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Abstract: We calculate the transverse velocity fluctuations correlation function of a linear and
homogeneous viscoelastic liquid by using a generalized Langevin equation (GLE) approach.
We consider a long-ranged (power-law) viscoelastic memory and a noise with a long-range
(power-law) auto-correlation. We first evaluate the transverse velocity fluctuations correlation
function for conventional time derivatives ĈNF

(−→
k , t
)

and then introduce time fractional derivatives
in their equations of motion and calculate the corresponding fractional correlation function. We find
that the magnitude of the fractional correlation ĈF

(−→
k , t
)

is always lower than the non-fractional one

and decays more rapidly. The relationship between the fractional loss modulus G′′F(ω) and ĈF

(−→
k , t
)

is also calculated analytically. The difference between the values of G′′ (ω) for two specific viscoelastic
fluids is quantified. Our model calculation shows that the fractional effects on this measurable
quantity may be three times as large as compared with its non-fractional value. The fact that the
dynamic shear modulus is related to the light scattering spectrum suggests that the measurement of
this property might be used as a suitable test to assess the effects of temporal fractional derivatives
on a measurable property. Finally, we summarize the main results of our approach and emphasize
that the eventual validity of our model calculations can only come from experimentation.

Keywords: fluctuations; elastic moduli; correlation functions

1. Introduction

The prominent role that time correlation functions have played in the description of
non-equilibrium properties of fluids stems from their close connection with their transport coefficients,
a relation that can be obtained from time-dependent correlation functions of suitable fluxes [1]. In a
simple fluid in near-to-equilibrium states the central limit theorem (CLT) applies and a well-defined
separation between the time scales associated with the macroscopic transport processes and the
microscopic processes giving rise to them exists. As a consequence, the stochastic dynamics of the
thermal fluctuations around equilibrium can be characterized as a Gaussian–Markovian process [2–5].
However, the presence of long noise-correlation or long time-memory in the time evolution equations
for the fluctuations may destroy this separation, and the usual description of fluctuations in terms of
the conventional Langevin equations may no longer be adequate [6–11]. This situation may occur in
a large variety of relaxation processes in complex systems like viscoelastic fluids, glassy materials,
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synthetic polymers or biopolymers, all of which have in common that their relaxation functions
are non-exponential, due to the large number of highly coupled elementary units responsible for
the relaxation. As a consequence, the CLT is not applicable and the requirement of a high cooperation
between these elements leads to slower decays of the relaxation of fluctuations which are often
modeled by empirical rheological power-laws [12,13]. One systematic way of dealing with these
types of memory effects is to replace the first order time derivative in the conventional hydrodynamic
(transport) equations by a fractional time derivative which is interpreted as the memory or the
after-effect of the underlying stochastic process [14]. These effects on correlation functions have been
studied for some complex fluids [9,14,15].

The purpose of this work is to study and compare the effect of time fractional derivatives
on the correlation function of the transverse velocity fluctuations of a (homogeneous) viscoelastic
fluid by using a GLE. We consider a long-ranged (power-law) viscoelastic memory and a noise
with a long-range (power-law) auto-correlation. More specifically, we first evaluate the transverse
velocity fluctuations correlation function for conventional time derivatives and then introduce time
fractional derivatives in the equation of motion of this correlation to calculate the corresponding
fractional correlation function [16]. Since for finite frequencies the imaginary part of the dynamic
shear modulus (loss modulus), G′′ (ω), of the dynamic viscosity η(ω) can be expressed in terms of
the time-correlation function of the transverse velocity fluctuations, we compare the moduli for the
non-fractional and fractional cases and find that the fractional modulus may be three times larger than
the non-fractional one.

