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1. Introduction

Recently, complex valued neural networks (CVNN) have attracted more attention in many
research fields, such as signal processing, quantum waves, speech synthesis, and so on [1–5]. Unlike
real valued neural networks (RVNN), the state vectors, including weights of connections and activation
functions of CVNN, derives from the complex valued field. CVNN can help solve some real-world
problems that RVNN can never solve. For example, the Exclusive-OR (XOR) problem and the detection
of symmetry problem can be solved with a single complex valued neuron with the orthogonal
boundaries, whereas neither of them could be achieved by RVNN with such a simple network
structure [6]. Generally speaking, the CVNN have more complicated properties and dynamical
behaviors [7–9]. In fact, the activation functions in RVNN are employed to be bounded and smooth.
However, based on Liouville’s theorem [10], a function that is bounded and analytic at the same time
in the complex domain must be constant. Therefore, careful selection of the activation functions of
CVNN is a challenging task [11]. Hence, considering the dynamical behaviors of CVNN is important
and necessary. Existing results have concerned stability and synchronization [12–14].

Fractional calculus, which acts with derivatives and integrals of arbitrary order, was firstly
proposed by Leibniz in 1695 [15]. Compared with an integer-order model, fractional order models can
offer more accurate instrument for memory description and inherited properties of several processes.
Some researchers introduced the fractional order derivatives into neural networks; the fractional order
neural networks were designed for precisely modelling in real world [16–19].

It is worth pointing out that the interesting results of integer order CVNN can not be
directly extended to fractional-order complex valued neural networks (FOCVNN). The stability and
synchronization analysis of fractional order systems, including FOCVNN, are very difficult. Since
calculating the fractional order derivatives of Lyapunov functions is complicated, the stability analysis
methods for integer order systems such as Lyapunov functional method can not be easily generalized
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to fractional order systems. Taking these factors into consideration, many researchers have studied the
dynamic behaviors of FOCVNN [20–25].

Due to finite switching speeds of amplifiers, it is quite difficult to avoid time delays in neural
networks. This may induce oscillation and instability behaviors [26–28]. Some interesting results have
been presented on the stability of FOCVNN with time delay. For instance, in [21], Gronwall inequality,
Cauchy-Schiwartz inequality and inequality skills were utilized to consider stability of FOCVNN at
the presence of time delay. Existence and uniform stability analysis of FOCVNN with time delays were
studied in [22]. Stability analysis of fractional order complex valued neural networks and memristive
neural networks with time delays were studied in [23,24]. To the best of our knowledge, only a few
research works have considered the synchronization of FOCVNN with time delay. For example, in [25],
synchronization of FOCVNN with time delay was achieved by employing linear delay feedback and
a fractional order inequality.

Because the fractional order systems cannot have any exact non-constant periodic solution [29,30],
we consider in this paper, from a numerical point of view, that a periodic solution is an extremely-near
periodic trajectory. The main goal of this paper is to study the synchronization of FOCVNN with time
delay by adopting a new strategy, and some interesting results are obtained. To ensure synchronization,
sufficient conditions are established by constructing a Lyapunov function, employing a fractional order
inequality and comparison theorem of fractional order linear systems when there is a time delay.

2. Preliminaries and Model Description

The literature gives some definitions of the fractional order derivatives, including the
Riemann-Liouville definition and Caputo definition. The Caputo derivative only requires initial
conditions given in terms of integer-order derivatives, thus it is more applicable in the real world.
Therefore, this paper considers the Caputo derivative.

Definition 1 ([31]). The Caputo derivative of fractional order α of a function ϕ(t) is defined by:

Dα ϕ(t) =
1

Γ(m− α)

∫ t

t0

(t− τ)m−α−1 ϕ(m)(τ)dτ,

where t ≥ t0, m− 1 < α < m ∈ Z+, Γ(·) is the Gamma function, Γ(s) =
∫ ∞

0 ts−1e−tdt.

