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Abstract: Understanding the teleconnections between hydro-meteorological data and the El
Niño–Southern Oscillation cycle (ENSO) is an important step towards developing flood early warning
systems. In this study, the concept of mutual information (MI) was applied using marginal and joint
information entropy to quantify the linear and non-linear relationship between annual streamflow,
extreme precipitation indices over Mekong river basin, and ENSO. We primarily used Pearson
correlation as a linear association metric for comparison with mutual information. The analysis was
performed at four hydro-meteorological stations located on the mainstream Mekong river basin.
It was observed that the nonlinear correlation information is comparatively higher between the
large-scale climate index and local hydro-meteorology data in comparison to the traditional linear
correlation information. The spatial analysis was carried out using all the grid points in the river
basin, which suggests a spatial dependence structure between precipitation extremes and ENSO.
Overall, this study suggests that mutual information approach can further detect more meaningful
connections between large-scale climate indices and hydro-meteorological variables at different
spatio-temporal scales. Application of nonlinear mutual information metric can be an efficient tool
to better understand hydro-climatic variables dynamics resulting in improved climate-informed
adaptation strategies.
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1. Introduction

For many water resources planning and management studies, reliable preliminary estimates of
dependence between two hydroclimatic variables are extremely important. For example, knowledge
of dependence between large-scale climate patterns such as El Niño–Southern Oscillation (ENSO) [1],
the Pacific Decadal Oscillation (PDO) [2], and the Atlantic Multi-decadal Oscillation (AMO) [3] with
local precipitation, temperature, or streamflow has resulted in improved longer lead-time forecasting
models [4–6]. Large-scale climate patterns can also predict ecological processes better than local
weather [7]. In addition to that, several studies indicated the presence of a significant relationship
between large-scale climate phenomena and hydrologic extremes, such as extreme precipitation
events [8–10], droughts [11–13], and floods [14,15]. Therefore, the presence of any kind of significant
dependence forms the preliminary metric to identify appropriate predictors for forecasting streamflow
and other hydroclimatic variables in ungauged river basins [16–18]. As a result, the predictability of
these large-scale climate patterns much in advance is extremely important to improve the design of
early warning systems of extreme events [19].

A wide range of methods is available for detecting the presence of an association between bivariate
data set. Among them, Pearson’s correlation coefficient is the most widely used metric to quantify
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the linear dependence between any two variables [20]. Pearson correlation coefficient is based on the
assumption that the considered variables follow a Gaussian distribution. Therefore, using Pearson
correlation in case of variables that follow non-Gaussian distributions may be suboptimal.

However, several insights were derived from these linear associations. For example, Zhang et al. [21]
quantified the Pearson linear correlation between different sea surface temperature (SST) anomalies and
seasonal precipitation for Huai River basin in China. The authors identified some positive/negative
correlation with the coefficients ranges from absolute 0.2 to 0.3. Whereas, Wrzesinski [22] characterized
and confirmed the strong influences of large-scale climate index NAO to seasonal river flow in Poland
by comparing the difference in average runoff during the positive and negative NAO phases. On the
same lines, Wrzesinski [23] also found the linkage between NAO and European river streamflow at the
140 gauging station by analyzing the high and low water flows according to the positive and negative
NAO phases.

In addition, most of the hydro-climatic series do not follow a Gaussian distribution leading to
a possible misinterpretation of the dependency between the variables when using linear measures [24–26].
As a result, the non-parametric rank-based correlation metrics of Kendall’s tau and Spearman’s rho
are applied to quantify the relationship between two given variables [27–29]. However, even though
the associations evaluated by these two metrics are independent of any probability distribution
assumptions, they are more successful in detecting the monotonous relationships between any two
variables. In addition, assuming a monotonous relationship among two hydroclimatic variables might
be too restrictive to characterize the existing complex dependence structures between the hydroclimatic
variables [30–32].

To overcome the limitations of linear dependence, several studies in hydro-climatology adopted
the concepts based on nonlinear statistics to evaluate the strength of association among distinct
hydroclimatic variables. For instance, Fleming et al. [33] observed a nonlinear association between
northern hemisphere river basin streamflow and teleconnection patterns. In regard to climate
extremes, Cannon [34] utilized generalized extreme value distributions to investigate the relationship
between ENSO and winter extreme station precipitation in North America. Whereas Lin-Ye et al. [35]
investigated the relationship between extreme events of wave storms and large-scale climate covariates
using generalized additive and linear models. While Kusumastuti [36] studied the nonlinearity between
threshold and rainfall-runoff transformation. More recently, Konapala et al. [37] have investigated the
nonlinear relationship between low flows in Texas river basins with large scale climatic patterns.