To this end the article is organized as follows. In Section 2 we set up the GLE for the dynamics
of internal fluctuations of a viscoelastic fluid. Then an analytic exact expression for the one-time
non-fractional correlation function for transverse velocity fluctuations (NF) is derived for power-law
viscoelasticity. In Sections 3 and 4, we introduce both, noise and fractional time derivatives into

the GLE and the fractional temporal transverse velocity fluctuations correlation function, ĈF

(→
k , t
)

,

where
→
k is the wavevector, is calculated analytically from them. We find that its magnitude is always

lower than the non-fractional one and decays more rapidly. The relationship between G′′ (ω) and

ĈF

(→
k , t
)

is calculated analytically. The difference between the values of G′′ (ω) for two specific

viscoelastic fluids for accessible ranges of frequencies to our calculations is quantified. We find that
the fractional effects on this measurable modulus may be as large as ~300% when compared with
its non-fractional values. The fact that the dynamic shear modulus is related to the light scattering
spectrum suggests that the measure of this property might be used as a suitable test to assess the
effects of temporal fractional derivatives on a measurable property. Finally, in Section 5 we summarize
the main results of our approach and emphasizes that the eventual validity of our model calculations
can only come from experiments.

2. Model Formulation

The deformation of spatially homogeneous viscoelastic liquids near equilibrium is described by
the linear response theory [17]. In this regime, the most general constitutive equation for the linear
stress-strain relation is of the form [18],

σij

(→
r , t
)
= −pδij +

t∫
0

dt′
{

K
(
t− t′

) .
γkk

(→
r , t′

)
δij + 2G

(
t− t′

)[ .
γij

(→
r , t′

)]
− 1

3
.
γkk

(→
r , t′

)
δij

}
(1)

The homogeneous character of these fluids comes from the assumption that the two independent,
scalar moduli, the shear G(t) and the bulk (compressional) K(t), may only depend on time. Here,

→
r is

the position vector
→
r = (x, y, z), σij

(→
r , t
)

is the symmetric stress tensor, p
(→

r , t
)

is the pressure and
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[ .
γij

(→
r , t
)]

is the rate of strain tensor, where the upper dot denotes the time derivative and Einstein’s
summation convention for repeated indices is implied.

Consistency with linear response requires to linearize the hydrodynamic equations in the small
deviations with respect to a reference equilibrium state identified by the subscript 0. This yields
δp
(→

r , t
)
≡ p

(→
r , t
)
− p0 and δvi

(→
r , t
)
≡ vi

(→
r , t
)

, where we have taken into account Galilei

invariance for δvi. The complete system of linearized hydrodynamic equations for δp and
→
v then turns

out to be [9,14,19],
∂

∂t
δρ
(→

r , t
)
= −ρ0

∂vi
∂xi

, (2)

ρ ∂
∂t vi

(→
r , t
)
= − ∂δρ

∂xi
+

t∫
0

dt′
{[

K(t− t′) + 1
3 G(t− t′)

]
∂

∂xi
∇ ·→v

(→
r , t′

)
+ G(t− t′)∇2→v

(→
r , t′

)}
. (3)

These equations are further simplified by choosing the direction of the z-axis as the longitudinal

component and by separating
→
v
(→

r , t
)

into longitudinal
→
v

l
and transverse

→
v

t
components,

→
v
(→

r , t
)
=
→
v

l(→
r , t
)
+
→
v

t(→
r , t
)

, which are defined, respectively, by ∇ × →v
l
= 0 and ∇ · →v

t
= 0.

The linearized equations for the deviations are then

∂

∂t
δρ
(→

r , t
)
= −ρ0∇ · vl

i

(→
r , t
)

, (4)

ρ
∂

∂t
vt

i

(→
r , t
)
=

t∫
0

dt′G
(
t− t′

)
∇2vt

i

(→
r , t′

)
, (5)

where i = x, y, identifies the two transverse components. In what follows we shall only consider one of
them which will be denoted as v

(→
r , t
)

, i.e., vt
(→

r , t
)
≡ vt

i=x

(→
r , t
)
≡ v

(→
r , t
)

.