This paper proposes a class of FOCVNN at the presence of time delay as master system, which is
expressed as:

Dαzj(t) = −cjzj(t) +
n

∑
k=1

ajk fk(zk(t)) +
n

∑
k=1

bjkgk(zk(t− τ)) + Ij, (1)

or equivalently
Dαz(t) = −Cz(t) + A f (z(t)) + g(z(t− τ)) + I(t), (2)

where 0 < α < 1, j = 1, 2, · · · , n, n is the number of units in a neural networks, zj(t) corresponds to the
state of the j-th unit at time t, denotes z(t) = (z1(t), · · · , zn(t))T ∈ Cn, C = diag(c1, · · · , cn) ∈ Rn×n with
cj > 0 is the self-regulating parameters of the neurons. I(t) = (I1(t), I2(t), · · · , In(t))T ∈ Cn represents
the external input, A = (ajk)n×n and B = (bjk)n×n are the connective weights matrix in the presence and
absence of delay, respectively. Functions fk(zk(t)) : Cn → Cn and gk(zk(t−τ)) : Cn → Cn are the complex
valued activation functions of the kth unit at time t and t− τ, respectively, τ > 0 is the transmission
delay, denotes f (z(t)) = ( f1(z1(t)), · · · , fn(zn(t)))T, g(z(t− τ)) = (g1(z1(t− τ)), · · · , gn(zn(t− τ)))T.

The slave system is given:

Dαz′j(t) = −cjz′j(t) +
n

∑
k=1

ajk fk(z′k(t)) +
n

∑
k=1

bjkgk(z′k(t− τ)) + Ij + Uj(t), (3)
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or equivalently
Dαz′(t) = −Cz′(t) + A f (z′(t)) + g(z′(t− τ)) + I(t) + U(t), (4)

where z′(t) = (z′1(t), · · · , z′n(t))T ∈ Cn is the state vector of the system response, U(t) =

(u1(t), · · · , un(t))T is a suitable controller.
In following, some assumptions and useful lemmas are presented to proof the main results.

Assumption 1. Let z(t) = x(t) + iy(t), f (z(t)) and g(z(t− τ)) are analytic and can be expressed, while
separating the real and imaginary parts, as

f (z(t)) = f R(x(t), y(t)) + i f I(x(t), y(t)),

g(z(t− τ)) = gR(x(t− τ), y(t− τ)) + igI(x(t− τ), y(t− τ)),

where f R(·, ·) = Re( f (·, ·)) = ( f R
1 (x1, y1), · · · , f R

n (xn, yn))T, f I(·, ·) = Im( f (·, ·)) = ( f I
1(x1, y1), · · · ,

f I
n(xn, yn))T, gR(·, ·) = Re(g(·, ·)) = (gR

1 (x1, y1), · · · , gR
n (xn, yn))T, gI(·, ·) = Im(g(·, ·)) = (gI

1(x1, y1),
· · · , gI

n(xn, yn))T.

Assumption 2. The functions f R
j (·, ·), f I

j (·, ·), gR
j (·, ·), gI

j (·, ·) satisfy the following conditions: there exist
positive constants FRR

j , FRI
j , FIR

j , FI I
j , GRR

j , GRI
j , GIR

j , GI I
j , such that

| f R
j (u

′, v′)− f R
j (u, v)| ≤ FRR

j |u′ − u|+ FRI
j |v′ − v|,

| f I
j (u
′, v′)− f I

j (u, v)| ≤ FIR
j |u′ − u|+ FI I

j |v′ − v|,

|gR
j (u

′, v′)− gR
j (u, v)| ≤ GRR

j |u′ − u|+ GRI
j |u′ − u|,

|gI
j (u
′, v′)− gI

j (u, v)| ≤ GIR
j |u′ − u|+ GI I

j |u′ − u|,

for all (u, v), (u′, v′) ∈ R2.

Note that Assumption 2 is very important. Compare with the Lipschitz condition
| f j(u′)− f j(u)| ≤ Fj|u′ − u| , Assumption 2 is the general Lipschitz condition. In CVNN, the activation
functions cannot be bounded and analytic, careful selection of the activation functions of CVNN is
a challenge task. Therefore, under Assumption 2, the results in this paper have been obtained.

Lemma 1 ([32]). Suppose x(t) ∈ Rn is a continuous and differentiable vector-value function. Then, for any
time instant t ≥ t0, we get

DαxT(t)x(t) ≤ 2xT(t)Dαx(t), (5)

where 0 < α < 1.