Recently entropy-based approaches are gaining popularity for different applications, such as,
climate variability [38], uncertainty analysis [39], hydrometric network analysis [40–42], selection of
predictors [43,44], and drought regionalization [45]. Similarly, the entropy theory based mutual
information (MI) is widely used for quantifying the non-linear association between multiple
variables [40,41]. The MI concepts have been utilized to quantify nonlinear dependence structure
between several climate variables across the globe [46,47]. Also, several MI metrics were developed
to assist in predictor selection for hydroclimatic forecasting [48,49]. More importantly, MI was able
to detect the presence of strong nonlinear associations of streamflow, rainfall, and global mean
temperature with several large-scale climatic variables [31,50–54].

Unlike the signals in other research fields, hydroclimatic data being a subset of geophysical
research field are non-repeatable, shorter in length and contaminated with significant noise levels [31].
In addition to that, studies have indicated a presence of chaotic component [55]. Therefore, it becomes
evident that the selected measure should be relatively robust to noise and chaos and, more importantly,
detects signals possibly shorter in length. Thus, the goal of this study is to investigate and compare the
performance of nonlinear estimation method based on mutual information (MI) with the traditional
linear association metric of Pearson correlation. For this purpose, the hydro-meteorological data are
considered such as total annual precipitation, annual average streamflow, and extreme precipitation
indices specific to Mekong River Basin in Southeast Asia and estimated its association with the
large-scale climate index of ENSO.
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2. Materials and Methods

2.1. Hydro-Meteorological Data and ENSO

The Mekong River Basin (MRB), originates from Tibetan Plateau in China and flows through
the territory of five other countries in the Southeast Asia (Myanmar, Laos PDR, Thailand, Cambodia,
and drains to the sea in Vietnam) (Figure 1a). This is currently home to more than 70 million people
and it is expected to increase by 100 million in 2050 [56]. The detailed topography map of study
region is displayed in Figure 1a with relative high terrain in the upstream of the basin (upper Mekong).
In this study, the gridded precipitation data is provided from Asian Precipitation Highly Resolved
Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE) with
a spatial resolution of 0.25◦ and daily temporal resolution with the sufficiently long record period
from 1951–2007 covering the Asian monsoon domain. The dataset was created primarily with data
obtained independently from rain gauge observation network across all the regions of Asia. The daily
precipitation values from rain gauges were interpolated using the sphere map technique [57] and the
first six components of the fast Fourier transforms were taken to obtain daily data for all land areas in
the Asian monsoon domain [58]. This dataset is referred to as “APH” in this paper, for the purpose of
brevity. APH has been previously utilized as a reliable gridded rain data set over this area for various
hydrological applications [59–63]. The spatial distribution of total precipitation from APH data over
MRB is displayed in Figure 1b with high rainfall volumes (around 2000 to 2500 mm) gathering around
the eastern part of the river basin near to the Annamite mountain range.
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Figure 1. (a) Mekong River Basin map with digital elevation model terrain and digitized river, location
of four hydro-meteorology stations are displayed; (b) Annual rainfall distribution over MRB using
APHRODITE gridded rainfall 1951–2007.

The southwest monsoon wind originated from the Gulf of Thailand blocked by the Annamite
mountain range is the main factor that causes the high seasonal rainfall in summer months (June,
July August, September) [61] (Figure 2a). The APH daily gridded rainfall values were extracted
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to station locations using bilinear interpolation [59,63,64] to four meteorological stations located in
MRB—Chiang Saen, Vientiane, Nakhon Phanom, and Pakse (Figure 1a)—for the time period of 1951 to
2007 over the Mekong River Basin. In addition to rainfall data, the corresponding annual streamflow
data were also collected at these four hydrological stations from the MRC website for the same period.
The monthly mean climatology over 57 years of hydro-meteorological stations is displayed in Figure 2a.
Even though different patterns are found over four stations, the hydrographs are quite similar from
the upstream station at Chiang Saen to downstream station Pakse, with flooding season from May to
November, while the peak discharge months are around August and September. This study considers
the seasonal cycle which includes all 12 months of the hydrologic year (starting from the month
with the lowest rainfall—i.e., May—and ending in April of the next year; the streamflow month is
considered to lag one month which starts from June and ends in May next year).
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on the mainstream Mekong river; (b) Boxplots of monthly SST Nino 3.4 for different quarters

