comprehensive evaluation is lacking, Cl05 has found some
applications in geographic information science. Examples of these applications include spatial data
classification [59] and clustering [60].

3. Design of the Thermodynamics-Based Evaluation

The basic idea of the evaluation is to compute the values of an improved Shannon entropy for a
sequence of increasingly configuration-disordered images and then to examine whether these values
capture the increasing disorder or not. However, there is no standard sequence of images that are
increasingly disordered in terms of configuration. In this section, a thermodynamics-based strategy is
first proposed and used to generate such images. Then, the criteria for the evaluation are defined and
measures for each criterion are developed.

3.1. A Thermodynamics-Based Strategy for Generating Testing Images

To obtain a sequence of increasingly configuration-disordered images, one natural strategy is to
generate a group of images with the same composition of pixels and then rank these images according
to their degrees of configurational disorder. Such a strategy requires a measure of (configurational)
disorder that can be employed to rank different configuration-disordered images, or configurational
disorders in general. However, the long-used standard measure of disorder is Shannon entropy
itself [61,62], but, as mentioned in the introduction, its value is not related to configurational disorders.

To escape the above paradox, the origin of the entropy concept, thermodynamics, was revisited
in this study. In thermodynamics, the terms entropy and disorder are used interchangeably [63].
The classical example of increasing disorder is the mixing of ideal gases [64], as shown in Figure 8.
In this example, two ideal gases are initially separated by a partition in a closed system (Figure 8a),
and then they mix together because the partition is removed (Figure 8b–d). During the mixing process,
the disorder/entropy of the system increases logarithmically until the system achieves equilibrium [65],
at which time the disorder/entropy reaches its maximum value.
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Figure 8. The mixing of two ideal gases in a closed system. (a) Two ideal gases are separated by a
partition in a container; (b) The partition is removed and the two ideal gases begin to mix together;
(c) An intermediate state of the mixing; (d) The final state, equilibrium, of the mixing.

One possible strategy for generating a sequence of increasingly configuration-disordered images
is to simulate this classical example in thermodynamics, i.e., the mixing of ideal gases. To this end,
a simulation strategy, referred to as the thermodynamics-based strategy, was proposed in this study.
The strategy works with a user-supplied image, referred to as a “seed” (image), which is regarded
as the initial state of a closed system. In the strategy, pixels of the seed image are regarded as gas
molecules, whose “mixing” is simulated using the following iterative algorithm:

1. Get the size, r× c, of the seed image, which is taken as the output of Iteration 0.
2. Randomly select (r× c)/2 pixels in the resultant image of the previous iteration.
3. Exchange the position of each of the selected pixels and a randomly selected neighboring pixel.
4. Output the resultant image as the result of the current iteration of mixing.
5. Go back to Step 2 until the number of iterations reaches some threshold.

3.2. A Set of Testing Images Generated Using the Proposed Strategy

Using the thermodynamics-based strategy, a set of testing images were generated in this study.
The testing image set is a sequence of increasingly configuration-disordered images generated using a
natural image (Figure 9a) as the seed. This seed image contains 150× 215 pixels, with values ranging
from 0 to 215. The threshold in implementing the thermodynamics-based strategy was determined
using the following procedure:

1. Set its initial value to a large enough number (e.g., 100,000) to obtain numerous outputs.
2. View the outputs of the 10,000 ×k-th (k = 1, 2, 3, · · · ) iterations with the naked eye, and select

one from these viewed outputs as the “total disorder”.
3. Set the final value of the threshold to the number of iterations of the “total disorder”.

Following the preceding procedure, the threshold was determined as 20,000. In other words, the
testing image set contains 20,000 increasingly configuration-disordered images (see a few of these
images in Figure 9b–l), each of which is the output of the i-th (i = 1, 2, 3, · · · , 20, 000) iteration of mixing
using the natural image (Figure 9a) as the seed.