Lemma 2 ([33]). Suppose W(t) ∈ R1 is a continuous differentiable and nonnegative function, which satisfies{
DαW(t) ≤ −aW(t) + bW(t− τ), 0 < α < 1
W(t) = φ(t) ≥ 0, t ∈ [−τ, 0]

(6)

where t ∈ [0,+∞). If a > b > 0, for all φ(t) ≥ 0, τ > 0, then lim
t→+∞

W(t) = 0.
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3. Main Results

This section derives the synchronization conditions of FOCVNN with time delay by designing
a suitable controller.

Assuming that e(t) = z′(t)− z(t) is the synchronization error, then the system’s error can be
computed as

Dαej(t) = −cjej(t) +
n

∑
k=1

ajk[ fk(z′k(t))− fk(zk(t))]

+
n

∑
k=1

bjk[gk(z′j(t− τ))− gk(zk(t− τ))] + Uj(t). (7)

The vector form as follows:

Dαe(t) = −Ce(t) + A[ f (z′(t))− f (z(t))] + B[g(z′(t− τ))− g(z(t− τ))] + U(t). (8)

In the following, the notations are used:

z(t) = x(t) + iy(t), z′(t) = x′(t) + iy′(t), (9)

eR(t) = x′(t)− x(t), eI(t) = y′(t)− y(t). (10)

Select the control input function U(t) = u(t) + iv(t) as the following form:

u(t) = η(x′(t)− x(t)), v(t) = η′(y′(t)− y(t)), (11)

where each η = diag(η1, · · · , ηn), η′ = diag(η′1, · · · , η′n) with ηj > 0, η′j > 0 (i = 1, · · · , n) denote the
control gain.

Then the system’s error can be given as

DαeR(t) = −ΩeR(t) + AR[ f R(x′(t), y′(t))− f R(x(t), y(t))]

−AI [ f I(x′(t), y′(t))− f I(x(t), y(t))]

+BR[gR(x′(t− τ), y′(t− τ))− gR(x(t− τ), y(t− τ))]

−BI [gI(x′(t− τ), y′(t− τ))− gI(x(t− τ), y(t− τ))], (12)

DαeI(t) = −Ω′eI(t) + AI [ f R(x′(t), y′(t))− f R(x(t), y(t))]

+AR[ f I(x′(t), y′(t))− f I(x(t), y(t))]

+BI [gR(x′(t− τ), y′(t− τ))− gR(x(t− τ), y(t− τ))]

+BR[gI(x′(t− τ), y′(t− τ))− gI(x(t− τ), y(t− τ))], (13)

where AR, BR are the real parts of matrix A, B, respectively, AI , BI are the imaginary parts of matrix
A, B, respectively. Ω = diag(c1 + η1, · · · , cn + ηn), Ω′ = diag(c1 + η′1, · · · , cn + η′n).
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The error system (12) and (13) can also be rewritten as

DαeR
j (t) = −(cj + ηj)eR

j (t) +
n

∑
k=1

aR
jk[ f R

k (x′k(t), y′k(t))− f R
k (xk(t), yk(t))]

−
n

∑
k=1

aI
jk[ f I

k (x′k(t), y′k(t))− f I
k (xk(t), yk(t))]

+
n

∑
k=1

bR
jk[g

R
k (x′k(t− τ), y′k(t− τ))− gR

k (xk(t− τ), yk(t− τ))] (14)

−
n

∑
k=1

bI
jk[g

I
k(x′k(t− τ), y′k(t− τ))− gI

k(xk(t− τ), yk(t− τ))],

DαeI
j (t) = −(cj + η′j)e

I
j (t) +

n

∑
k=1

aI
jk[ f R

k (x′k(t), y′k(t))− f R
k (xk(t), yk(t))]

+
n

∑
k=1

aR
jk[ f I

k (x′k(t), y′k(t))− f I
k (xk(t), yk(t))]

+
n

∑
k=1

bI
jk[g

R
k (x′k(t− τ), y′k(t− τ))− gR

k (xk(t− τ), yk(t− τ))] (15)

+
n

∑
k=1

bR
jk[g

I
k(x′k(t− τ), y′k(t− τ))− gI

k(xk(t− τ), yk(t− τ))].