2.1. Hydrodynamic Fluctuations

One of the simplest formulations to describe fluctuations in fluids near equilibrium is the GLE
with additive Gaussian random forces [4]. According to this approach, the stochastic dynamic of v is
described by

ρ0
∂

∂t
v
(→

r , t
)
=

t∫
0

dt′G
(
t− t′

)
∇2v

(→
r , t′

)
+ f (t), (6)

where the additive fluctuating force f (t) is defined as a Gaussian, stationary, stochastic process with
zero mean, 〈 f (t)〉 = 0 and with a, so far, arbitrary (long range) correlation C(t)〈

f (t) f (t′)
〉
= C

(∣∣t− t′
∣∣), (7)

subject to the condition 〈
f (t)v

(→
r , t
)〉

= 0. (8)

Here, the angular brackets denote an average over both, the realizations of the noise and over an
equilibrium ensemble of initial conditions. The rationale and an experimental evidence for assuming a
Gaussian noise are as follows. It is well known that this noise describes the fluctuations around any
equilibrium state and are dealt with in statistical mechanics with a variety of standard methods [5,20].
But when this state is (slightly) perturbed by changing the initial constraints in such a way that the state
of the fluid remains within the linear response regime, the system relaxes to a new equilibrium state.
The dynamics of the relaxation of the fluctuation is described by the GLE, Equation (6), and it is
adequate to model them by a Gaussian process. This assumption has been experimentally shown
to be appropriate for other complex systems involving the motion of tracers suspended in a fluid
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of swimming microorganisms [21]. In this system, the displacement of the tracers has a self-similar
probability density function (pdf) with a Gaussian spatial effect which can be modeled by using a
fractional diffusing equation [22,23]. On this basis, it seems reasonable to consider a Gaussian noise
with a long-time correlation in Equation (6).

We define the combined Fourier–Laplace transform of an arbitrary field A
(→

r , t
)

by

Ã
(→

k , s
)
≡

∞∫
0

dte−st
∞∫
−∞

dtei
→
k ·→r A

(→
r , t
)

, (9)

where s = iω is the Laplace variable. In what follows, the caret
(

Â
)

will denote its Laplace or Fourier

transform with respect to one of its variables, whereas the tilde
(

Ã
)

will indicate a transform with
respect to both. Thus, from Equation (6) we get〈

ṽ
(→

k , s
)〉

=
ρ0

ρ0s + k2Ĝ(s)
v̂(
→
k ), (10)

where Ĝ(s) is the Laplace transform of the so far arbitrary shear modulus G(t).

2.2. Power Law Viscoelasticity

There are many classes of materials in which the stress relaxation following a step strain is not
close to an exponential, but is best represented by a power law in time, G(t) ≈ t−β. Examples of such
materials—power law materials—include physically crossed-linked polymers, soft glassy materials
and hydrogels. Non-exponential stress relaxation in the time domain also implies power law behavior
in the viscoelastic storage modulus, G′(ω), and in the loss modulus, G′′ (ω), measured in the frequency
domain by using small-amplitude oscillatory shear deformations. This broad spectral response
is indicative of the wide range of distinctive relaxation processes available to the microstructural
elements that compose the material, and there is no single relaxation time [24]. Let us assume that
the viscoelasticity of the fluid is well represented by a long-range power-law rheological equation of
state, i.e.,

G(t) = G0t−λ, 0 < λ < 1, (11)

where G0 denotes the zero-frequency shear viscosity. Then

Ĝ(s) = G0Γ(1− λ)sλ−1, (12)

where Γ(x) is the Gamma function. The parameter λ, measures the degree of viscoelasticity of the
flow field; a low λ implies a weakly elastic flow field, whereas a large λ indicates an exceedingly
elastic one.

2.3. Transverse Velocity Correlation

The single time auto-correlation function of the transverse velocity fluctuations is

Ĉ(
→
k , t) ≡

〈
v̂
(→

k , t
)

v̂∗
(→

k
)〉

=

〈
v̂0

〈
v̂
(→

k , t
)〉

v0

〉
, (13)

where v0 ≡ v̂∗
(→

k
)

and the asterisk denotes complex conjugation. The notation indicates the following.

