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Abstract: With the corresponding Liouvillian as a starting point, we demonstrate two seemingly new
phenomena of the STIRAP problem when subjected to irreversible losses. It is argued that both of
these can be understood from an underlying Zeno effect, and in particular both can be viewed as
if the environment assists the STIRAP population transfer. The first of these is found for relative
strong dephasing, and, in the language of the Liouvillian, it is explained from the explicit form of
the matrix generating the time-evolution; the coherence terms of the state decay off, which prohibits
further population transfer. For pure dissipation, another Zeno effect is found, where the presence
of a non-zero Liouvillian gap protects the system’s (adiabatic) state from non-adiabatic excitations.
In contrast to full Zeno freezing of the evolution, which is often found in many problems without
explicit time-dependence, here, the freezing takes place in the adiabatic basis such that the system
still evolves but adiabatically.
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1. Introduction

Coherent control has become an essential part of many branches in quantum physics,
ranging from atomic and molecular thermal gases to solid state devises and ultracold atomic
condensates [1–4]. Utilising adiabatic driving is a method to circumvent any errors arising from
timing of applied pulses—as long as the process is adiabatic, the target state is reached. When a direct
coupling between the initial and target state is forbidden by selection rules, an intermediate state
is often used in a so called Raman coupling scheme. As often is the case, this additional state is an
excited state that suffers from spontaneous emission. This source of dissipation/decoherence can be
bypassed by using instead the so called STIRAP—stimulated Raman adiabatic passage method [1,5,6].
In addition, the STIRAP makes use of an intermediate state, but by properly choosing the two Raman
coupling pulses, the coherent transfer of population can be made perfect without ever populating the
excited intermediate state. As such, deficiencies due to spontaneous emission of that state are greatly
suppressed [7,8]. However, dephasing of the two lower states may well occur, for example due to
elastic collisions between particles [9]. The process is then no longer coherent, which indeed affects
the population transfer. While the evolution is no longer unitary, it is still linear and generated by a
Liouvillian operator. Naturally, the properties of the Liouvillian will determine the evolution of the
system’s state.

In AMO experiments, the coupling to any environment can usually be made rather weak and
especially when working in the optical regime the system dynamics can be well approximated by a
Markovian master equation. The general form of such an equation is given by the Lindblad type [10]

∂tρ̂ = L̂[ρ̂] = i
[
ρ̂, Ĥ

]
+D[ρ̂], (1)
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with the disipator
D[ρ̂] = ∑

i
γi

(
2L̂i ρ̂L̂†

i − L̂†
i L̂i ρ̂− ρ̂L̂†

i L̂i

)
. (2)

Here, we have defined the Liouvillian L̂, which generates the full evolution of the state, the
unitary time-evolution governed by the system Hamiltonian Ĥ, and the part incorporates the effects of
the environment. The effective system–environment couplings are γi with corresponding Lindblad
jump operators L̂i. The Liouvillian on the form above preserves the physical properties of the state,
that is ρ̂(t) is normalized and positive semi-definite for all times. That implies also that the evolution
is in agreement with the fluctuation-dissipation theorem stating that any sort of dissipation inevitably
causes some sort of decoherence. Neglecting such fluctuations, one of the first studies on the open
STIRAP consisted of adding a complex component −iγ|2〉〈2| to the Hamiltonian [7]. In this simplified
picture, it was found, via adiabatic elimination, that the transition probability Pi for i = 3 falls off
exponentially in terms of the dissipation rate γ for weak dissipation g0 � γ, and as γ−2 in the
opposite limit γ � g0. Ref. [8] considered instead the full Lindblad master Equation (1) describing
spontaneous emission of the excited intermediate level. For a large regime of decay rates and being
deep in the adiabatic regime, their results showed that the success rate was in principle unaltered
by the openness of the problem. In a more recent work [11], the open STIRAP was reexamined
by deriving a microscopic master equation that takes into account the explicit time-dependence of
the Hamiltonian (In the standard derivation of the Lindblad master equation, the Hamiltonian is
assumed time-independent. The derivation cannot be performed following the same procedure once
the Hamiltonian becomes time-dependent.). In the overdamped regime, it was found that an increased
population transfer is to be found, which results from a Zeno-type process. Dephasing between
the two states |1〉 and |3〉 is expected to have a greater effect on the STIRAP process. In particular,
dephasing among the lower states will effectively couple the different adiabatic states, and hence result
in deterioration of the population transfer success rate. Influence of dephasing on the STIRAP problem
has been analysed in Ref. [9] in the weak system–environment coupling limit.

In this work, instead of directly integrating the Lindblad master Equation (1), which has been
the standard route in the past, we start from the properties of the Liouvillian L̂ in order to analyse
the general open STIRAP problem. We present new results that in a natural way can be explained in
terms of the Liouvillian. In particular, by extracting the (complex) spectrum of L̂, the different relevant
time-scales can more easily be identified. For example, one may expect that, if the STIRAP process is
slow, the environment will have a greater influence on the system dynamics, and possibly deteriorate
the success rate. Simultaneously, a too fast STIRAP will imply non-adiabatic excitations taking you
out from the desired instantaneous eigenstate. This expected behaviour is indeed found for weak
couplings to the environment, and the optimal time for the process should be such that the inherent
unitary and the external irreversible time scales agree. For strong dephasing, a surprising evolution is
demonstrated. Here, it might actually be preferable to consider a slow process despite the coupling
to the environment. It is explained from a Zeno freezing effect of the population transfer between
the different diabatic states. Another Zeno manifestation is found for dissipation of the excited state.
This is understood from the non-vanishing Liouvillian gap that tends to project the state back onto the
desirable adiabatic state. There is a trade-off though, a too strong coupling to the environment implies
a qualitatively different regime where the quantum Zeno mechanism projects you down to a diabatic
state instead of the adiabatic state.