Some readers may wonder what the mixing result is like after 20,000 iterations. Our experiment,
consisting of 100,000 iterations of mixing, showed that there was little visual difference between two
resultant images after 20,000 iterations (the results of 100,000 iterations are available from the authors
upon request).
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Figure 9. A natural image (a) and eleven configuration-disordered images (b–l) generated based
on it using the proposed thermodynamics-based strategy. Note that a total of 20,000 configuration-
disordered images were generated, but only a few of them are displayed here. The displayed images
are outputs of Iterations 200 (b); 400 (c); ...; 1000 (f); 2000 (g); ..., 5000 (j); 10,000 (k); and 20,000 (l).

3.3. Criteria and Measures for Evaluation

Three criteria are defined in this section for evaluating the improved Shannon entropies, i.e., their
validity, reliability, and ability to capture configurational disorder. In addition to the definition of these
criteria, three measures were developed to assess the fulfillment of each criterion.

(1) Validity and its measure

Validity is the most important criteria; it indicates “whether the instrument is actually measuring
the concept it claims to measure” [66]. In this study, the validity of an improved Shannon entropy
refers to whether the entropy really captures configurational disorder or not. In dealing with the
testing images, the values of a valid improved Shannon entropy for these images should exhibit a
logarithmic trend over the iterations of mixing. Such a trend is a characterization of the logarithmic
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growth of the degree of the configurational disorder of pixels—as simulations of gas molecules in
mixing—in the iterations. The measure of validity, referred to as V, is qualitatively defined as follows:

V =

{
Yes r2 ≥ thre

No r2 < thre
(26)

where yes means valid, and no indicates invalid. The parameter thre is a pre-set threshold, and r2 is
the coefficient of determination obtained when performing a least-squares regression between (a) the
values of an improved Shannon entropy for the testing images and (b) the iterations of mixing, using a
logarithmic model. The value of r2 indicates the goodness of fit of a regression model to data [67], so
in the context of this study it demonstrates whether the logarithmic trend shown by these values over
the iterations of mixing is strong. In this study, the value of thre was set as 50% because a regression
model can usually be regarded as a good fit, if r2 is greater than a half [68].

(2) Reliability and its measure

The reliability of a measure refers to “whether something is being measured consistently” [69].
The meaning of reliability is two-fold. First, a reliable measure “produces the same results when
used repeatedly to measure the same thing” [70]. Second, the values of a reliable measure for two
similar things are close. In the second sense, if an improved Shannon entropy is reliable, the difference
between its values for the configuration-disordered images at two consecutive iterations of mixing
should be tiny. In other words, if the values of a reliable improved Shannon entropy for the testing
images are shown in a scatter plot, the polyline (hereafter referred to as the scatter line) connecting
every two consecutive scatter points should be smooth (see [71,72] for more information on scatter
plots). The measure of reliability, referred to as R, is quantitatively defined as follows:

R =

(
n−1

∑
i=1

(vi+1 − vi)

)
/(max−min) (27)

where vi is value of an improved Shannon entropy for the configuration-disordered image at the i-th
iteration of mixing (i = 1, 2, 3, · · · , n); n is the total number of iterations; and max and min are the
maximum and minimum of all (vi)s, respectively. It can be seen from Equation (27) that R is the ratio of
(a) the cumulative growth in value of an improved Shannon entropy for the configuration-disordered
images from the first iteration to the last to (b) the value range of this entropy for the images of all
iterations. The smaller this ratio, the smoother the scatter line (see an example in Figure 10), and the
more reliable the improved Shannon entropy.Entropy 2018, 20, x  12 of 24 
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(3) Ability and its measure

The ability to capture configurational disorder refers to the range of configurations, in terms of
the degree of disorder, that can be captured by an improved Shannon entropy. An improved Shannon
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entropy of high ability should capture a large range of configurations, say, from (nearly) completely
ordered to totally disordered. For the testing images, the values of a high-ability improved Shannon
entropy should converge slowly over the iterations of mixing. In contrast, for an improved Shannon
entropy of low ability, its values converge quickly. The measure of ability, referred to as A, is defined
by the following formula: 