Take a certain real constant value v0 at t = 0, calculate the average over the realizations of the noise f (t)
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conditional on the given v0. Multiply it by v0 and average this product over the values of v0, as they
occur in the initial equilibrium distribution. Therefore, from Equations (10) and (13) it follows that

C̃(
→
k , s) =

〈∣∣∣∣v̂(→k)∣∣∣∣2
〉

s + k2ρ−1
0 Ĝ(s)

. (14)

Consistently with representing the viscoelasticity by Equation (11), we assume that the auto-correlation
of the noise, Equation (7), is also a long-range power-law,〈

f (t) f (t′)
〉
= Cθt−θ , 0 < θ < 1. (15)

Then, for given v0 Equation (10) yields〈
ṽ
(→

k , s
)〉

v0

= v̂
(→

k
)

sν

sq + b
, (16)

where q ≡ 2− λ, ν ≡ 1− λ, b ≡ ρ−1
0 G0Γ(1− λ)k2. The inverse Laplace transform of Equation (16) is

well defined and is given by [25]

L−1
(

sν

sq + b

)
= Rq,ν(−b, 0, t) = Rq,q−1(−b, 0, t) = Eq(−btq), (17)

where Eq(−btq) is the Mittag–Leffler function and Rq,ν(a, t) denotes the special function defined by
the infinite series

Rq,ν(a, t) =
∞

∑
n=0

ant(n+1)q−1−ν

Γ[(n + 1)q− ν]
. (18)

Note that Rq,ν reduces to the exponential function eat when q = 1 and ν = 0 (see Equation (40) in
Reference [25]), i.e., R1,0(a, t) = eat. Therefore, the conditional average is〈

ṽ
(→

k , s
)〉

v0

= v̂
(→

k
)

Eq(−btq). (19)

From Equations (13) and (19), it then follows that the normalized non-fractional (NF) transverse
velocity correlation function for power-law viscoelasticity is given by

ĈNF(
→
k , t) ≡

〈
ṽ
(→

k , t
)

v̂∗
(→

k
)〉

〈∣∣∣∣v̂(→k)∣∣∣∣2
〉 = Eq(−btq). (20)

The explicit dependence of q ≡ 2− λ and b ≡ ρ−1
0 G0Γ(1− λ)k2 on λ shows that the dynamics of ĈNF

is indeed affected by the viscoelasticity of the fluid.
To examine the behavior of Equation (20) quantitatively, we consider two specific

viscoelastic fluids, namely, silicon oil (S2) and a solution of 0.02% separan MG500+2% water in
glucose (E1). Chhabra et al. [26] have studied the rheological properties of these fluids and according to
their shear stress and normal stress data, S2 would be classified as a weakly elastic fluid with a small λ,

whereas E1 is exceedingly elastic and has a large λ. Figure 1 shows the plot of ĈNF(
→
k , t) as a function

of time t, as given by Equation (20), for the small values λ = 0.03, 0.06, which would correspond to a
fluid like S2.
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NFC k t  given by Equation (20), as a function of time t for 

E1 with λ = 0.3 and 0.4. Here ρ0 = 1414 kg/m3, G0 = 17.3 kg/ms, T = 292 K. 
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Figure 1. Plot of ĈNF(
→
k , t) as given by Equation (20), versus time (in seconds) t, for S2 with

λ = 0.03 and 0.06. We choose the following material properties values: T = 295 K, G0 = 1.154 kg/ms,
ρ0 = 971 kg/m3 [27].

This figure shows that as λ increases and the viscoelasticity decreases, the amplitude and the
range of the correlation also decrease. Actually, the same behavior is observed in Figure 2 for E1, as λ

increases from λ = 0.3 to λ = 0.4. However, in this case ĈNF(
→
k , t) decays three orders of magnitude

faster than for S2.
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Figure 2. The non-fractional correlation ĈNF(
→
k , t) given by Equation (20), as a function of time t for E1

with λ = 0.3 and 0.4. Here ρ0 = 1414 kg/m3, G0 = 17.3 kg/ms, T = 292 K.