The paper is structured as follows. In the next section, we start by recapitulating the general idea
behind STIRAP. The following subsection introduces the Bloch representation of the Lindblad master
equation and we briefly discuss some needed properties of the Liouvillian matrix. We continue in
Section 3 with the actual numerical results. In particular, the spectrum of the Liouvillian matrix is
analysed in some detail. Furthermore, the full open STIRAP problem is simulated numerically, which
confirms our predictions drawn from the structure of the Liouvillian matrix. Finally, we conclude
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in Section 4 with a summary and some remarks. In the Appendices, we especially point out some
remarks about the Liouvillian matrix.

2. The Open STIRAP Model

The STIRAP model is a paradigm, both for demonstrating adiabatic ideas in general and as an
example of a time-dependent three-level system. In this respect, it is a perfect starting point when
analysing adiabatic processess from the perspective of the Liouvillian L̂(t). Indeed, the corresponding
Liouvillian encapsulates many novel features, such as exceptional points (EP’s) [12,13]. The Liouvillians
for open two-level systems, such as the Landau–Zener problem [14,15], seem to be lacking many of
these interesting aspects.

STIRAP for Closed Systems

The standard STIRAP setup is the Λ one depicted in Figure 1; two stable states, |1〉 and |3〉
respectively, are laser coupled by a pump G1(t) and a Stokes field G2(t) to an excited intermediate state
|2〉. Throughout, we assume a two-photon resonance transition, i.e., the photon frequency difference
h̄(ω2 −ω1) (with ω1,2 the frequency of the pump and Stoke lasers respectively) matches the energy
difference between the bare states |1〉 and |3〉. For the main part of this analytical subsection, we do not
restrict the analysis to single photon resonance transitions, and thereby the introduction of a detuning
∆ [1]. It is found, however, that the qualitative results will not depend on ∆ and, for all numerical
simulations, we thereby let ∆ = 0 for simplicity (see, for example, Ref. [16]). Before analysing the
corresponding Liouvillian, we next summarise the basics of the STIRAP mechanism.

Figure 1. The traditional STIRAP Λ-scheme. Two pulses couple the lower stable states |1〉 and |3〉
with the excited state |2〉 with strengths G1(t) and G2(t). The lengths of the arrows symbolise the
frequencies (in scaled units) of the light pulses, such that ∆ marks the detuning between the applied
pulses and the atomic transitions. In the figure, the two-photon transition is resonant such that only a
single detuning parameter appears.

Within the rotating wave approximation and using the bare ( diabatic) basis introduced above,
the Schrödinger equation becomes [1] (h̄ = 1 throughout)

i∂t|Ψ(t)〉 = Ĥd(t)|Ψ(t)〉 =

 0 G1(t) 0
G1(t) ∆ G2(t)

0 G2(t) 0

|Ψ(t)〉. (3)

This equation defines the time-dependent Hamiltonian Ĥd, and furthermore we have assumed
real couplings G1,2(t) without loss of generality. The adiabatic basis {|ϕ+(t)〉, |ϕ0(t)〉, |ϕ−(t)〉} is given
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by the instantaneous (adiabatic) eigenstates of Ĥd(t). Written as a unitary matrix given in the diabatic
basis, these states are

Û(t) =

 sin φ sin θ cos θ cos φ sin θ

cos φ 0 − sin θ

sin φ cos θ − sin θ cos φ cos θ

 , (4)

with the parametrisation tan θ = G1(t)/G2(t), tan 2φ = 2G0(t)/∆, and with G2
0(t) = G2

1(t) + G2
2(t).

The corresponding instantaneous (adiabatic) eigenstates are E±(t) =
(

∆±
√

∆2 + 4G2
0(t)

)
/2 and

E0(t) = 0. Thus, we have Ĥad(t) ≡ ÛĤd(t)Û−1 = diag (E+(t), E0(t), E−(t)), with Ĥad(t) the
adiabatic Hamiltonian. The Schrödinger equation in the adiabatic basis reads

i∂t|Ψad(t)〉 =
[

Ĥad(t)− iÛ−1∂tÛ
]
|Ψad(t)〉. (5)

The adiabatic approximation consists of dropping the “gauge potential” Â = −iÛ∂tÛ−1 that
comprises the non-adiabatic couplings [1,17,18]. Thus, within this approximation, the adiabatic states
evolve as |ϕi(t)〉 → exp

(
−i
∫ t

0 Ei(t′)dt′
)
|ϕi(t)〉 with i = ±, 0 (Here, we put Â ≡ 0, but it is noted

that this gauge potential is responsible for the Berry phase when encircling a closed loop in parameter
space). The adiabatic state (also referred to as dark state) |ϕ0(t)〉 is particularly attractive for practical
purposes as it does not contain the bare excited state |2〉, which is typically subject to spontaneous
emission. Now, if the couplings are chosen

lim
t→−∞

G1(t)
G2(t)

= 0, θ → 0,

lim
t→+∞

G2(t)
G1(t)

= 0, θ → π

2
,

(6)

it follows that, provided that the evolution is adiabatic, the adiabatic dark state obeys

|ϕ0(t)〉 =


|1〉, t = −∞,

|3〉, t = +∞.
(7)

This defines the STIRAP in our Λ-configuration; if we prepare our state in |1〉 and adiabatically
turn on the couplings according to Equation (6), we will steer the state into |3〉 without ever
populating the mediating state |2〉. One simple choice of couplings obeying this condition is for
two symmetric Gaussians:

G1(t) = g0 exp
[
− (t− aτ)2

2(aσ)2

]
,

G2(t) = g0 exp
[
− (t + aτ)2

2(aσ)2

]
.

