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Abstract: Classical chaos is often characterized as exponential divergence of nearby trajectories.
In many interesting cases these trajectories can be identified with geodesic curves. We define here the
entropy by S = ln χ(x) with χ(x) being the distance between two nearby geodesics. We derive an
equation for the entropy, which by transformation to a Riccati-type equation becomes similar to the
Jacobi equation. We further show that the geodesic equation for a null geodesic in a double-warped
spacetime leads to the same entropy equation. By applying a Robertson–Walker metric for a flat
three-dimensional Euclidean space expanding as a function of time, we again reach the entropy
equation stressing the connection between the chosen entropy measure and time. We finally turn to
the Raychaudhuri equation for expansion, which also is a Riccati equation similar to the transformed
entropy equation. Those Riccati-type equations have solutions of the same form as the Jacobi equation.
The Raychaudhuri equation can be transformed to a harmonic oscillator equation, and it has been
shown that the geodesic deviation equation of Jacobi is essentially equivalent to that of a harmonic
oscillator. The Raychaudhuri equations are strong geometrical tools in the study of general relativity
and cosmology. We suggest a refined entropy measure applicable in cosmology and defined by the
average deviation of the geodesics in a congruence.
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1. Introduction

Classical chaos is generally defined as exponential divergence of nearby trajectories causing
instability of the orbits with respect to initial conditions or quite simply as high sensitivity to initial
conditions. The extent of divergence is quantified in terms of Lyapunov exponents measuring the
mean rate of exponential separation of neighboring trajectories.

The norm (for the Euclidean case, for example):

d(τ) =

√
n

∑
i=1

δx2
i (τ)
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is a measure of the divergence of two neighboring trajectories, where δxi is the i-th component of the
displacement between two nearby trajectories at time t. The mean rate of exponential divergence is
given by [1]:

ω = lim
τ→∞

d(0)→0

1
τ

ln
(

d(τ)
d(0)

)
.

The Kolmogorov entropy is related to the Lyapunov exponents. It gives a measure of the amount
of information lost or gained by the system as it evolves [1]. It can be computed from the Lyapunov
exponent by:

hK =
∫

P
∑

ωi>0
ωi dµ,

which is the sum of all positive Lyapunov exponents averaged over some region of the phase space P
with measure dµ.

One would naturally be interested in defining a measure for stochasticity in regions with
divergence. The function d(τ) initially has an irregular behavior and evolves into a form in which the
limit as τ → ∞ of:

1
τ

(
d(τ)
d(0)

)
converges to a value that depends on the initial conditions. Casartelli et al. [2] argued that this quantity
is deeply related to the Kolmogorov entropy and also exhibits strong sensitivity to the initial conditions.

Benettin et al. defined a similar entropy [3] and calculated a Kolmogorov-like entropy for the
Henon–Heiles system. However, we shall take a different route in this study.

There are many interesting physically-relevant examples for which the trajectories can be put
into correspondence with geodesic curves, for example in problems in general relativity and in the
conformal map of Hamiltonian potential models [4], with geodesic deviation described in terms of a
Jacobi equation related to the curvature. In the following, we provide a relation between the Jacobi
equation, the entropy (as defined above) and the geodesic equation itself.

Let there be given two nearby geodesics, m and n, and let τ be the affine parameter on the
geodesics. For a point x with parameter τ on the geodesic m, one may define the geodesic deviation as
the length of the shortest path from m to n. Let us denote this geodesic deviation by χ(τ). The Jacobi
equation states that [5]:

d2χ(τ)

dτ2 = −K(x(τ))χ(τ) (1)

where K is the Gaussian curvature, and this simple form for the curvature is restricted to
two-dimensional systems.