A = S1/S2

S1 =
n−1
∑

i=1

1
2 [(vi −min) + (vi+1 −min)]

S2 = (n− 1)× (max−min)

(28)

where vi, n, max, and min hold the same meaning as in Equation (27). The nature of A is the ratio
of areas (i.e., S1 and S2) of two shapes formed in the scatter plot of the values of an improved
Shannon entropy for a sequence of increasingly configuration-disordered images, as shown in Figure 11.
A smaller value of this ratio means that the value of an improved entropy converges slower over the
iterations of mixing, as shown in Figure 12. Therefore, the smaller this ratio is, the higher ability the
improved entropy is.
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The first area, S1, is a polygon (filled with vertical stripes in this figure), whereas the second, S2, is a
rectangle (filled with horizontal stripes here).
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4. Evaluation and Results Analysis

4.1. Methods to be Evaluated: Original and Modified

Methods that were evaluated in this study are listed in Table 1. These methods contain the
original Shannon entropy and all the improved methods reviewed in Section 2. In addition, some
modified improved Shannon entropies are also tabulated in Table 1, namely Br96-5, Qu12-V′, Qu12-V-5,
Qu12-V-5′, Qu12-G′, and Qu12-L′. Modifications performed are as follows:

(1) Changing the size of the neighborhood

The two GLV-based improved Shannon entropies, Br96 and Qu12-V, were originally proposed
based on the neighborhood of 3× 3 pixels. In this evaluation, their values were also computed by
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using the neighborhood of 5× 5 pixels; the results are referred to as Br96-5 and Qu12-V-5, respectively.
The size of the neighborhood used in other entropies was not changed because their computation is
limited to only the original size; for example, the size of the neighborhood used in computing Qu12-G
is fixed at 3× 3 pixels by the Sobel operator.

(2) Avoiding dividing by zero

There is a problem of dividing by zero in the three improved Shannon entropies by Quweider [37],
i.e., Qu12-V, Qu12-G, and Qu12-L, if the busyness ml in Equation (17) takes the value of zero. To fix this
problem, the strategy used in Br96—adding one to the denominator, as shown in Equation (15)—was
adopted in this study. Accordingly, a modified formula to Equation (17) was proposed in this study,
as shown in Equation (19). The modified results of Qu12-V/G/L and Qu12-V-5 computed using
Equation (29) are referred to as Qu12-V′/G′/L′ and Qu12-V-5′, respectively:

H = −
n

∑
l=1

pl · log
(

pl
ml + 1

)
(29)

Table 1. A list of Shannon entropies evaluated in this study. These entropies contain the original one
by Shannon and twenty-three improved by a number of researchers.

No. Entropy No. Entropy No. Entropy No. Entropy

1 Sh48 7 Ha73-LU 13 Br96 20 Br96-5
2 Ha73-R 8 Ha73-U 14 Qu12-V 22 Qu12-V′

3 Ha73-RD 9 Ha73-RU 15 Qu12-G 16 Qu12-G′

4 Ha73-D 10 PP89 19 Qu12-L 18 Qu12-L′

5 Ha73-LD 11 Ab89 21 RM06 23 Qu12-V-5
6 Ha73-L 12 Br95 17 Cl05 24 Qu12-V-5′

4.2. Results of the Evaluation

The entropies of each increasingly configuration-disordered image generated in this study are
shown in Figure 13. Note that the logarithmic base in computing each entropy was set as two in this
study, although other bases such as 10 and e are also acceptable. Furthermore, this figure shows the
results of the regression analysis for each Shannon entropy, namely the regression equation and r2.
The validity, reliability, and ability, measured by V, R, and A, respectively, of each Shannon entropy
are listed in Table 2.

Table 2. The validity (V), reliability (R), and ability (A) of the 24 entropies.