(8)

Here, g0 is the pulse amplitude, aσ the pulse width, and 2aτ the distance between the pulses.
These are shown in Figure 2, and they are also the pulses used throughout this manuscript. What is
especially worth pointing out is the counterintuitive order of the pulses; pulse 2, the pump,
which couples the initially empty states, is turned on before pulse 1, the Stokes. We have introduced
a to serve as our single “adiabaticity parameter” (qualitatively, it is the pulse area setting the level
of adiabaticity [5], and hence one could imagine varying other parameters, like the pulse amplitude,
instead). Thus, we will keep g0, τ and σ fixed in all numerical simulations (more precisely, g0 = 1 and
τ = σ = 10) and instead vary a alone.
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Figure 2. Counterintuitive STIRAP pulse sequenceof Equation (6). The pump pulse G2(t) is turned
on before the Stokes pulse G1(t). The two pulse widths are aσ, the pulse separation 2aτ and the their
amplitudes g0. For this plot τ = σ which has been used for the numerics. Keeping the rest of the
parameters fixed, for increasing adiabaticity parameter a, the two pulses become smoother, which
favors a more adiabatic population transfer.

To get a better insight into the parameters rendering adiabatic evolution, we make use of the
criteria for adiabaticity [18] ∣∣〈ϕ+(t)|

(
∂tĤd

)
|ϕ0(t)〉

∣∣
E2
+(t)

� 1, (9)

where we have used the symmetry of the |ϕ±(t)〉 adiabatic states relative to |ϕ0(t)〉, and that E0(t) = 0.
This results in

A(t) ≡ G1(t)G2(t)
G3

0(t)
aτ

(aσ)2 � 1. (10)

For adiabatic evolution, condition (10) should be fulfilled for all times t ∈ [ti, t f ] between initial
and final times. For not too large initial and final times, A(t) peaks at t = 0, and we directly notice
that since A(t) ∼ 1/g0 and A(t) ∼ 1/a a large amplitude g0 and/or a large a favour adiabaticity.
As we already pointed out, we fix g0 = 1 and instead vary a in order to analyse the influence of
non-adiabatic excitations. As we will see, for the open STIRAP problem, a is in general not a good
adiabaticity parameter.

3. Results and Discussion

There are in particular two types of dissipation/decoherence processes occurring naturally in
realistic settings, spontaneous emission of the excited state |2〉 and dephasing. Previous works have
considered direct numerical integration of the master equation or adiabatic elimination schemes [7–9].
Here, we examine the open STIRAP problem by rewriting the Lindblad master equation as a linear
differential equation for the Bloch vector of the state. In two dimensions, the resulting equations are
the famous Bloch equations [19]. In higher dimension, however, much less is known about these
“generalised Bloch equations”, and the interpretation and analysis of the equations become also much
more complex as will be discussed below.

The system evolution is modelled within the Lindblad master equation formalism, Equation (1).
We will work in the diabatic basis such that the Hamiltonian is taken as Ĥd of Equation (3), and we
consider two different situations of loss channels:

1. Case (a). Dephasing of the lower states |1〉 and |3〉 implemented by the Lindblad jump operator

L̂ = |1〉〈1| − |3〉〈3|. (11)
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We disregard any dephasing between the other levels as these are typically of less importance [9].
More precisely, once the dephasing arising from the jump operator (11) is taken into account,
the additional dephasing occurring between the other levels do not qualitatively alter the results.
This is especially true when the intermediate state is only slightly populated.

2. Case (b). Spontaneous emission of the excited state |2〉 to the states |1〉 and |3〉. The corresponding
jump operators are

L̂1 = |1〉〈2|, L̂2 = |3〉〈2|. (12)

Note that we do not study the situation of losses to a fourth level |4〉 as was the scenario of
Refs. [7,8]. Furthermore, we assume the same decay rates, κ1 = κ2 = κ.

These two cases are schematically presented in Figure 3.

Figure 3. Schematic picture of the two open STIRAP situations: (a) dephasing of the two stable |1〉 and
|3〉 states; and (b) spontaneous emission from the excited |2〉 state to either of the lower states.

3.1. The Liouvillian Matrix for the Λ System

Any state in any dimension D can be written on the form [20,21]

ρ̂ =
1
D

(
I+

√
D(D− 1)

2
R · λ

)
, (13)

where R = (r1, r2, . . . , rD2−1) is the generalised Bloch vector and λ = (λ1, λ2, . . . , λD2−1) a vector
with the generalised Gell–Mann matrices as elements [22] (see Appendix A). For pure states, one has
|R| = R = 1, and naturally for the maximally mixed state R = 0. Solving the master equation for ρ̂

now transforms into the problem of solving an equation for the Bloch vector on the form [23–25]

∂tR = MR + b. (14)

Here, M is a (D2 − 1) × (D2 − 1) matrix generating the time-evolution of the Bloch vector,
and will be hereafter called the Liouvillian matrix, while b we denote Liouvillian pump for reasons
to be explained. In the Appendix B, we give several general properties of M. What is especially
important is that it is not an Hermitian matrix, and thereby its eigenvalues µi are typically complex.
The eigenvalues must, however, appear in complex conjugate pairs since the trace of M is real.
Moreover, it follows that, whenever an eigenvalue is complex, the corresponding eigenvector must
also be complex. As a result, since the Bloch vector is real for any physical state, most eigenvectors
do actually not represent physical states ρ̂. Another peculiarity, when dealing with non-Hermitian
matrices, is that different eigenvectors need not be mutually orthogonal. In particular, at the EPs when
two (or more) eigenvalues µi become degenerate the corresponding eigenvectors are parallel [12,13].