Note λ1 = min
1≤j≤n

[(cj + ηj) −
n
∑

k=1

1
2 |aR

jk|F
RR
k −

n
∑

k=1

1
2 |aR

kj|F
RR
j −

n
∑

k=1

1
2 |aR

jk|F
RI
k −

n
∑

k=1

1
2 |aI

jk|F
IR
k −

n
∑

k=1

1
2 |aI

kj|F
IR
j −

n
∑

k=1

1
2 |aI

jk|F
I I
k −

n
∑

k=1

1
2 |bR

jk|G
RR
k −

n
∑

k=1

1
2 |bR

jk|G
RI
k −

n
∑

k=1

1
2 |bI

jk|G
IR
k −

n
∑

k=1

1
2 |bI

jk|G
I I
k −

n
∑

k=1

1
2 |aI

kj|F
RR
j −

n
∑

k=1

1
2 |aR

kj|F
IR
j ], λ2 = min

1≤j≤n
[(cj + η′j) −

n
∑

k=1

1
2 |aR

kj|F
RI
j −

n
∑

k=1

1
2 |aI

kj|F
I I
j −

n
∑

k=1

1
2 |aI

jk|F
RR
k −

n
∑

k=1

1
2 |aI

jk|F
RI
k −

n
∑

k=1

1
2 |aI

kj|F
RI
j −

n
∑

k=1

1
2 |aR

jk|F
IR
k −

n
∑

k=1

1
2 |aR

jk|F
I I
k −

n
∑

k=1

1
2 |aR

kj|F
I I
j −

n
∑

k=1

1
2 |bI

jk|G
RR
k −

n
∑

k=1

1
2 |bI

jk|G
RI
k −

n
∑

k=1

1
2 |bR

jk|G
IR
k −

n
∑

k=1

1
2 |bR

jk|G
I I
k ], µ1 = max

1≤j≤n
[

n
∑

k=1

1
2 |bR

kj|G
RR
j + 1

2 |bI
kj|G

IR
j +

n
∑

k=1

1
2 |bR

kj|G
IR
j +

n
∑

k=1

1
2 |bI

kj|G
RR
j ], µ2 = max

1≤j≤n
[

n
∑

k=1

1
2 |bR

kj|G
RI
j +

n
∑

k=1

1
2 |bI

kj|G
I I
j +

n
∑

k=1

1
2 |bI

kj|G
RI
j +

n
∑

k=1

1
2 |bR

kj|G
I I
j ].

Theorem 1. Suppose Assumptions 1 and 2 hold, the control gains η, η′ satisfy λ > µ > 0, then the master
system (1) and the slave system (3) are globally asymptotically synchronized, where λ = min{λ1, λ2},
µ = max{µ1, µ2}.

Proof. See the Appendix A.
If the parameters, states and activation functions in systems (1) and (3) are all selected from

real valued field, based on Theorem 1, we get λ1 = min
1≤j≤n

[(cj + ηj)−
n
∑

k=1

1
2 |aR

jk|F
RR
k −

n
∑

k=1

1
2 |aR

kj|F
RR
j −

n
∑

k=1

1
2 |bR

jk|G
RR
k ], λ2 = min

1≤j≤n
cj, µ1 = max

1≤j≤n

n
∑

k=1

1
2 |bR

kj|G
RR
j . µ2 = 0. Thus, one can obtain the following

corollary.

Corollary 1. Suppose Assumptions 1 and 2 hold, the control gains η satisfy λ1 > µ1 > 0, then the master
system (1) and the slave system (3) are globally asymptotically synchronized.
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Remark 1. Compared with [21], in this paper, the comparison theorem of linear fractional order systems with
delay is adopted to achieve the synchronization of FOCVNN with time delay, and the results are presented.
The method is new and effective at designing the synchronization of complex valued neural networks.

Remark 2. Lemmas 1 and 2 play important and useful roles for studying synchronization of FOCVNN.
The proposed method can be extended to consider the synchronization of fractional order complex valued
memristive neural networks at the existence of delays, including fractional order chaotic and hyperchaotic systems.

4. Numerical Simulations

The following fractional order complex valued delayed neural networks is considered as the
master system:

Dαz(t) = −Cz(t) + A f (z(t)) + Bg(z(t− τ)) + I(t), (16)

where z(t) = (z1(t), z2(t))T , and zj(t) = xj(t) + iyj(t), j = 1, 2, α = 0.98, τ = 1.