The study focuses on the total annual rainfall, annual streamflow, as well as extreme precipitation
indices [65] for hydrologic years derived from daily precipitation datasets for both wet and dry spell
statistics, which are (1) R5d: Max consecutive five-day rainfall, (2) P90p: 90th percentile of the daily
precipitation time series for the year, (3) SDII: average daily precipitation on a wet day, and (4) dry
spell length computed from daily precipitation for a year. Among four stations, Pakse has the highest
streamflow data due to its furthest downstream location. Nakhon Phanom and Pakse have the highest
rainfall as seen in Figures 1 and 2.

The assumption has been that the long-term hydro-meteorological data variability can be captured
by the fluctuation of the SST over seasonal scales. In this study, the ENSO index has been considered
by using the SST over NINO 3.4 region [60,66], which is the area averaged monthly SST over the region
bounded by the coordinates 5◦ N–5◦ S, 170◦ W–120◦ W. This time series could effectively indicate the
occurrence of ENSO events [66]. The dataset can be downloaded from the Climate Data Guide website
by NCAR [67]. Therefore in this study, the ENSO indices are computed at multiple three-month time
windows in terms of quarters [31] consisting of the average SST anomalies over months of JFM, FMA,
MAM, etc., for all the years (J: Jan, F: Feb, M: Mar). The SST over Nino 3.4 regions boxplots bound
for 57 years for 10 different quarters are displayed in Figure 2b. The red crosses in Figure 2b denote
outliers. There are four quarters just before the seasonal cycle, four quarters corresponding to the
seasonal cycle, and two quarters after seasonal cycle, computed with the mean monthly SST over Nino
3.4 region. Among all 10 quarters, the fourth quarter (AMJ) has the highest median and whisker values
compared to other quarters whilst the last two quarters (9 and 10) have the lowest median values.
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2.2. Mutual Information Estimation

The mutual information (MI) has been utilized to capture the nonlinear dependence structure
between two random variables. When analyzing experimental times series from the non-linear system,
the MI is especially an important statistics [68]. According to [69], there are three theorems for
MI between two random variables X, Y: (1) MI is non-negative and is zero if X and Y are strictly
independent; (2) MI is infinity if there exists a function “g” such that X = g(Y); (3) MI is invariant to
separate one to one transformations.

The MI can be computed using the relative entropy suggested by Joe [70]. Assuming that a pair
of continuous random variables (X, Y) exist which have a joint probability density function (pdf) pXY
and with its marginal pdf accordingly pX and pY. The mutual information or relative entropy can be
defined as

MI(X, Y) =
∫ ∫

pXY log
pXY

pX pY
dxdy (1)

It is noted that the Equation (1) measures the distance between a joint distribution and the
distribution when there is independence [69]. In case of continuous variables, there is no direct way
to accurately determine continuous probability distributions. Therefore, several methods have been
introduced to approximate the continuous probability distribution functions as discrete distributions.
Among them, Khan et al. [71] compared four different methods to estimate the probability distribution
function to calculate MI using: kernel density estimator (KDE) [68], K-nearest neighbors (KNN) [72],
Edgeworth approximation of multivariate differential entropy [73], and adaptive partitioning of the
XY plane [74]. The authors found that KDE and KNN outperform the other two methods in term of
their ability to capture the dependence structure. Khan et al. [31] indicated that KDE is able to capture
the underlying nonlinear dependence more consistently compared to KNN and Edgeworth when
they are short and noisy assuming such dependence exists. Therefore, this article utilizes the KDE to
estimate probability density function using the equation

p(x) =
1
n

n

∑
i

K(u) (2)

in which, K(u) is a multivariate kernel function

K(u) =
1

hd
√
(2π)ddet(S)

exp
(
−u

2

)
(3)

u =
(x − xi)

TS−1(x − xi)

h2 (4)

From (4), xi a d-dimensional random vector for the multivariate data set (x1, . . . , xn). S is the
covariance matrix on the xi, det(S) is a determinant of S and h is the kernel bandwidth or smoothing
variable. The optimal Gaussian bandwidth “h” can be computed using Equation (5) [75]

h =

(
4

d + 2

) 1
d+4

n− 1
d+4 (5)