Entropy V R A Entropy V R A

Sh48 No 1 N/A Br96 Yes 9.88 0.98074
Ha73-R Yes 41.21 0.96215 Qu12-V Yes 5.73 0.97068

Ha73-RD Yes 51.70 0.95573 Qu12-G Yes 23.33 0.96266
Ha73-D Yes 43.96 0.95859 Qu12-L No N/A N/A

Ha73-LD Yes 46.67 0.96023 RM06 Yes 331.23 0.88170
Ha73-L Yes 41.21 0.96215 Cl05 Yes 2.50 0.82325

Ha73-LU Yes 51.70 0.95573 Br96-5 Yes 6.46 0.98236
Ha73-U Yes 43.96 0.95859 Qu12-V′ Yes 5.76 0.97046

Ha73-RU Yes 46.67 0.96023 Qu12-G′ Yes 24.13 0.96139
PP89 Yes 25.91 0.97016 Qu12-L′ No 77.09 0.96572
Ab89 Yes 22.43 0.95831 Qu12-V-5 Yes 3.03 0.96644
Br95 Yes 21.46 0.97460 Qu12-V-5′ Yes 3.04 0.96632

Note: N/A means “not applicable”.
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4.3. Analysis of the Results on Validity

Among the 23 improved Shannon entropies, only Qu12-L and Qu12-L′ turn out to be invalid in
the evaluation, as shown in Table 2. Although both of these improved Shannon entropies are based on
LBP, they are invalid due to different reasons.

Qu12-L is not valid as its algorithm returned an error of “dividing by zero” when using
Equation (17). In other words, the parameter ml in Equation (17) has a chance of taking the value of
zero when dealing with the testing images. In fact, this error makes sense when computing Qu12-L
with any image. According to Equation (21), ml takes the value of zero if the LBP value of each pixel at
the gray level of l equals zero, or, in other words, if all the immediate neighbors of the pixels at the
gray level of l have a gray value not greater than l. This condition is always true when l equals the
greatest gray value when dealing with any image.
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Qu12-L′ is invalid because its values for the testing images present a convex trend, rather than a
logarithmic trend, over the iterations of mixing. This convex trend can be revealed by a close look at
the scatter plot of Qu12-L′: As shown in Figure 14, the value of Qu12-L′ first presents an upward trend,
peaks at about Iteration 3000, and then shows a downward trend.
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4.4. Analysis of the Results on Reliability

The ranking of different improved Shannon entropies can be determined according to the measure
of reliability (i.e., R), as shown in Table 3. It can be seen from this table that the most reliable improved
Shannon entropy is the one based on the average distance between same/different-value pixels,
i.e., Cl05, followed by the improved Shannon entropies based on GLV, namely Qu12-V-5, Qu12-V-5′,
Qu12-V, Qu12-V′, Br96-5, and Br96 (ranked 2nd–7th, respectively).

Table 3. Rankings of various improved Shannon entropies in terms of reliability.

Ranking Entropy Ranking Entropy Ranking Entropy Ranking Entropy

1 Cl05 7 Br96 13 Ha73-R 19 Ha73-RD
2 Qu12-V-5 8 Br95 13 Ha73-L 19 Ha73-LU
3 Qu12-V-5′ 9 Ab89 15 Ha73-D 21 Qu12-L′

4 Qu12-V 10 Qu12-G 15 Ha73-U 22 RM06
5 Qu12-V′ 11 Qu12-G′ 17 Ha73-LD N/A Qu12-L
6 Br96-5 12 PP89 17 Ha73-RU

Note: Some rankings are bolded to indicate that they are the same as their previous one.