C =

(
2.5 0
0 2

)
, A =

(
3 + i −2− 5i

1 + 1.5i 0.5 + i

)
, B =

(
−1 + 2i 1 + i
−1.5− 1.5i 1.5 + 5i

)
, I(t) = (sint−

2icost, 3cos(t + 1) + isin(t− 1))T , f (z(t)) = ( f1(z1(t)), f2(z2(t)))T , g(z(t)) = (g1(z1(t)), g2(z2(t)))T ,

and f j(zj) =
1−e−xj

1+e−xj
+ 1

1+e−yj
, gj(zj) =

1−e−yj

1+e−yj
+ 1

1+e−xj
, for j = 1, 2.

The slave system is given as:

Dαz′(t) = −Cz′(t) + A f (z′(t)) + Bg(z′(t− τ)) + I(t) + U(t), (17)

where z′(t) = (z′1(t), z′2(t))
T , z′j(t) = x′j(t) + iy′j(t)(j = 1, 2), U(t) = (U1(t), U2(t))T , Uj(t) = uj(t) +

ivj(t)(j = 1, 2) is the control function to be designed later.
The initial values are selected z1(s) = 1− 2i, z2(s) = 2− 4i, z′1(s) = −1 + 2i, z′2(s) = −3 + 3i for

s ∈ [−1, 0]. The curves of z1(t), z2(t) and z′1(t), z′2(t) are shown without controller in Figures 1 and 2.
Figures 3–6 depict the time evolution of the real and imaginary parts of z1(t), z2(t) and z′1(t), z′2(t)
with control gains η = η′ = 0. The simulation results show that the master system cannot synchronize
the slave system without a controller.
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Figure 1. Curves of z1, z2, z′1, z′2 in 3-dimensional space without control.
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Figure 2. Curves of z1, z2, z′1, z′2 in 2-dimensional space without control.
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Figure 3. The trajectories of x1, x′1 without control.
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Figure 5. The trajectories of y1, y′1 without control.
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Figure 6. The trajectories of y2, y′2 without control.

If we select the control gain η1 = η2 = 1, η′1 = η′2 = 2, by simple computing, the condition of
Theorem 1 is satisfied. The initial values are selected z1(s) = 1− 2i, z2(s) = 2− 4i, z′1(s) = −1+ 2i,
z′2(s) = −3 + 3i, for s ∈ [−1, 0]. The curves of z1(t), z2(t) and z′1(t), z′2(t) are shown with
controller in Figures 7 and 8. The synchronization errors of real and imaginary parts of z1(t), z2(t),
z′1(t), z′2(t) are shown in Figures 9–12, the synchronization trajectories of real and imaginary parts of
z1(t), z2(t), z′1(t), z′2(t) are shown in Figures 13–16, which indicates that the slave system (17) achieved
synchronization with the master system (16).
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Figure 7. Curves of z1, z2, z′1, z′2 in 3-dimensional space with controller.xj(x̃j)-5 -4 -3 -2 -1 0 1 2 3
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Figure 8. Curves of z1, z2, z′1, z′2 in 2-dimensional space with controller.
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Figure 10. The synchronization trajectories of x2, x′2 with controller.
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Figure 11. The synchronization trajectories of y1, y′1 with controller.
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Figure 16. The synchronization error eI
2 state.

5. Conclusions

Compared with real valued neural networks, FOCVNN has more complicated properties and
dynamical behaviors. In this paper, the synchronization of FOCVNN with time delay is considered.
An error feedback controller is designed by using the comparison theorem of linear fractional order
systems with delay and a fractional inequality. An example is proposed to demonstrate the correctness
and effectiveness of the obtained results. The method is not only easy to apply for achieving the
synchronization of FOCVNN with delay, but also has improved the previous results. The results
obtained are still suitable for synchronization of a fractional order real valued neural network with
delay. The stability and synchronization of FOCVNN still remain open topics which need to be pursued
in the future.
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Appendix A

Proof of Theorem 1:
Construct an auxiliary function:

V(e(t)) =
1
2

n

∑
j=1

(eR
j (t))

2 +
1
2

n

∑
j=1

(eI
j (t))