The “d” is taken from [76] for the value of d = 2, and is similar to [68].
Substituting Equations (3) and (4) to Equation (2) to obtain the approximate probability density

function as

p(x) =
1
n

n

∑
i

1

hd
√
(2π)ddet(S)

exp

[
− (x − xi)

TS−1(x − xi)

2h2

]
(6)
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The detailed procedure using KDE to estimate pdf can be found in [31,68,71]. Here, the discrete
formulation of MI is shown in Equation (7)

MI(X, Y) =
1
n

n

∑
i=1

ln
pXY(xi, yi)

pX(xi)pY(yi)
(7)

In which pXY(xi, yi) is the joint pdf and pX(xi), pY(yi) are marginal pdfs at (xi, yi). The MI
values range between independent (MI = 0) to completely dependent (MI = ∞). In order to make the
generalization of the correlation with a range from 0 (independent) to 1 (dependent), Joe [70] proposed
a formula to transform the MI to nonlinear correlation coefficient (NLCC)

NLCC =
√
[1 − exp(−2MI)] (8)

The NLCC range is similar to linear correlation coefficients (LCC) and has been used in most of
the studies by [31,69,70].

Figure 3 modified [77] using their python code to demonstrate the LCC and NLCC using the
scatter plots of two random variables obtained from a different sample of data. The advantage of NLCC
is based on the fact that MI makes no assumption on the distribution of the variables or the nature of
the relationship between them and is sensitive to nonlinear and non-monotonic effects [77]. It can be
observed that (top row of Figure 3) both the LCC and NLCC can able to capture the linear relationship
between the two random variables with a very close range of values. However, the advantage of
NLCC compared to LCC is due to its ability to recognize the different distributions of the two random
variables (bottom row of Figure 3).
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Figure 3. The comparison between linear correlation coefficient (LCC) and nonlinear correlation
coefficient (NLCC) obtained from mutual information (MI) computed based on two random variables.
For each panel, top left value (bold) shows LCC and top right (italic) represents NLCC. The top row
illustrates the similarity between LCC and NLCC, whereas, the bottom row exhibits advantages of
non-linear relationship based on different distribution. (Figures partially adopted from [77] using their
python code. The NLCC was computed based on MI values).

Subsequently, the LCCs are computed between each of the precipitation indices and compared
with NLCCs at four hydro-meteorology stations located in MRB (Figure 1a). The four stations are chosen
based on their differences in terms of seasonal cycles, total annual rainfall amount and geographical
height. Finally, the gridded linear/non-linear CC is constructed for the MRB to showcase the spatial
variability of the correlation coefficient.
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3. Results

3.1. Linear and Nonlinear Correlation between Annual Precipitation/Streamflow and ENSO Index

We first illustrate the linear dependence as a bivariate normal distribution and nonlinear
dependence as a kernel bivariate distribution following the work of Khan et al. [71]. The bivariate
normal and kernel density between the annual average streamflow at different hydrologic gauging
stations and different quarters of ENSO indices are computed and plotted in Figure 4 for the highest
and lowest linear and nonlinear CCs. For kernel density, a Gaussian kernel with an optimal Gaussian
bandwidth computed by h = N−1/6 with N is the total number of observed points (57 in this case).
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Subsequently, the linear and nonlinear CCs between total annual precipitation and average
streamflow were computed at different window lengths of SST Nino 3.4 (quarters) for four different
hydro-meteorology stations and display in Figure 5. Based on the formulation Equation (8) NLCCs are
positive, therefore the absolute value of LCCs are computed for comparison plotting in Figure 5 and all
other figures henceforth. In order to compute the 90% confidence intervals for the absolute correlation
coefficients, the bootstrapping approach [71] was applied using 100 simulations and plotted in Figure 5.
It can be seen in Figure 5 that the NLCCs have higher values than the LCCs for all quarters. It indicates
that the KDE captures the more extrabasinal connection between ENSO and precipitation as well as
river flows compared to linear modeling [31].