We employ the entropy defined by [6]:

S = ln χ(τ) (2)

From Equations (1) and (2), we derive:

S̈(τ) +
(
Ṡ(τ)

)2
+ K(x(τ)) = 0, (3)

where ˙= d/dτ. One may transform Equation (3) to a Riccati-type equation by letting Ṡ(τ) = X(τ):

Ẋ(τ) + X(τ)2 + K(x(τ)) = 0. (4)

The general Riccati equation has the form:

Ẋ(τ) = q0(τ) + q1(τ)X + q2(τ)X2. (5)
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The solution to Equation (5) is X = −u̇/q2u with u being the solution to the equation:

ü− Tu̇ + Ru = 0 (6)

In Equation (6), R = q2q0 and T = q1 + q̇2/q2. We therefore obtain the equation:

ü + Ku = 0, (7)

This equation is the Jacobi equation in two dimensions.
For a flat space K = 0, and Equation (3) takes the form:

S̈(τ) + (S(̇τ))2 = 0, (8)

This equation has some resemblance to the geodesic equation:

d2xµ

dτ2 + Γµ
σρ

dxσ

dτ

dxρ

dτ
= 0 (9)

in particular if Γµ
ρσ vanishes for ρ not equal to σ.

2. Application to Gravitation

Consider, in particular, the geodesic equation for a null geodesic in a double-warped spacetime:

ds2 = −φ2dt2 + a2gijdxidxj

where φ = φ(x), a = a(t), and g is independent of t. Consider further a variation of the geodesic with
δxi = 0:

δs =
∫ (
−φ2 ṫδṫ + aa′gij ẋi ẋjδt

)
dτ = 0

where ′ = d/dt. Integrating by parts, one gets
∫
(φ2 ẗ + aa′gij ẋi ẋj)δt dτ = 0, which implies:

φ2 ẗ + aa′gij ẋi ẋj = 0, (10)

For a null geodesic, one has:
φ2 ṫ2 = a2gij ẋi ẋj.

Substituting into the geodesic Equation (10) above leads to:

ẗ +
a′

a
ṫ2 = 0. (11)

We have achieved the equation, which formally is the same as the entropy Equation (8).
Taking into account that the universe is evolving in time, we study the entropy S(τ) = ln χ(τ) in a

four-dimensional cosmological spacetime with a time-dependent metric. It is in fact a special case of a
Robertson–Walker metric for a universe for which the space for a fixed time is a flat three-dimensional
Euclidean space expanding as a function of time [7] (The model used here provides a simple illustration
of the similarity between the geodesic equation and the entropy Equation (8), which is the main intent
of this study. The work in [7] also splits the geodesic equation into a time part and a space part,
but uses a different technique with the purpose of obtaining the cosmological redshift). The metric of
the model is given by:

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2). (12)
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The Christoffel symbols for the time components µ = 0 are given by [7]:

Γ0
00 = Γ0

i0 = Γ0
0i = 0, Γ0

ij = a(t)ȧ(t)δij.

By inserting these into the geodesic Equation (9), we obtain:

d2x0

dτ2 + a(t)ȧ(t)δij
dxi

dτ

dxj

dτ
= 0. (13)

The Christoffel symbols for the spatial components (µ 6= 0) are:

Γi
jk = Γi

00 = 0, Γi
j0 = Γi

0j =
ȧ(t)
a(t)

δi
j.

and the spatial part of the geodesic equation takes the form:

d2xi

dτ2 +
ȧ(t)
a(t)

δi
j
dxi

dτ

dxj

dτ
= 0. (14)

Equations (13) and (14) constitute the splitting of the geodesic equation into the timelike and
spacelike parts [7].

For particles moving freely under purely gravitational forces, one can find a freely falling
coordinate system with the motion being a straight line in spacetime:

d2xa

dτ2 = 0. (15)

Here, τ is the proper time:
dτ2 = ηαβdxαdxβ (16)

For massless particles, the Right Hand Side (RHS) of Equation (16) vanishes [7], and we may use
σ = x0 as the parameter instead of τ. Photons follow null-geodesics, and we restrict ourselves to paths
along the x-axis, i.e., xµ(σ) = {t(σ), x(σ), 0, 0}. With the metric given by (12) and ds2 = 0, we obtain:

− dt2 + a(t)2dx2 = 0. (17)

This leads to the equation:
dx
dσ

=
1

a(t)
dt
dσ

(18)

By solving for dt/dσ and inserting the null-condition (17) into the time component for the geodesic
equation [6], we finally achieve the equation:

d2t
dσ2 +

ȧ(t)
a(t)

(
dt
dσ

)2
= 0. (19)

This equation is formally identical to the entropy Equation (8).
It is noteworthy that a resemblance between the geodesic equation and the entropy equation

is obtained by inserting the null condition into the time part of the geodesic equation and not the
spatial part, which underlines the connection between the present definition of entropy with time
rather than space.