2. (A1)
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Using Lemma 1, then

DαV(e(t)) ≤ eR
j (t)Dα

n
∑

j=1
eR

j (t) + eI
j (t)Dα

n
∑

j=1
eI

j (t)

= eR
j (t)

n
∑

j=1
{−(cj + ηj)eR

j (t) +
n
∑

k=1
aR

jk[ f R
k (x′k(t), y′k(t))− f R

k (xk(t), yk(t))]

−
n
∑

k=1
aI

jk[ f I
k (x′k(t), y′k(t))− f I

k (xk(t), yk(t))]

+
n
∑

k=1
bR

jk[g
R
k (x′k(t− τ), y′k(t− τ))− gR

k (xk(t− τ), yk(t− τ))]

−
n
∑

k=1
bI

jk[g
I
k(x′k(t− τ), y′k(t− τ))− gI

k(xk(t− τ), yk(t− τ))]}

+eI
j (t)

n
∑

j=1
{−(cj + η′j)e

I
j (t) +

n
∑

k=1
aI

jk[ f R
k (x′k(t), y′k(t))− f R

k (xk(t), yk(t))]

+
n
∑

k=1
aR

jk[ f I
k (x′k(t), y′k(t))− f I

k (xk(t), yk(t))]

+
n
∑

k=1
bI

jk[g
R
k (x′k(t− τ), y′k(t− τ))− gR

k (xk(t− τ), yk(t− τ))]

+
n
∑

k=1
bR

jk[g
I
k(x′k(t− τ), y′k(t− τ))− gI

k(xk(t− τ), yk(t− τ))]}

≤
n
∑

j=1
{−(cj + ηj)(eR

j (t))
2 +

n
∑

k=1
|eR

j (t)||aR
jk|[F

RR
k |e

R
k (t)|+ FRI

k |e
I
k(t)|]

+
n
∑

k=1
|eR

j (t)||aI
jk|[F

IR
k |e

R
k (t)|+ FI I

k |e
I
k(t)|]

+
n
∑

k=1
|eR

j (t)||bR
jk|[G

RR
k |e

R
k (t− τ)|+ GRI

k |e
I
k(t− τ)|]

+
n
∑

k=1
|eR

j (t)||bI
jk|[G

IR
k |e

R
k (t− τ)|+ GI I

k |e
I
k(t− τ)|]}

+
n
∑

j=1
{−(cj + η′j)(e

I
j (t))

2 +
n
∑

k=1
|eI

j (t)||aI
jk|[F

RR
k |e

R
k (t)|+ FRI

k |e
I
k(t)|]

+
n
∑

k=1
|eI

j (t)||aR
jk|[F

IR
k |e

R
k (t)|+ FI I

k |e
I
k(t)|]

+
n
∑

k=1
|eI

j (t)||bI
jk|[G

RR
k |e

R
k (t− τ)|+ GRI

k |e
I
k(t− τ)|]

+
n
∑

k=1
|eI

j (t)||bR
jk|[G

IR
k |e

R
k (t− τ)|+ GI I

k |e
I
k(t− τ)|]}

≤
n
∑

j=1
{−(cj + ηj)(eR

j (t))
2 +

n
∑

k=1

1
2 |aR

jk|F
RR
k [(eR

j (t))
2 + (eR

k (t))
2]

+
n
∑

k=1

1
2 |aR

jk|F
RI
k [(eR

j (t))
2 + (eI

k(t))
2]

+
n
∑

k=1

1
2 |aI

jk|F
IR
k [(eR

j (t))
2 + (eR

k (t))
2]

+
n
∑

k=1

1
2 |aI

jk|F
I I
k [(eR

j (t))
2 + (eI

k(t))
2]
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+
n
∑

k=1

1
2 |bR

jk|G
RR
k [(eR

j (t))
2 + (eR

k (t− τ))2]

+
n
∑

k=1

1
2 |bR

jk|G
RI
k [(eR

j (t))
2 + (eI

k(t− τ))2]

+
n
∑

k=1

1
2 |bI

jk|G
IR
k [(eR

j (t))
2 + (eR

k (t− τ))2]

+
n
∑

k=1

1
2 |bI

jk|G
I I
k [(eR

j (t))
2 + (eI

k(t− τ))2]}

+
n
∑

j=1
{−(cj + η′j)(e

I
j (t))