In particular at station scale, Nakhon Phanom has the highest precipitation amount, its LCCs
and NLCCs are also among the highest for the first four quarters Figure 5(c1,c2) which subsequently
decrease. The NLCC values also have the same patterns as LCCs for this station as well as Pakse in
Figure 5(d1). Although both stations have highest CCs for the first quarter, however, the lowest CCs
values are not found at the same: Quarter 7 (Nakhon Phanom) and Quarter 4 (Pakse). Chiang Saen
and Vientiane have variation trends for LCCs Figure 5(a1,b1) among all quarters, this is perhaps due to
the less rainfall amount observed at these two rain gauges.
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Figure 5. Linear and nonlinear CCs with their 90% confidence intervals between SST Nino 3.4 and
(1) total annual precipitation (2) annual average streamflow for (a) Chiang Saen; (b) Vientiane; (c) Nakhon
Phanom; and (d) Pakse. Note: The correlation coefficients (CCs) are calculated between precipitation
and ENSO indices in-terms of quarterly temporal windows, such as, JFM, FMA, and MAM and so on.
The 90% confidence intervals are computed using 100 simulations by bootstrapping approach.

Among four hydrology gauging stations, Pakse also has highest LCCs/NLCCs with ENSO at
the first four quarters Figure 5(d2). This is because Pakse is the furthest station downstream and it
has the highest streamflow measured. Therefore, it shows more dependences by the fluctuations of
ENSO indices. The second highest streamflow station is Nakhon Phanom (see Figure 5(c2)) that also
indicates similar patterns of LCCs and NLCCs with higher dependences with the first four quarters
of ENSO indices compared with the rest. When the LCC values are close to zero (as in the last four
quarters of Figure 5(c2)), the differences between LCCs and NLCCs should be interpreted with caution
because of the exponential scaling of MI in NLCC as shown in Equation (8). The two upstream gauging
stations Chiang Saen and Vientiane (Figure 5(a2,b2)) also have similar patterns for LCCs and NLCCs
at different quarters. Compared to total annual precipitation, the annual average streamflow has
slightly higher LCCs and NLCCs, except for Nakhon Phanom station. Overlapping the 90% confidence
intervals of LCCs and NLCCs for streamflow at Chiang Saen, Vientiane, and Pakse (Figure 5(a2,b2,d2))
for the first three quarters indicates that both KDE and linear regressions effectively capture the strong
dependence structure.

3.2. Linear and Nonlinear Correlation between Precipitation Extreme Indices and ENSO

In addition to total annual precipitation and streamflow dependences, further investigations
on LCCs and NLCCs are carried out between precipitation indices for extreme values indices (R5d,
SDII, P90p, dry spell) with different quarters of ENSO events. This analysis aims to quantify the
dependence structure between annual extreme precipitation events and ENSO indices. The wet
indices (R5d, P90p, SDII), as well as dry indices (dry spell), are also taken into account for the
analyses. The detail dependences based on LCCs and NLCCs can be found in Figure 6 for four indices
and four stations over 10 quarters. Similar to Figure 5, the LCCs are displayed as absolute values
comparable to NLCCs. The 90% confidence intervals for the absolute correlation are computed based
on 100 simulations using bootstrapping approach. The detail analyses on Figure 6 reveals several
significant dependencies between annual extreme precipitation events and ENSO indices. Chiang
Saen exhibits high LCCs/NLCCs for a maximum five consecutive days of rainfall with the last three
quarters of ENSO indices and low CCs values for the first three quarters Figure 6(a1). Similar patterns
are found for Pakse station in Figure 6(d1) but with the highest CCs among Quarters 6, 7, 8 and
lowest at the first three quarters. This variation is different from the total annual precipitation in
Figure 5(a1,d1). In contrast to R5d, the other two indices: P90p and SDII have similar patterns of
LCCs/NLCCs compared to the total annual precipitation in Figure 5. The last three-quarters of ENSO



Entropy 2018, 20, 38 9 of 16

indices show that it has higher LCCs/NLCCs for Vientiane and Pakse Figure 6(b2,b3,d2,d3) compared
to other quarters whilst the first three quarters of Nakhon Phanom has the highest values than the last
three quarters. The dry spell indices of all four stations show nearly opposite patterns compared to
R5d. The overall pattern illustrates that nonlinear CCs have higher values (more dependencies) than
linear CCs for all stations/indices, similar to Figure 5 and [31].
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Figure 6. Comparison between linear and nonlinear CCs derived between SST Nino 3.4 and (1) R5d;
(2) P90p, (3) SDII; (4) dry spell for selected stations located at (a) Chiang Saen; (b) Vientiane; (c) Nakhon
Phanom; and (d) Pakse. Note: The correlation coefficients (CCs) are calculated between precipitation
and ENSO indices in-terms of quarterly temporal windows, such as JFM, FMA, MAM, and so on.
The 90% confidence intervals are computed using 100 simulations by bootstrapping approach.