3. The Raychaudhuri Equation

The definition of entropy as defined by Equation (2) has its origin in the geodesic deviation
equation describing the behavior of a one-parameter family of nearby geodesics and is, as remarked,
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in the present form restricted to systems of at most two dimensions. For higher dimensional systems,
one needs more refined tools to describe the behavior of a bundle of geodesics, the so-called congruence.
We now argue that the Raychaudhuri equation may provide such tools in dimension four. In a
forthcoming study, we shall show examples of entropy defined by the average deviation of the geodesics
in a congruence.

Let ξ i be the tangent vector field to a geodesic flow and hij be the metric on the subspace
perpendicular to ξ. The Raychaudhuri equation is:

dθ

dτ
= −1

3
θ2 − σijσ

ij + ωijω
ij − Rijξ

iξ j, (20)

where τ is the affine parameter along the geodesic and Rab is the Ricci tensor of the metric [8],
θ = ∇iξ jhij is the expansion, σij = ∇(iξ j) − 1

3 θhij the shear and ωij = ∇[iξ j] the twist. Round brackets
represent symmetrization and square brackets represent anti-symmetrization.

For completeness, and because it is very simple, we carry out the derivation of this equation
explicitly. Denoting the covariant derivative ∇jξi by ξij, the geodesic equation is:

ξ jξij = 0,

and because ξ iξi = constant, it follows that also:

ξ iξij = 0.

Without loss of generality, we assume that ξ iξi = −1. The metric on the spacelike subspace
perpendicular to ξ is then:

hij = gij + ξiξ j.

We now decompose the derivative ξij of ξ into three components:

θ = hijξij = gijξij,

σij =
1
2
(ξij + ξ ji)− 1

3
θhij,

ωij =
1
2
(
ξij − ξ ji

)
.

We note that the expansion θ measures the logarithmic derivative of the volume element in the
space perpendicular to ξ; the shear σij measures the non-conformal part of the deformation of the
metric h; and the twist ωij measures the entangling of the geodesic trajectories, i.e., the obstruction to ξ

being hypersurface-orthogonal. The expansion θ in (20) corresponds to Ṡ in (2) and can be taken as the
derivative of the entropy. Equation (2) is the two-dimensional version of (20).

We can decompose:

ξij =
1
3

θhij + σij + ωij,

and note that these three components are mutually orthogonal:

1
3

θhijσ
ij =

1
3

θhijω
ij = σijω

ij = 0.

The first expression on the left vanishes because σ is traceless; the second and the third vanish
because hij and σij are symmetric, while ωij is anti-symmetric.

Taking a derivative of θ along ξ, we find:

θ̇ = ∇ξ

(
gijξij

)
= ξkgijξijk,
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where for simplicity, we have denoted ∇kξij = ξijk. From the definition of the Riemannian tensor,
we have:

ξijk − ξikj = −Rjkimξm,

hence we get:
θ̇ = gijξkξikj − Rkmξkξm,

where Rkm = gjiRjkim are the components of the Ricci tensor. Furthermore:

gijξkξikj = gij∇j(ξ
kξik)− gijξk

jξik = −ξkiξik.

Substituting the decomposition of ξ and using the orthogonality relations, we obtain:

−ξkiξik = −
1
9

θ2hkihik − σkiσik + ωikωik = −
1
3

θ2 − σ2 + ω2.