3. Time Fractional Derivatives

In Equation (6), we now replace ∂/∂t by a Caputo left handed fractional time derivative (LHCD)
Dµ

0+ defined by [28–30],

Dµ
0+v

(→
r , t
)
≡ 1

Γ(m− µ)

∫ t

0
(t− ξ)

m−µ−1
v(m)

(→
r , ξ
)

dξ, (21)
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where µ is the order of the derivative, m is an integer such that m− 1 < µ < m and v(m) ≡ ∂mv/∂tm.
The order µ of the fractional derivative should be chosen within the interval 0< µ <1 (and m = 1),
because in this way, the integral in Equation (21) takes into account the contribution of the past values
of this first order non-fractional derivative, and Equation (6) becomes

ρ0Dµ
0+

[
v
(→

r , t
)]

=
∫ t

0
dt′G

(
t− t′

)
∂2

xxv
(→

r , t′
)
+ f (t). (22)

After ensemble averaging and Fourier transforming with respect to x, this equation reads

ρ0Dµ
0+[v̂(k, t)] = −k2

∫ t

t′=0
G
(
t− t′

)
v̂
(
k, t′
)
dt′. (23)

Since the Laplace transform of a Caputo derivative is given by [31]

L
{

Dµ
0+ f (t)

}
=

1
s1−µ

[
s f̂ (s)− f (0)

]
= sµ f̂ (s)− sµ−1 f (0), (24)

and since for the power-law viscoelasticity Ĝ(s) is given by Equation (12), from Equation (23) we obtain

〈ṽ(k, s)〉 = v̂∗(k, 0)
sP

sQ + b
, (25)

with
Q = µ− λ + 1, P = µ− λ = Q− 1. (26)

By using Equation (17) to invert Equation (25), we finally arrive at the following fractional time
transverse velocity correlation function for power-law viscoelasticity

ĈFT(
→
k , t) = EQ

(
−btQ

)
, (27)

which is also given by a Mittag–Leffler function with different parameters. This correlation function is
plotted in Figure 3 for S2 and for the same parameter values used in Figure 1.
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The behavior of ĈF(
→
k , t) for E1 is shown in Figure 4.

Entropy 2018, 20, 28  8 of 13 

 

The behavior of ˆ ( , )


FC k t  for E1 is shown in Figure 4. 

 

Figure 4. This figure shows the behavior of ˆ ( , )


FC k t , Equation (27), for E1 with λ = 0.3 and μ = 0.9, 

0.95. Same material values as in Figure 2. 

4. Dynamic Shear Modulus 

If Equation (14) is compared with the corresponding one for a Newtonian fluid, namely [32], 

( ) 2

2 1
0

ˆ
( , ) ,−=

+




newt
s

v k
C k s

s k ρ η
 (28) 

where ηs is the shear viscosity, one can see that ( )Ĝ s  plays the role of a dynamic shear viscosity. It 
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4. Dynamic Shear Modulus

If Equation (14) is compared with the corresponding one for a Newtonian fluid, namely [32],

C̃newt(
→
k , s) =

〈∣∣∣∣v̂(→k)∣∣∣∣2
〉

s + k2ρ−1
0 ηs

, (28)

where ηs is the shear viscosity, one can see that Ĝ(s) plays the role of a dynamic shear viscosity. It is
useful to define the dynamic shear modulus as

G ∗ (ω) ≡ iω
∫ ∞

0
dte−stG(t) = G′(ω) + iG′′ (ω), (29)

where its real G′ and imaginary parts G′′ are given, respectively, by the sine-Fourier and cosine-Fourier
transforms shown below. The real and imaginary parts of the dynamic viscosity η(ω) are related
to G′(ω) and G′′ (ω) by η′(ω) = ω−1G′′ (ω) and η′′ (ω) = ω−1G′(ω), respectively. Note that in the
limit of vanishing frequency, ω→0, G′(ω)→ 0 and η′′ (ω)→ 0, whereas G′′ (ω)→ 1 and η′(ω)→ ηs.
For finite frequencies G′′ (ω) or η′(ω) can be expressed in terms of the time-correlation function of the
transverse velocity by setting s = iω and by equating the imaginary parts of the equation to obtain [18]

k2

ρ0
G′′ (ω) =

ωA
(→

k , ω

)
[

A
(→

k , ω

)]2
+

[
B
(→

k , ω

)]2 , (30)

where A
(→

k , ω

)
and B

(→
k , ω

)
are given, respectively, by
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A
(→

k , ω

)
=

∞∫
0

dt cos ωt

〈
v̂
(→

k , t
)

v̂∗
(→

k
)〉

〈∣∣∣∣v̂(→k)∣∣∣∣2
〉 , (31)