The analyses with total annual precipitation, annual average streamflow, and extreme
precipitation indices on wet and dry conditions reveal that there exists a nonlinear extrabasinal
connection between ENSO and the hydro-meteorological data over Mekong river basin. The analyses
based on LCCs/NLCCs exhibit the increasing trend in the variation of annual statistics on
hydro-meteorology in connection with ENSO by computing nonlinear relationship as compared
to linear measures. Therefore, it is expected to give additional support for early prediction (compared
to traditional linear measurement) based on the ENSO forecast with the hydro-meteorology connection
when MI-based approaches are utilized. This approach, somehow, would be helpful in water resources
management for drought mitigation, flood control, as well as an irrigation system for agricultural areas.

3.3. Spatial Linear and Nonlinear Correlation Maps

Based on the correlation analysis at four rainfall stations, it was observed that the NLCCs have
higher values in comparison to LCCs at all the selected stations located in MRB. Further analyses of the
spatial pattern using the gridded data from APH based on the selected statistics of annual precipitation
and extreme indices have been carried out. The linear and nonlinear CCs between ENSO Quarter 1 and
annual rainfall are displayed in Figure 7 (using the same color bar), and the correlation values range
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from 0 to 0.6. Quarter 1 was selected arbitrarily as the first quarter, even though, it shows the highest
CCs over Nakhon Phanom and Pakse for total annual precipitation but it also displays the lowest
CCs for other analyses such as for Vientiane extreme indices (Figure 6b) or Pakse in Figure 6(d1,d3).
Figure 7a exhibits the higher CC values between total annual precipitation and ENSO Quarter 1
(about 0.4) from Nakhon Phanom to Pakse station, along with Laos, eastern Thailand, and northern
Cambodia. This can be clearly observed during the first quarter time frame Figure 5(c1,d1). On the
other hand, the NLCCs have higher CC values (about 0.5 to 0.6) for the same locations compared to
other grids. The use of spatial distribution map can be extended to generate the teleconnection patterns
in ungauged regions. That, in turn, helps to better inform local stakeholders in building better tools for
water resource management.
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Similarly, the dependency between selected precipitation indices (R5d, P90p, SDII, and dry
spell) and Quarter 1 of ENSO are computed and displayed in Figure 8. The linear CCs obtained
from precipitation indices (Figure 8) are slightly lower than that of annual precipitation in the
previous analysis (Figure 7) for Laos, eastern Thailand, and northern Cambodia. There is slightly
higher LCCs/NLCCs magnitude observed at southern Cambodia during a dry spell Figure 8(a4,b4).
The magnitudes of NLCCs (Figure 8) are also slightly lower than NLCCs based on the annual
precipitation (Figure 7). However, the values obtained from NLCCs are still significantly higher
than LCCs for all extreme indices. The lower Mekong basin (the southern part of river basin spread
over Laos, Thailand, and Cambodia to Vietnam) has higher correlations to ENSO indices compared to
the northern/upper basin, similar to [78].
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4. Discussion

Although ENSO has a direct influence on rainfall anomalies over the tropical and subtropical
regions, only a portion of the variation in the annual flow of rivers located in these regions is associated
with ENSO events [31]. This study discusses in detail the possible dependences between different
quarters of ENSO indices and hydro-meteorological dataset over Mekong river basin. Other existing
studies on MRB highlighted that the linear correlations between ENSO and streamflow over the
selected locations in Chiang Saen, Vientiane, and Pakse are around −0.4 to 0.2 [78] and maximum
linear correlations between ENSO and precipitation over several stations in Thailand are around
−0.18 to 0.22 [79]. The above correlation figures are in line with the study that the maximum LCCs
obtained are around 0.35 for both annual precipitation and streamflow as displayed in Figure 5.
The results from mutual information derived NLCCs therefore suggests an additional approach to
look into the dependence structure for multivariate hydro-meteorological data with the large-scale
climate patterns. ENSO is a periodic climatic phenomenon with 3–7 years of the cycle and can be
predicted several seasons in advances [80]. For instance, Ludescher et al. [81] were able to predict
the likelihood of El Niño conditions in 2014 almost a year in advance indicating an improvement
in our prediction capacity. In addition, other researchers [82,83] also revealed the intensification of
ENSO related precipitation and El Niño frequency in the future due to the warming associated with an
increase in greenhouse gas emission. Moreover, Ward et al. [15] indicated that the global flood risk
exists during El Niño or La Niña years, or both, in basins spanning 44% of the land surface of the Earth.
Therefore, the predictability of ENSO has significant implications and the ability to predict in advance
might lead to better local water resources management towards developing more efficient flood and
drought early warning systems.