Entropy 2018, 20, 20 7 of 18

One quantity that is of special importance is the eigenvalue with the smallest (but non-zero) absolute
value of its real part, i.e.,

∆̃ = min
i

[Re(−µi)] , (15)

which sets an upper bound for the time-scale for reaching the steady state, and it is often referred to as
the Liouvillian gap [26,27].

The Liouvillian matrices corresponding to the two cases (11) and (12), together with some of their
properties, are presented in the Appendix C. As the couplings G1(t) and G2(t) now are time-dependent
different scales become relevant. We will come back to this in the following subsection for the general
case. In this subsection, however, we fix the values of the couplings, i.e., we consider the standard
Raman Λ model. In particular, we consider G1 = G2 = 1 and ∆ = 0. We have verified that varying
these particular values does not alter our conclusions. With these parameters fixed, we ask how the
eigenvalues of M vary with the system–environment couplings γ and κ. While keeping the couplings
constant presents an oversimplified picture (loosely speaking assuming that the short time-scale is that
of environment induced relaxation), it does give valuable insight. In this respect, this subsection is to
be seen as providing an intuition for the dynamics given some non-Hermitian matrix M.

We may note that for γ = 0 or κ = 0, and since the Liouvillian matrices are skew-symmetric, we
find two zero eigenvalues. The corresponding eigenstates are the steady states of the model. From the
expression (A7) of the Appendix, it is easy to identify the Bloch vector

R0 =
[

0 0
√

3c2 −
√

3sc 0 0 0 (1− 3s2)
]t

/2 (16)

as one of them, with s = sin θ and c = cos θ. This Bloch vector corresponds to the state with zero
eigenvalue of the Raman model, which for the STIRAP system would be the adiabatic state |ϕ0(t)〉
introduced in the previous section. As γ or κ become non-zero, the two zero eigenvalues split but
stay real (and negative) [28]. The Bloch vector (16) is no longer representing a steady state. With a
non-zero Liouvillian gap, one expects relaxation to the maximally mixed state, which would be the
unique steady state. This is also what one finds for case (a) of dephasing. For case (b), the Liouvillian
pump b is non-zero and this implies that the Bloch vector is still representing steady state. One may
say that the pump counteracts the relaxation such that the steady state becomes a non-trivial state.
This observation is important for understanding the STIRAP problem exposed to dissipation as we
discuss in the following subsection.

In Figures 4 and 5, we display the real and imaginary parts of the eigenvalues of the Liouvillian
matrices for case (a) and (b), respectively. In both cases, we have that the Liouvillian gap ∆̃ is non-zero
whenever the coupling to the environment is present. For case (a), where b = 0, as we already
mentioned this results in that the steady state is the maximally mixed state with R = 0. For case (b), the
real parts of the eigenvalues are also all non-positive, but as we pointed out the non-vanishing pump
makes it possible that the steady state contains quantum coherences. The complex conjugation pairing
of the eigenvalues is evident in the plots of the imaginary parts. The disappearance of imaginary
parts at the EPs implies a splitting of the real parts, reminiscent of a bifurcation. At these points, the
eigenvectors become real, which, however, is not enough to warrant that they represent physical states.
In order for them to serve as physical states, their lengths must be relatively short. Indeed, given
that the Bloch vector is real, it is always possible to construct a physical state ρ̂ from it given that
one shrinks its length sufficiently much [29]. In case (a), for large enough γs, all eigenstates become
purely real after the three EPs. In case (b), however, a “reversed” EP takes place where two purely real
eigenstates become imaginary upon increasing κ.

The EPs apparent in both spectra, Figures 4 and 5, clearly demonstrate an example of non-analytic
behaviour. A natural question arises whether their presence can result in visible effects in the system
evolution, and in particular non-analytical behaviours. Indeed, the connection between EP’s and
non-equilibrium phase transitions has been discussed in the past [30,31]. One may envision signatures
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of these in our model, for example the time-evolution of some initial state could qualitatively change
if one varies γ or κ; whenever a splitting of the real parts occurs, the exponents rendering the decay
change that could alter the system’s evolution. We explore this by calculating the population imbalance
Z = Tr [(|1〉〈1| − |3〉〈3|)ρ̂(t)] for an initial random pure state. The result for case (a) is shown in
Figure 6. For small γ (<G1, G2) and sufficiently short times, the evolution is dominated by unitary
time-evolution, i.e., the population imbalance displays Rabi oscillations between the two states.
When γ is increased, the inverse γ−1 determines the fast time-scale and the relaxation occurs before
any Rabi oscillations have time to manifest. The presence of non-analytic features of the eigenvalues
are, however, not reflected in the time-evolution of the physical states of Figure 6.

Figure 4. The imaginary (a) and real (b) parts of the eigenvalues for the Raman Λ system and for
case (a); dephasing of the lower states |1〉 and |3〉. As long as γ 6= 0, all eight eigenvalues possess
a negative real part implying that the Bloch vector decays to the origin. The EPs occur when the
imaginary part vanishes (happening in pairs) and the real parts display a bifurcation-like behaviour.
The dimensionless parameters are G1 = G2 = 1 and ∆ = 0.