B
(→

k , ω

)
=

∞∫
0

dt sin ωt

〈
v̂
(→

k , t
)

v̂∗
(→

k
)〉

〈∣∣∣∣v̂(→k)∣∣∣∣2
〉 . (32)

It should be emphasized that Equation (30) provides a method of calculating G′′ (ω) if the
time-correlation function of the transverse velocity can be calculated from a model, or if it can be
measured by some experimental technique [18].

By inserting Equations (20) and (27) into Equations (31) and (32), and by substituting the result into
Equation (30) we arrive at a complicated but analytic expressions for G′′NF(ω) and G′′F(ω), which we
do not write down because it is not necessary for our purpose. For S2 this yields the solid curve for
G′′NF(ω) and the dotted curve for G′′F(ω) in Figure 5.

Entropy 2018, 20, 28  9 of 13 

 

( ) ( ) ( )
( )

*

2
0

ˆ ˆ,
, cos ,

ˆ
ω ω

∞

= 
 




v k t v k
A k dt t

v k
 (31) 

( ) ( ) ( )
( )

*

2
0

ˆ ˆ,
, sin .

ˆ
ω ω

∞

= 
 




v k t v k
B k dt t

v k
 (32) 

It should be emphasized that Equation (30) provides a method of calculating ( )′′G ω  if the time-

correlation function of the transverse velocity can be calculated from a model, or if it can be measured 
by some experimental technique [18]. 

By inserting Equations (20) and (27) into Equations (31) and (32), and by substituting the result 

into Equation (30) we arrive at a complicated but analytic expressions for ( )′′NFG ω  and ( )′′FG ω , 

which we do not write down because it is not necessary for our purpose. For S2 this yields the solid 

curve for ( )′′NFG ω  and the dotted curve for ( )′′FG ω  in Figure 5. 

 

Figure 5. The non-fractional ( )′′NFG ω  (---) and fractional ( )′′FG ω  (...) loss moduli for S2 with λ = 

0.05. Same material parameters as in Figure 1. 

For the frequency interval considered this figure shows that ( )′′FG ω is always larger than 

( )′′NFG ω . A feature of our model that shows that fractional effects in this modulus is a large effect that 

might be measurable. A similar behavior for these moduli is obtained for E1 as shown in Figure 6. 
However, the difference between the fractional and non-fractional results can be better 

quantified if we plot the ratio R 

( ) ( )
( )

; , 1
; ,

; , 1
′′ ≠

=
′′ =
F

F

G
R

G

ω λ μ
ω λ μ

ω λ μ
 (33) 

of the fractional to the non-fractional moduli, as shown in Figures 7 and 8, for S2 and E1, respectively. 

Figure 5. The non-fractional G′′NF(ω) (—) and fractional G′′F(ω) (...) loss moduli for S2 with λ = 0.05.
Same material parameters as in Figure 1.

For the frequency interval considered this figure shows that G′′F(ω) is always larger than G′′NF(ω).
A feature of our model that shows that fractional effects in this modulus is a large effect that might
be measurable. A similar behavior for these moduli is obtained for E1 as shown in Figure 6.

However, the difference between the fractional and non-fractional results can be better quantified
if we plot the ratio R

R(ω; λ, µ) =
G′′F(ω; λ, µ 6= 1)
G′′F(ω; λ, µ = 1)

(33)

of the fractional to the non-fractional moduli, as shown in Figures 7 and 8, for S2 and E1, respectively.
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Figure 6. Behavior of G′′NF(ω) (—) and G′′F(ω) (...) for E1 with λ = 0.3. Same material parameters as in
Figure 2.