The middle of the rankings is mainly comprised of improved Shannon entropies based on GLCM,
containing Br95 (8th), Ab89 (9th), PP89 (12th), and Ha73-R/L/D/U/LD/RU/RD/LU (13th–19th). It is noted
that there are four pairs of GLCM-based improved Shannon entropies that have the same reliability,
namely (a) Ha73-R and Ha73-L; (b) Ha73-D and Ha73-U; (c) Ha73-LD and Ha73-RU; and (d) Ha73-RD
and Ha73-LU. This fact demonstrates that two GLCMs generated based on opposite displacement
operators are the same, and it explains why only four, rather than eight, directions are used in Br95.
It is also noted that the improved Shannon entropies based on the GLCM generated along multiple
directions (i.e., Br95, Ab89, and PP89) are more reliable than that based on the GLCM generated along
a single direction.

The most unreliable improved Shannon entropy is the one based on Laplacian pyramid, i.e.,
RM06, whose R-value is significantly higher than that of the other improved Shannon entropies, as
shown in Figure 15. A possible explanation for the low reliability of RM06 (i.e., the great fluctuation in
the value of RM06) is that in the mixing simulation, the “motion” of each pixel has a “butterfly effect”
on the resultant Laplacian pyramid. In other words, the motion of even a single pixel is enough to
change all the levels of the Laplacian pyramid of an image.
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4.5. Analysis of the Results on Ability

The rankings of various improved Shannon entropies in terms of ability is shown in Table 4. It can
be seen from the rankings that Cl05 is the improved Shannon entropy with the highest ability to capture
configurational disorder, followed by RM06 with the second highest ability. In addition, the ability of
these two improved Shannon entropies, especially Cl05, is significantly better than that of the others,
as shown in Figure 16. This significant difference is because these two improved Shannon entropies are
sensitive to not only configurations (referred to as local configurations) within a pixel’ neighborhood
of a pre-set size but also configurations (global configurations) outside the neighborhood.

Table 4. Rankings of various improved Shannon entropies in terms of ability.

Ranking Entropy Ranking Entropy Ranking Entropy Ranking Entropy

1 Cl05 6 Ha73-U 13 Qu12-G 19 Qu12-V
2 RM06 8 Ha73-LD 14 Qu12-L′ 20 Br95
3 Ha73-RD 8 Ha73-RU 15 Qu12-V-5′ 21 Br96
3 Ha73-LU 10 Qu12-G′ 16 Qu12-V-5 22 Br96-5
5 Ab89 11 Ha73-R 17 PP89 N/A Qu12-L
6 Ha73-D 11 Ha73-L 18 Qu12-V′

Note: Some rankings are bolded to indicate that they are the same as their previous one.
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Let us take the two images (the upper one and the lower) in Figure 17 as an example. The only
difference between the two images is the location of the pixel with a gray value of seven. For this
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pixel, its local configuration within a pre-set size, say 3× 3, in the upper image is the same as that
in the lower image, but its global configurations are different between the two images (obviously
evident in the distance between this pixel and the one with a gray value of eight). The values of all
improved Shannon entropies of these two images were computed and are shown in Table 5. One can
note from this table that, among all these improved Shannon entropies, only Cl05 and RM06 capture
the difference between the two images in Figure 17.
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Table 5. The values of all improved Shannon entropies of the two images in Figure 17.

Entropy Image 1 Image 2 Entropy Image 1 Image 2

Cl05 0.0179 0.0186 Qu12-G N/A N/A
RM06 4.9112 4.4375 Qu12-L′ 0.2306 0.2306

Ha73-RD 0.2874 0.2874 Qu12-V-5′ 1.7362 1.7362
Ha73-LU 0.2874 0.2874 Qu12-V-5 1.1636 1.1636

Ab89 0.7315 0.7315 PP89 0.2614 0.2614
Ha73-D 0.2775 0.2775 Qu12-V′ 1.6104 1.6104
Ha73-U 0.2775 0.2775 Qu12-V 0.9636 0.9636

Ha73-LD 0.2874 0.2874 Br95 0.2738 0.2738
Ha73-RU 0.2874 0.2874 Br96 7.6384 7.6384
Qu12-G′ 1.8581 1.8581 Br96-5 8.1230 8.1230
Ha73-R 0.2472 0.2472 Qu12-L N/A N/A
Ha73-L 0.2472 0.2472

Note: Image 1 and 2 refer to the upper and the lower image in Figure 17, respectively.