Figure 5. The imaginary (a) and real (b) parts of the eigenvalues for the Raman Λ system and for
case (b); spontaneous emission of the excited state |2〉. A similar structure is found as for case (a),
but with one new feature, namely the appearance of non-zero imaginary parts (seen around κ ≈ 10).
Even though the Liouvillian gap ∆̃ 6= 0 whenever κ 6= 0, it is possible to find a non-trivial steady state
thanks to the non-vanishing pump term b (see the Appendix C). Note that both in this figure and in
Figure 4, we consider rather large values of decay rates in order to demonstrate the general properties.
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Figure 6. Population imbalance between the two lower states of a static Raman model under influence
of dephasing, i.e., case (a), as a function of time and the system–environment coupling γ for an initial
random pure state. For small γ, the evolution at this scale is predominantly unitary with clear Rabi
oscillations between the two states, while, for larger γ, the decay of the imbalance is approximately
exponential. The parameters are as in the previous figures, G1 = G2 = 1 and ∆ = 0.

It can be shown, however, that, for non-physical states, corresponding to complex eigenstates Ri(t)
non-analytic time-evolution is found upon quenching through an EP by considering a time-dependent
γ(t) [23]. In this respect, we think of the instantaneous eigenstates Ri(t) as the adiabatic states of M(t),
and at an EP the characteristic time-scale diverges such that adiabaticity necessarily breaks down [32].

3.2. Dynamics—Numerical Results

The previous subsection analysed general effects stemming from the environment for a frozen
Raman Hamiltonian, and not the actual interplay between external influence and the inherent STIRAP
dynamics. This is the main focus of the present subsection.

If the Liouvillian gap ∆̃ is large in comparison to the inverse time that sets the inherent
time scale, Hamiltonian adiabatic evolution is not guaranteed by a large adiabaticity parameter a.
Generally speaking, a large parameter a favours internal adiabatic evolution, but it implies an extended
coupling to the environment, which, in return, tends to take the system out of its instantaneous
adiabatic Hamiltonian eigenstate [23,24]. Consequently, one expects that there is an optimal aopt such
that the intrinsic unitary evolution is close to adiabatic and at the same time excitations due to the
environment are not too definite. This scenario should apply to case (a) representing dephasing,
while for case (b) there should not be a trade-off between the two processes, i.e., a slow passage
does not automatically lead to environment induced excitations since the state remains in desired
adiabatic state. Recently, a similar scenario was also discussed in quantum many-body systems [33].
However, the parameter dependence of the optimal time aopt is not known. It is especially interesting
to compare the optimal aopt with the rate γ. Note from Figure 4 that, for γ < 2, the real parts of
the eigenvalues µi scale linearly with γ, meaning that there is a linear dependence between the
characteristic relaxation time scale and the inverse of the decay rate. It is reasonable to assume that
aopt thereby must decrease for growing γ. We will see that this is only partly true, namely for small γ.

The numerical results for the full time-dependent STIRAP problem for case (a) are displayed in
Figure 7. As a measure of the efficiency of STIRAP, we calculate the population

Pi = 〈i|ρ̂(t f )|i〉, i = 1, 2, 3, (17)

at the final time t f . For perfect transfer, all population ends up in the state |3〉, i.e., P3 = 1.
The integration interval t ∈ [ti, t f ] (t f = −ti = 100) is chosen long enough such that convergence has
been reached. The uppermost curve in plot (a) represents the closed STIRAP and we find that a serves
as an adiabaticity parameter, i.e., there is a one-to-one relation between its value and the success rate of
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the STIRAP. In the other examples displayed in the figure, γ 6= 0 and the maximum population transfer
is not found for a → ∞, but, for a finite a, which defines aopt. For the decay rates used in the figure,
the convergence to P3 = 1/3 occurs for moderate a values. In fact, for any non-zero γ, we have that
P1 = P2 = P3 = 1/3 in the limit of large a. In this limit, the state is the maximally mixed one ρ̂ = I/3,
which can be understood since it is also the instantaneous steady state of the corresponding Liouvillian.
Nevertheless, when G1 = G2 = 0, any diagonal density matrix, in the diabatic basis, is a steady state,
and hence, since the STIRAP pulses go to zero for large times, one could expect an asymptotic state
different from the maximally mixed one. However, for large as, the pulses are “sufficiently” non-zero
to warrant relaxation towards the steady state ρ̂ss = I/3. The γ-dependence of the optimal aopt is
shown in Figure 7b. For larger values of γ beyond 2, there is no longer a clear maximum any longer.
The plot clearly indicates the divergence for γ→ 0, and as γ becomes nonzero we see a decrease in aopt

as expected—the processess should not be too slow since then the environmental fluctuations hinder
perfect transfer. In this regime, we find aoptτ ∼ γ−1, which is expected as it says that the STIRAP
time-scale should be of the same order as the relaxation time-scale. However, for larger γ, beyond 0.4,
the optimal time-scale starts to grow again! One roughly finds

aoptτ ≈ c0 +
1
γ
+ c1γ, (18)