The curve in Figure 7 shows R(ω; λ = 0.3, µ = 0.95) for E1; R is larger than one for the
frequency intervals considered. Note, for instance, that R has a maximum value of about R ~3.4
at ω = 8.3 × 107 s−1 and a minimum value of R ~1.63 for ω = 1 × 105 s−1. This means that fractional
fluctuations have a large effect on the transverse velocity fluctuations correlation than on the
velocity correlation. These results indicate that the relative changes in R, are not a small effect
and might be measurable. The same behavior of R is observed for S2 in Figure 8.
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5. Discussion

In this work, we have analyzed the effects produced on the transverse velocity fluctuations

correlation function ĈNF(
→
k , t), due to the presence of fractional temporal derivatives in the dynamics

of these fluctuations. More specifically, we considered the case where the liquid possesses a long-range
power viscoelasticity given by Equation (11) and the transport equations have long-range correlated
stochastic terms. The interplay between the fluctuations arising from these two features motivated
the introduction of fractional time derivatives into the hydrodynamic equations, since in this way it is
possible to take into account the fact that the transverse velocity fluctuations evolve on vastly different
time scales.

The most important results of our analysis are the analytic expressions for the different transverse

velocity correlation functions, ĈNF(
→
k , t) and ĈF(

→
k , t) for the long-range power viscoelasticity and

given, respectively, by Equations (20) and (27), both expressed in terms of Mittag–Leffler functions.
Since for finite frequencies, G′′ (ω) can be expressed in terms of the time-correlation function of the
transverse velocity, these fractional effects on the correlations do affect the frequency behavior of this
measurable property of the system. To our knowledge, this issue has been scarcely considered in the
literature of viscoelastic fluids.

Another issue that deserves further comments is the justification of the choice of the Caputo’s
left-handed time derivative (LHCD), in spite of the fact that there exist other fractional time derivatives,
such as those of Riemann–Liouville (RL) [29] or Grünwald–Letnikov [31]. The reason for choosing
LHCD in this work lies in the physical initial conditions necessary to obtain a particular solution of
Equation (22). When the LHCD is used in (22) to obtain its Laplace transform, the initial value v̂(k, 0)
and the initial value of the integer-order derivatives v̂(m)(k, t = 0), 1 ≤ m ≤ α, should be known,
but this is precisely the type of initial condition that can be specified or controlled in the relaxation
process described by Equation (22); thus, it is consistent to use the LHCD in this equation. If we
had used the RL time fractional derivative to obtain the Laplace transform (25), the initial values
of the fractional derivatives Dµ

0+

[
v
(→

r , t
)]

with β = α − k − 1, k = 0, 1, . . . , n − 1, where n is an
integer such that n− 1 < α < n, would have to be known; however, for real physical systems like the
viscoelastic liquid considered in this work, they are unknown. Thus, the RL fractional time derivative
was discarded and the physically proper choice was the LHCD [33]. It should be remarked that for
relaxation processes quite different from the study of the time evolution of fluctuations in viscoelasticity,
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other time fractional derivatives, different from that of Caputo, have been proposed. For example,
in Ref. [34], a fractional anomalous-growth equation employing a Riemann–Liouville derivative has
been introduced to describe nucleation-and-growth processes in superconducting materials like weakly
viscoelastic cuprate systems where a relationship between the order of the fractional derivative and
the fractal dimension of an anomalous random walk process was found. Another example is the use of
Weyl derivatives to describe nucleation-and-growth processes in model lipid membranes [35]. In this
latter example, a Caputo derivative of an order centering around ~1/2 is proposed to explain the
plausible multitude of time scale of relevance. This form of introducing fractional derivatives has been
also explored and its limitations have been discussed for a binary mixture in [33].

Finally, it should be emphasized that we are not aware of any specific experimental results
to compare with the predictions of our model, and therefore, it is not possible to conclude from
our analysis if this fractional behavior of various correlation functions and elastic moduli may be
measurable; this is an open issue that remains to be assessed.
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