5. Discussion

5.1. Effects of Modifications on Improved Shannon Entropies

In this section, we investigate the effects of modifications on improved Shannon entropies. As
described in Section 4.1, the first modification is to change the size of the neighborhood used in
computing Br96 and Qu12-V, resulting in two modified improved Shannon entropies, namely Br96-5
and Qu12-V-5. A comparison between the performance of Br96 and that of Br96-5 reveals that such a
modification increases the reliability but decreases the usability of Br96. The changing of the size of
the neighborhood, however, improves both the reliability and the usability of Qu12-V. These findings
imply that neighborhoods of larger sizes are not always better than that of smaller ones in improving
Shannon entropy.

The second modification was aimed at avoiding the problem of dividing by zero when computing
Qu12-V, Qu12-V-5, Qu12-G, and Qu12-L, but this problem was encountered only in the computation
of Qu12-L in the evaluation (as shown in Figure 13). It is worth noting that although the other three
improved Shannon entropies, i.e., Qu12-V, Qu12-V-5, and Qu12-G, are available with the testing images
in this study, it does not deny the necessity of this modification. For example, these three improved
Shannon entropies are unavailable when dealing with an image where all the pixels have the same
gray value.
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5.2. Computational Efficiency of Various Improved Shannon Entropies

In this section, the computational efficiency of these improved Shannon entropies is discussed.
It is necessary to note that an efficiency evaluation (in terms of central processing unit, CPU, time [73])
was not formally included in this study due to two reasons. First, the algorithms of the improved
Shannon entropies were implemented in different programming environments in this study. More
specifically, the algorithm of RM06 was implemented in MathWorks (MatLab, R2016a) while that of the
other improved Shannon entropies in Visual Studio (Microsoft, 2015). Second, some of the improved
Shannon entropy algorithms were optimized in this study to improve their efficiency; otherwise,
it takes—according to preliminary estimates—a week with a desktop computer to compute all the
improved Shannon entropies of the 20,000 testing images.

To provide an intuitive insight into the computational efficiency of different Shannon entropies,
the following experiment was carried out with a desktop computer equipped with an Intel Core
i7-4790 CPU @ 3.60 GHz and 8.00 GB RAM. First, a total of 100 configuration-disordered images were
randomly selected from the testing image dataset. Then, all the Shannon entropies of each selected
image were computed using algorithms without any optimization. The CPU time required by each
computation was recorded and is shown in Table 6. It can be seen from this table that Cl05 is the most
time-consuming Shannon entropy.

Table 6. The CPU time required by various Shannon entropies in dealing with 100 randomly selected
testing images.

Entropy Time/s Entropy Time/s Entropy Time/s Entropy Time/s

Sh48 0.2 Ha73-LU 0.9 Br96 2.2 Br96-5 3.5
Ha73-R 0.9 Ha73-U 0.9 Qu12-V 2.6 Qu12-V′ 2.7

Ha73-RD 1.0 Ha73-RU 0.9 Qu12-G 5.2 Qu12-G′ 4.9
Ha73-D 0.9 PP89 0.5 Qu12-L 3.1 Qu12-L′ 3.1

Ha73-LD 1.0 Ab89 0.6 RM06 4.7 Qu12-V-5 4.0
Ha73-L 0.9 Br95 0.6 Cl05 3651.4 Qu12-V-5′ 4.0

5.3. Nature of the Best-Performed Method: Entropy or Not

It has been shown in the evaluation that Cl05 is the best method according to the three criteria
defined in this study. However, one may argue that such a method is essentially not a Shannon entropy
because it can be replaced by its coefficient, ds/dd, which is an index of correlation. Here we first
removed the probability component from the equation of Cl05, leaving only the coefficients as shown
in Equation (30) (referred to as Coef_Cl05). Then, we computed the values of Coef_Cl05 for all the
testing images and found that the trend shown by Coe f _Cl05 is similar as that of Cl05, as shown in
Figure 18. A further regression analysis shows that there is a strong liner relationship between Cl05
and Coef_Cl05, as shown in Figure 19:

Coe f _Cl05 =
n

∑
i=1

ds(i)
dd(i)

(30)
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Figure 18. Comparison between the change of Cl05 and that of Coef_Cl05 along with the 20,000 iterations
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Entropy 2018, 20, 19 20 of 25

Entropy 2018, 20, x  19 of 24 

 

 
Figure 18. Comparison between the change of Cl05 and that of Coef_Cl05 along with the 20,000 
iterations of mixing of pixels of the natural image. 

 
Figure 19. The relationship between Cl05 and Coef_Cl05. 

5.4. Thermodynamic Entropy and Fractal Dimension 

It is appropriate at this point to mention two relevant topics, namely thermodynamic entropy 
and fractal dimension. The concept of thermodynamic entropy, as its name suggests, originates from 
thermodynamics which is a branch of physics dealing with the movement of energy [74]. 
Thermodynamic entropy (sometimes referred to as Boltzmann [75] entropy) is similar, or even 
equivalent in some sense [76], to Shannon entropy, as both of them can be used to statistically 
characterize the disorder of a system [77,78]. But a clear difference between them is that Shannon 
entropy is commonly expressed in binary digits per unit (e.g., bits per pixel), while thermodynamic 
entropy is quantified in units of energy divided by temperature [79]. 

Although Shannon entropy sometimes is capable of characterizing the disorder of a system, the 
characterization depends largely on the scale adopted to measure that system (i.e., measurement 
scale). That is, the value of Shannon entropy may differ largely with the measurement scale. In this 
sense, one needs to determine the characteristic scale [80–83] of a system before computing an entropy. 
However, a large number of systems, such as urban forms and coastlines, are “scale-free” [84,85], 
namely that they have no characteristic scales. In this case, fractal metrics, such as fractal dimension 
[86,87], information dimension [88,89], and ht-index [90–93], can be used as effective alternatives to 
Shannon entropy because these metrics are independent of measurement scales. 

6. Conclusions 

In this study, a systematic evaluation of various improved Shannon entropies was conducted. 
In doing so, a critical review was first undertaken on the improvements on Shannon entropy for 
quantifying the configurational information (i.e., the configurational disorder) of a gray-level image. 
Next, a systematic evaluation of various improved Shannon entropies was designed. To generate 
testing data for such an evaluation, a strategy for simulating the mixing of ideal gases—a 
thermodynamic process of entropy increasing—was proposed in this study. Furthermore, to evaluate 
the performance of improved Shannon entropies, three criteria were defined (i.e., validity, reliability, 
and ability to capture configurational disorder) and three measures were developed to assess the 
fulfillment of each criterion. Finally, 23 variants of Shannon entropy (Table 1) were evaluated, with a 
testing dataset containing 20,000 increasingly configuration-disordered images. From the results of 
the evaluation, the following can be concluded: 

1. Among all the variants of Shannon entropy, only the two based on LBP (local binary pattern)—
Qu12-L and Qu12-L’—are invalid to quantify the configurational information of an image. 
However, it is worth noting that, although valid with the testing images in this study, Qu12-V, 
Qu12-V-5, and Qu12-G may be invalid with other images due to dividing by zero. 

Figure 19. The relationship between Cl05 and Coef_Cl05.

5.4. Thermodynamic Entropy and Fractal Dimension

It is appropriate at this point to mention two relevant topics, namely thermodynamic entropy
and fractal dimension. The concept of thermodynamic entropy, as its name suggests, originates
from thermodynamics which is a branch of physics dealing with the movement of energy [74].
Thermodynamic entropy (sometimes referred to as Boltzmann [75] entropy) is similar, or even
equivalent in some sense [76], to Shannon entropy, as both of them can be used to statistically
characterize the disorder of a system [77,78]. But a clear difference between them is that Shannon
entropy is commonly expressed in binary digits per unit (e.g., bits per pixel), while thermodynamic
entropy is quantified in units of energy divided by temperature [79].