for some constants c0 and c1 (that depend on the remaining system parameters). The linear
γ-dependence setting in for larger decay rates is not intuitive. This suggests a slower STIRAP process
when the coupling to the environment is getting larger. Of course, the mechanism behind this must be
different from the one explained above leading to a γ−1-dependence. If we study the actual form of
the Liouvillian matrix (A7), we see that a non-zero γ has the effect of decreasing all the Bloch vector
components ri apart from r3 and r8 which represent the diagonal elements of the density operator.
Thus, as expected, the dephasing diminish the of diagonal coherence terms. If this reduction is definite,
the dynamics enters into the Zeno regime—the absence of coherences block the population transfer.
It seems that the explanation to this unintuitive result is a Zeno effect. For large γ, it might be favorable
to consider slow processes in order to prohibit further population transfer, which would lower the final
population of the desired state. We should point out, however, that this regime occurs for decay rates
that are on the same order as the couplings g0, and one may question the justification of describing the
system by a Markovian Lindblad master Equation (1). Experimentally, it might be possible to simulate
this regime and remain Markovian by utilizing so called engineered dissipation [34], which means
that the Lindblad jump operators are monitored by the experimenter by cleverly couple stable states to
dissipative ones.
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Figure 7. Upper plot (a): final population of the target state |3〉 in the case (a) for different adiabaticity
parameters a and five different loss rates γ = 0, 1/4, 1/2, 1, 2 in growing order with the arrow.
In the closed case, upper curve for γ = 0, the population is a monotonously increasing function of
a demonstrating that adiabaticity is increased with a large a. As explained in the main text, for an
open STIRAP process, the lower curves, there is an optimal aopt that maximises the population transfer.
The evolution behaviour can be divided into two regimes; for small decay rates, one should chose a
such that there is a balance between non-adiabatic excitations and environment induced excitations,
while, for large γs, a Zeno-type effect sets in which implies that it might be favorable to prolong the
process in order to achieve a more complete Zeno-freezing of the population transfer. The lower plot
(b) displays this optimal adiabaticity parameter as a function of the loss rate γ. The two regimes are
separated by the minima of the curve, and, to the left, we have γ−1 dominated dependence and to
the right a linear γ dependence. The remaining dimensionless parameters are g0 = 1, ∆ = 0, and
τ = σ = 10.

Case (b) is conceptually different from case (a). The STIRAP adiabatic state |ϕ0(t)〉 is a zero
eigenvalue eigenstate of the Lindblad jump operators L̂1,2 of Equation (12), meaning that it is an
instantaneous steady state and moreover transparent to the environment. Perfect population transfer
is thereby expected in the deep adiabatic regime. This is also found numerically, as demonstrated
in Figure 8. Contrary to the case of dephasing, here the population of the target state is always a
monotonously increasing function of a regardless of the value of κ, or, put in other words, a is a proper
parameter to characterise efficiency of the process.

In principle, adiabaticity and efficiency need not be equivalent for open systems. In fact,
adiabaticity can be introduced in various ways for open quantum systems. This issue has been
raised in a series of papers [23,24,35,36]. One definition is to define it by saying that the population
transfer between different adiabatic states of M vanishes (A4). At an EP, adiabaticity is then doomed
to break down. Following this, the adiabatic criterium (9) can be modified to open systems in a
rather direct way [23]. As is clear, the openness may greatly affect the criteria and typically the
environment induces additional excitations [37,38]. In this respect, something interesting occurs for
small a when the STIRAP is not fully adiabatic; the spontaneous emission increases the efficiency of
the population transfer. This derives from the presence of a Liouvillian gap ∆̃, which implies that the
adiabatic state |ϕ0(t)〉 is partly protected from non-adiabatic excitations. One way of seeing it is that a
non-zero κ helps the process to become more adiabatic [35]. Thus, contrary to the standard situation
where the fluctuations from the environment induces excitations, in the non-adiabatic regime, the
environment prevents the system from taking it out from the instantaneous Hamiltonian adiabatic state.
The phenomenon is related, but still different from the Zeno-effect discussed in Ref. [11]. There, in the
overdamped regime, the environment prohibits the system from leaving the initial state |1〉. In the
present situation, we are far from overdamped (except the dashed green line of Figure 8) and the
environment induced relaxation takes you back onto the adiabatic state and not onto the initial state.
Remember that the adiabatic state is also an instantaneous steady state and as soon as the Hamiltonian
drives you out of this state, the environment pushes you back towards it. It should be clear that the
same mechanism does not work for case (a) since the desired adiabatic state is not an instantaneous
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steady state of the full model. There, we found instead a different manifestation of the Zeno physics,
namely a freezing of population transfer between the different diabatic states.
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Figure 8. The same as the previous Figure 7a but for case (b) describing spontaneous emission of the
intermediate |2〉 level. As was argued in the main text, since the adiabatic state is an instantaneous
steady state for slow processes, i.e., large as, the system state is transparent to the environment. For fast
processes, when adiabaticity breaks down, it is found that the environment actually increases the
population transfer, which can be ascribed the non-vanishing Liouvillian gap. However, there is a
trade-off, a too strong coupling to the bath may lower the success rate as seen from the green curve.
Indeed, in the limit of a very large γ, we recover the Zeno effect of Ref. [11] which manifest as the
system frozen in the initial state |1〉.

As a final remark, the jump operators (12) describe the decay into an incoherent mixture of |1〉 and
|3〉. One may ask whether a “coherent” decay [39], like, for example, as represented by the Lindblad
jump operator L̂ = |1〉〈2|+ |3〉〈2|, would affect the result of Figure 8. We tried for a couple of different
such jump operators and found that the coherence does not play a quantitative role; any such decay
protects the adiabatic state during fast processes.