This study limits to using only the kernel density estimation approach to estimate the mutual
information values. However, there are several methods that have been used to compute the mutual
information, such as K-nearest neighbors (KNN) [72], Edgeworth approximation of multivariate
differential entropy [73] and adaptive partitioning of the XY plane [74]. The detailed comparisons
among these estimator approaches were carried out in [71] for a different type of data such as linear,
quadratic, periodic function, chaotic system. Khan et al. [71] concluded that KDE is the best choice
for very short data (50–100 data points). Therefore, KDE approach was utilized to estimate the
bivariate mutual information in this study. In addition to mutual information method, there are several
approaches used to build the nonlinear relationship between multivariate. Lin-Ye et al. [35] applied
the VGAM/VGLM to quantify the nonlinear relationship between storm components and large-scale
climate indices (NAO and others) using Global Climate Model data via the regression coefficients
that were used to build the location and scale parameters of their statistical model. Zhang et al. [84]
investigated the nonlinear relationship by employing the concept of mutual information to evaluate
the dependency between the normalized difference vegetation index (NDVI) and meteorological
variables for the middle reach of the Hei river basin. Higher dependency between NDVI and coupled
precipitation/temperature was observed for the desert area whilst for oasis region, groundwater is
an important factor for driving vegetation growth. The authors utilized the mutual information as
a method to classify the study region into a smaller area (desert, oasis, artificial oasis).

The NLCCs and LCCs analysis between ENSO and hydro-meteorological data suggest that there
exists a nonlinear correlation for the Mekong River Basin. This finding agrees well with a previous
study [28] with a focus on river flow analysis over tropical and sub-tropical river basins. It can be
observed that although the linear CCs can be 0, the smallest NLCCs can be around 0.3 to 0.4. This needs
caution from an artifact of Equation (8) which scales nonlinear CCs exponentially with MI [31] when
linear CCs are close to 0. It, however, does not affect the other values of CCs higher than 0.

5. Conclusions

This study analyses the possible influence of the large-scale climate index ENSO and
hydro-meteorological data in the form of total annual precipitation, annual average streamflow,
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and extreme precipitation indices using linear and nonlinear correlation over the Mekong River Basin.
The nonlinear correlation structure was computed based on mutual information approach using
marginal and joint entropy. The kernel density estimation approach was selected among several other
techniques to estimate the mutual information values as this approach works best for very short
data length of 50 to 100 points. Nonlinear correlations were obtained by transforming the mutual
information using Joe formula [70] and thus are comparable with absolute linear correlation coefficients.
Bootstrapping approach based on 100 simulations was applied to find the confidence intervals for
these absolute correlation coefficients. In-depth analysis was carried out at four hydro-meteorological
stations located in the Mekong River Basin. The major conclusions that can be drawn from this study
are listed below:

1. Nonlinear correlation is able to reveal the additional dependence structures between
hydro-meteorological data over Mekong River Basin and ENSO indices.

2. Both linear and nonlinear correlation exhibits similar varying patterns among different ENSO
quarters for most of the stations/indices.

3. The results reveal that higher correlation coefficients can be found using the nonlinear correlation
coefficients in comparison to the traditional linear correlation analysis.

4. Spatial correlation structures for LCCs and NLCCs are also constructed based on extreme
precipitation indices and ENSO. The use of spatial maps further complements our analyses
based on a single station to other ungagged regions to better inform local stakeholders in building
better tools for water resource management.

5. Further analyses are required to reveal the non-linear association between other large-scale climate
phenomena (SOI, PDO, NAO, etc.) with local meteorological variables. The mutual information
between these indices and local meteorological variables can further help policymakers to
improve climate-informed adaptation studies.
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