Although Shannon entropy sometimes is capable of characterizing the disorder of a system,
the characterization depends largely on the scale adopted to measure that system (i.e., measurement
scale). That is, the value of Shannon entropy may differ largely with the measurement scale. In this
sense, one needs to determine the characteristic scale [80–83] of a system before computing an entropy.
However, a large number of systems, such as urban forms and coastlines, are “scale-free” [84,85], namely
that they have no characteristic scales. In this case, fractal metrics, such as fractal dimension [86,87],
information dimension [88,89], and ht-index [90–93], can be used as effective alternatives to Shannon
entropy because these metrics are independent of measurement scales.

6. Conclusions

In this study, a systematic evaluation of various improved Shannon entropies was conducted.
In doing so, a critical review was first undertaken on the improvements on Shannon entropy
for quantifying the configurational information (i.e., the configurational disorder) of a gray-level
image. Next, a systematic evaluation of various improved Shannon entropies was designed.
To generate testing data for such an evaluation, a strategy for simulating the mixing of ideal gases—a
thermodynamic process of entropy increasing—was proposed in this study. Furthermore, to evaluate
the performance of improved Shannon entropies, three criteria were defined (i.e., validity, reliability,
and ability to capture configurational disorder) and three measures were developed to assess the
fulfillment of each criterion. Finally, 23 variants of Shannon entropy (Table 1) were evaluated, with a
testing dataset containing 20,000 increasingly configuration-disordered images. From the results of the
evaluation, the following can be concluded:

1. Among all the variants of Shannon entropy, only the two based on LBP (local binary
pattern)—Qu12-L and Qu12-L′—are invalid to quantify the configurational information of an
image. However, it is worth noting that, although valid with the testing images in this study,
Qu12-V, Qu12-V-5, and Qu12-G may be invalid with other images due to dividing by zero.

2. Variants of Shannon entropy differ significantly in terms of reliability. The most reliable variant
of Shannon entropy is Cl05, with an R-value of 2.50. In contrast, the least reliable one is RM06,
with an R-value of 331.23 that is 131 times larger than that of Cl05.

3. In terms of the ability to quantify configurational information (i.e., to capture configurational
disorder), the best two variants of Shannon entropy are Cl05 (with an A-value of 0.82) and
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RM06 (with an A-value of 0.88). As for the other variants, they have a similar performance with
A-values ranging from 0.96 to 0.98.

4. Cl05 is the best variant of Shannon entropy for quantifying the configurational information of
images according to the three criteria defined in this study. However, from a theoretical point of
view, it is debatable whether the nature of Cl05 is still in Shannon entropy or not; from a technical
point of view, practical applications of Cl05 in remote sensing image processing may be limited
by its high computational complexity.

The significance of this study can be seen from two perspectives. Theoretically, it presents for
the first time a comprehensive evaluation framework (including testing data, criteria, and measures)
for the usability of various of entropies. This evaluation framework will play a guiding role in
further improving the usability of information-theoretic measures for spatial sciences. Practically, the
conclusions of this study are useful for various image processing applications in selecting an entropic
measure. For example, a number of band selection algorithms [94–97] for hyperspectral remote sensing
images rely on entropic measures for characterizing the information content of each band. In this case,
the improved Shannon entropies which are valid and reliable in this study can be used as effective
alternatives to the original Shannon entropy.

Future research is recommended in two areas. First, the computational efficiency of Cl05 can be
improved to achieve its real-time performance with large datasets. For this purpose, some advanced
computational means, such as parallel [98,99] and cloud computing [100,101], may be of use. Second,
a comparison can be made between the improved Shannon entropies and Boltzmann entropy, which is
“both configurational and compositional” [102] and has been recommended for use as an alternative to
Shannon entropy in characterizing spatial disorder [31,103].
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