4. Conclusions

Starting from the Liouvillian, we have analysed the open STIRAP problem. The situations of
either dephasing or dissipation were considered separately and in both cases we found surprising
results. An important difference between the cases is that for dissipation the Lindblad jump operator
is Hermitian and one consequence is that, for the generalized Bloch Equation (14), one inevitably
has a non-vanishing pump term b [32]. This, in return, implies that the steady state is non-trivial,
in contrast to the case of dephasing where the instantaneous steady state is the maximally mixed
one. In particular, the desired adiabatic state is also the instantaneous steady state for the case of
dissipation, and the slower the process becomes, the more efficient population transfer to the target
state. This is in agreement with the definition of adiabaticity for open quantum systems in terms of
steady states [35], which states that, if the system is initially in a steady state, and the process is infinitely
slow, then the system remains in the same instantaneous steady state for all times. For dissipation,
the interesting new result is found for processes that are not perfectly adiabatic, i.e., during the
evolution, non-adiabatic excitations take the system out from the instantaneous steady state. Here, it is
found that the environment can “protect” the steady state in the sense that excitations out of it are
counteracted by forcing the state to relax back to the instantaneous steady state. This is a sort of Zeno
effect, and the system is locked to be in the adiabatic state.
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In the situation of dephasing, we found that the evolution can be separated into two regimes
depending on the strength of the decay rate γ. For weak γ, the environment indeed causes
fluctuations that decrease the transfer efficiency, and one should therefore not make the process
too slow. Instead, one should choose it as a trade-off between minimizing both the Hamiltonian
non-adiabatic excitations and the environmental induced excitations. This result has been mentioned
in the past [9,32,33,40], but here we suggest that the optimal time-scale for the process is of the same
order as the inverse decay rate. What was surprising, however, was that, for larger decay rates γ, the
numerics showed that a slower process might actually be advantageous. This is in conflict with the
general knowledge that the environment will induce additional unwanted excitations. We argued
that this is again a result of a Zeno-type effect. If the process is slow, all coherence terms of the state
are quenched and the population transfer between the diabatic states is considerably slowed down.
Of course, the Zeno freezing should not be perfect early on, since then there will be no population
transfer at all. Instead, the “freezing” should occur at the time when the population in the target state
is the largest.

To the best of our knowledge, both of these Zeno effects are new. In particular, they are different
from the Zeno effect analyzed in Ref. [11]. In that work, the dynamics was completely frozen by
the strong coupling to the environment, while, in our work, for dissipation, the dynamics are only
partly frozen; the system is still evolving, but it follows an adiabatic state. Thus, the Zeno freezing we
consider is not perfect in the sense that evolution still occurs.

An experimental system that could be suitable for exploring our theoretical predictions is trapped
ions [41], where STIRAP is a standard tool for state preparation (see, for example, [42]). In these systems,
both the initialisation and detection is almost perfect. By engineering the dissipation/decoherence,
which has also been demonstrated experimentally [34], one should be able to construct the desired
jump operators and the corresponding decay rates γ and κ.
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Appendix A. Gell–Mann Matrices

For the three-level STIRAP problem, rewriting the density operator on the Bloch form implies
expanding it in the identity plus the regular Gell–Mann matrices [43]. The Gell–Mann matrices

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 ,

λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 = 1√
3

 1 0 0
0 1 0
0 0 −2

 ,

(A1)

(as their generalisations to higher dimensions) are orthogonal in the sense that Tr
[
λiλj

]
= 2δij,

and, furthermore, they are traceless. The commutation relations are[
λi, λj

]
= i2 f ijkλk, (A2)

with the antisymmetric tensor f ijk obeying

f 123 = 1,

f 147 = f 165 = f 246 = f 257 = f 345 = f 376 =
1
2

,

f 458 = f 678 =

√
3

2
.

(A3)

Any remaining elements, for example with two or three identical superscripts equal, are
identically zero.

Appendix B. Some General Properties of the Liuvillian

The Liouvillian matrix M is not Hermitian, meaning that its eigenvalues may be complex and
furthermore one has to separate between left and right eigenvectors. Even though the left and right
eigenvectors may be different, there always exists a similarity matrix S such that

D = SMS−1, (A4)

where the matrix D is on Jordan–Block form [44]. That is, each block is comprised of degenerate
eigenvalues on its diagonal and ones on the superdiagonal. Blocks of dimension higher than one appear
at the EPs. We note that, in the special situation of a closed system, the eigenvectors of M corresponds
to the states ρ̂ij = |i〉〈j|, where |i〉 is the i’th eigenstate of the Hamiltonian. Another property of the
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Liouvillian matrix is that it is real and thereby its trace is also real, which has the consequence that its
eigenvalues can be grouped in pairs with opposite imaginary parts.

There is a further important observation to be stressed about the Bloch representation of the
master equation. For any physical state ρ̂, we must have that it is: (i) Hermitian; (ii) positive
semi-definite; and (iii) normalised with unit trace. For qubits, i.e., D = 2, all states with 0 ≤ R ≤ 1
are physical, implying that the Bloch sphere comprises all the allowed states. In higher dimensions,
for qutrits and, more generally, qudits, only part of the Bloch sphere represents actual physical
states [20,29]. We mentioned above that the eigenstates of the master equation for a closed system are
ρ̂ij = |i〉〈j|, meaning that there are D times as many eigenstates for the Liouvillian matrix M than to
the Hamiltonian. These additional states are, of course, those with i 6= j that are traceless and hence
do not represent physical states. Note further that ρ̂ij = |i〉〈j| gives D2 states, but the dimension of
M is D2 − 1. This extra state, missing in our Bloch representation, appears since the ρ̂ii states are
not linearly independent (we have ∑D

i=1 ρ̂ii = I) and one of them is always redundant. For non-zero
coupling to the environment, one typically finds most states unphysical, and interestingly the number
of physical states may not be the same as for the closed case. A direct requirement for having a physical
state is that the corresponding eigenvalue of M is real (otherwise R is complex and ρ̂ not Hermitian).
We have found for our three-level problem that whenever we have a real R, the corresponding state
ρ̂ is physical provided that R is sufficiently small, i.e., there is a ball surrounding the origin R = 0
containing only physical states. As a result, for the open STIRAP problem, we need a minimum of two
real eigenvalues (It can be shown that the real part of an eigenvalue of M has to be nonpositive [28].)
of M (remember that they are grouped in pairs) and the corresponding states will be physical. It is
intriguing that the unphysical states may show interesting properties that are missing for the physical
ones. In Ref. [45], the geometric phases of these were studied, and it was shown that this phase is
normally non-vanishing, while for the physical states the geometric phase strictly vanishes. Geometric
phases connected to encircling EPs have been explored as well [46], but the link between the phases
found for non-physical states and those related to EP’s were not studied in Ref. [45].