2 +
n
∑

k=1

1
2 |aI

jk|F
RR
k [(eI

j (t))
2 + (eR

k (t))
2]

+
n
∑

k=1

1
2 |aI

jk|F
RI
k [(eI

j (t))
2 + (eI

k(t))
2]

+
n
∑

k=1

1
2 |aR

jk|F
IR
k [(eI

j (t))
2 + (eR

k (t))
2]

+
n
∑

k=1

1
2 |aR

jk|F
I I
k [(eI

j (t))
2 + (eI

k(t))
2]

+
n
∑

k=1

1
2 |bI

jk|G
RR
k [(eI

j (t))
2 + (eR

k (t− τ))2]

+
n
∑

k=1

1
2 |bI

jk|G
RI
k [(eI

j (t))
2 + (eI

k(t− τ))2]

+
n
∑

k=1

1
2 |bR

jk|G
IR
k [(eI

j (t))
2 + (eR

k (t− τ))2]

+
n
∑

k=1

1
2 |bR

jk|G
I I
k [(eI

j (t))
2 + (eI

k(t− τ))2]}

= −
n
∑

j=1
[(cj + ηj)−

n
∑

k=1

1
2 |aR

jk|F
RR
k −

n
∑

k=1

1
2 |aR

kj|F
RR
j −

n
∑

k=1

1
2 |aR

jk|F
RI
k

−
n
∑

k=1

1
2 |aI

jk|F
IR
k −

n
∑

k=1

1
2 |aI

kj|F
IR
j −

n
∑

k=1

1
2 |aI

jk|F
I I
k −

n
∑

k=1

1
2 |bR

jk|G
RR
k

−
n
∑

k=1

1
2 |bR

jk|G
RI
k −

n
∑

k=1

1
2 |bI

jk|G
IR
k −

n
∑

k=1

1
2 |bI

jk|G
I I
k

−
n
∑

k=1

1
2 |aI

kj|F
RR
j −

n
∑

k=1

1
2 |aR

kj|F
IR
j ](eR

j (t))
2

−
n
∑

j=1
[(cj + η′j)−

n
∑

k=1

1
2 |aR

kj|F
RI
j −

n
∑

k=1

1
2 |aI

kj|F
I I
j −

n
∑

k=1

1
2 |aI

jk|F
RR
k

−
n
∑

k=1

1
2 |aI

jk|F
RI
k −

n
∑

k=1

1
2 |aI

kj|F
RI
j −

n
∑

k=1

1
2 |aR

jk|F
IR
k

−
n
∑

k=1

1
2 |aR

jk|F
I I
k −

n
∑

k=1

1
2 |aR

kj|F
I I
j −

n
∑

k=1

1
2 |bI

jk|G
RR
k

−
n
∑

k=1

1
2 |bI

jk|G
RI
k −

n
∑

k=1

1
2 |bR

jk|G
IR
k −

n
∑

k=1

1
2 |bR

jk|G
I I
k ](eI

j (t))
2

+
n
∑

j=1
[

n
∑

k=1

1
2 |bR

kj|G
RR
j + 1

2 |bI
kj|G

IR
j

+
n
∑

k=1

1
2 |bR

kj|G
IR
j +

n
∑

k=1

1
2 |bI

kj|G
RR
j ](eR

j (t− τ))2

+
n
∑

j=1
[

n
∑

k=1

1
2 |bR

kj|G
RI
j +

n
∑

k=1

1
2 |bI

kj|G
I I
j

+
n
∑

k=1

1
2 |bI

kj|G
RI
j +

n
∑

k=1

1
2 |bR

kj|G
I I
j ](eI

j (t− τ))2.
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Then, one gets

DαV(e(t)) ≤ −2λ1

n

∑
j=1

(eR
j (t))

2 − 2λ2

n

∑
j=1

(eI
j (t))

2

+2µ1

n

∑
j=1

(eR
j (t− τ))2 + 2µ2

n

∑
j=1

(eI
j (t− τ))2

≤ −2λV(e(t)) + 2µV(e(t− τ)). (A2)

According to Lemma 2, when λ > µ > 0, the system (1) synchronizes the system (3).
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