While unphysical, these states are still crucial for the time-evolution [26]. If b = 0, and we denote
the right eigenvectors R(i), we have that the time evolved Bloch vector can be expressed as

R(t) =
8

∑
i=1

cieµitR(i), (A5)

where µi are the eigenvalues of the Liouvillian, ci are the coefficients determined by the initial state
R(0), and we have assumed a time-independent Liouvillian matrix M. Even though the right (left)
eigenvectors are not orthogonal in general, the series expansion is unique given that the vectors are
normalized and we do not “sit” on an EP. The sum will in general include unphysical Bloch vectors,
which does not imply that the full sum R(t) is also unphysical. Indeed, it has to be as long as R(0)
is physical. Note that we must have Re(µi) ≤ 0 [28]. If µi = 0, the corresponding Bloch vector R(i)

is stationary and if the state ρ̂(i) is a steady state of the master equation. Whenever the eigenvalues
contain real parts, these will cause an exponential decay of the corresponding terms in the sum. If the
Lindblad jump operators L̂i are Hermitian, the maximally mixed state ρ̂ = I/D is a steady state, and,
if this is also the unique steady state, we must have that all eigenvalues have non-zero real parts [47].

For b 6= 0, which typically occurs for non-hermetian Lindblad jump operators L̂i, the situation is
more complicated. Here, a stationary state is represented by a Bloch vector R = −M−1b given that M
is invertible. If M is not invertible, however, the system is underdetermined and you find a connected
convex manifold of solutions. Introducing the matrices V and U such that E = VtMU with E diagonal,
the right eigenvectors of M evolve in time as

R(i)(t) = R(i)(0)eµit +
(
eµit − 1

)
Vtb/µi. (A6)
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For b = 0, we recover the exponential time-dependence of Equation (A5). We see, as stated above,
that for b 6= 0 a negative real part of µi is not sufficient to warrant that the steady state is the simple
maximally mixed one as it is for Hermitian Lindblad jump operators. In these situations, looking at
the dynamical Equation (14), it is clear that the b term acts as a sort of “pump” which has the effect of
restoring some coherence/purity of the state ρ̂(t).

It might well happen that M is not diagonalisable. This happens at the EPs in the parameter
space [12,13]. At an EP, the real parts of two eigenvalues, ε1(ν) and ε2(ν) (with ν some parameter),
coalesce and at this “degeneracy point” the corresponding eigenstates become identical, in stark
contrast to a degeneracy of an Hermitian operator where the eigenstates can always be chosen
orthogonal. The EP is also characterised by a square-root singularity [28], and upon encircling such a
singularity once, the corresponding eigenstates are interchanged, while encircling it twice gives you
back the same state up to an overall sign change [46,48]. This generalises the geometric phase appearing
when enclosing a Dirac point in condensed matter physics or a conical intersection in molecular/chemical
physics [49] to degeneracy points for non-Hermitian operators.

Appendix C. STIRAP Liouvillian Matrices

Employing the commutation properties of the Gell–Mann matrices (A2), the derivation of the
Liouvillian matrix and pump is straightforward. In the case (a), representing pure dephasing (see
Equation (11)), the pump term vanishes. The matrix is found to be

M=



−γ/2 ∆ 0 0 G2 0 0 0
−∆ −γ/2 −2G1 −G2 0 0 0 0

0 2G1 0 0 0 0 −G2 0
0 G2 0 −2γ 0 0 −G2 0
−G2 0 0 0 −2γ G1 0 0

0 0 0 0 −G1 −γ/2 −∆ 0
0 0 G2 G1 0 ∆ −γ/2 −

√
3G2

0 0 0 0 0 0
√

3G2 0


. (A7)

Note that M is skew-symmetric and real. In odd dimensions, the skew-symmetric property implies
that the matrix is singular, but this is not the case here as the dimension is eight. The skew-symmetry
property also implies that the eigenvalues are paired as pointed out in the main text. Another observation
is that the number of elements proportional to G2 is higher than those proportional to G1, which might
seem spurious at first. The reason for this lies in the definition of the Gell–Mann matrices (A1); there is
an asymmetry between the different SU(2) subgroups of the SU(3) group and the atomic transitions
are connected to two different subgroups.

For the second case (b) of a dissipating excited state |2〉 (see Equation (12)), the jump operators
are no longer Hermitian and we indeed find a non-zero pump contribution,

M=



−γ/2 ∆ 0 0 G2 0 0 0
−∆ −γ/2 −2G1 −G2 0 0 0 0

0 2G1 −γ 0 0 0 −G2 γ/
√

3
0 G2 0 −γ/2 0 0 −G2 0
−G2 0 0 0 −γ/2 G1 0 0

0 0 0 0 −G1 −γ −∆ 0
0 0 G2 G1 0 ∆ −γ −

√
3G2

0 0 0 0 0 0
√

3G2 0


, (A8)

and
bt =

[
0 0 γ/

√
3 0 0 0 0 0

]
. (A9)
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Contrary to the first case, the matrix is no longer skew-symmetric due to a non-zero term
M38 = γ/

√
3. It is clear that this contribution is connected to the non-vanishing pump b that

has also a non-zero term as its third element.
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