Substituting back into the equation for θ̇, we obtain (20).
Consider now the Einstein equations Rµν − 1

2 Rgµν = 8πGTµν. Taking the trace, we get R = −8πGT,
hence substituting back into the Einstein equations, we obtain Rµν = 8πG(Tµν− 1

2 Tgµν), and therefore,
RµνUµUν = 8πG(Tµν − 1

2 Tgµν)UµUν. Most known physical matter fields satisfy the Strong Energy
Condition (SEC), which states that for all time-like vectors U, the inequality TµνUµUν ≥ 1

2 TgµνUµUν

holds. It follows, when the SEC holds, that the term RµνUµUν is always positive. Furthermore, note
that the shear and the rotation are spatial vectors, and consequently, σµνσµν ≥ 0 and ωµνωµν ≥ 0.
As mentioned above, ωµν is zero if and only if the congruence is hypersurface-orthogonal. If that is
satisfied, the Raychaudhuri equation simplifies to the form:

dθ

dτ
+

1
3

θ2 + σ2 = −RµνUµUν. (21)

In order for the Left Hand Side (LHS) to be negative, it must fulfill the condition dθ/dτ < − 1
3 θ2,

which finally leads to the inequality:
1

θ(τ)
≥ 1

θ0
+

1
3

τ (22)

One concludes that any initially converging hypersurface-orthogonal congruence must continue
to converge and within the finite proper time τ ≤ −3θ−1

0 will lead to crossing of geodesics (a caustic),
which means that matter obeying the SEC cannot cause geodesic deviation, but will increase the rate
of convergence in accordance with the fact that the SEC causes gravitation to be attractive [7]. The aim
to define the entropy by the average convergence/divergence of the geodesics in a congruence will be
tantamount to establish that the SEC will cause initially decreasing entropy to continue to decrease.

The Raychaudhuri equation for the expansion is a first-order nonlinear Riccati equation and
hence of the same type as Equation (4) for which the solution, Equation (7), has the same form as the
Jacobi equation.

If we set θ = 3F′/F, the Raychaudhuri equation is transformed to:

d2F
dτ2 +

1
3

(
RµνUµUν + σ2 −ω2

)
F = 0, (23)

which is a harmonic oscillator equation. As pointed out above, θ may be identified with the derivative
of the entropy, so that according to (2) for the entropy S = ln F here, F may be identified with an
effective geodesic deviation.

We recently proved [9] that the geodesic deviation equation of Jacobi is essentially equivalent to
that of a harmonic oscillator. The expansion θ is the rate of growth of the cross-sectional area orthogonal
to the bundle of geodesics. The increase/decrease of this area is the same as the divergence/convergence
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of the geodesics. The average growth of the cross-sectional area is compatible with the average
geodesic deviation.

Kar and Sengupta have shown [8] that the condition for geodesic convergence is the existence of
zeroes in Fat finite values of the affine parameter, and they argue that convergence occurs if:

RµνUµUν + σ2 −ω2 ≥ 0. (24)

i.e., the shear accelerates convergence, and the rotation obstructs convergence.

4. Comments and Conclusions

Since shear transforms circles to ellipses, we compared the mean distance between
uniformly-distributed pairs of independent points inside a circle to that inside an ellipse of the same area
and found that it is smaller in the circle. The mean d̄ of the distance d between pairs of points in a planar
region Ω of area π can be computed by:

d̄ =
1

π2

∫
Ω

∫
Ω
|x− y| dAxdAy. (25)

The result is graphed against the eccentricity e in Figure 1. For comparison, we also computed the
same quantity for rectangles of “eccentricity” e and area π, where by similarity with the definition
for an ellipse, we defined the eccentricity of a rectangle with sides a ≥ b as e =

√
1− b2/a2. In fact,

the mean distance between pairs of points inside any plane domain of area π is smallest for a circle,
i.e., the circle is the unique minimizer of (25) among all planar regions of area π [10]. This might have
important implications.

0.9

0.95

1

d̄
-
m
ea
n
d
is
ta
n
ce

0 0.25 0.5 0.75
e - eccentricity

Rectangles of eccentricity e

Ellipses of eccentricity e

Figure 1. Mean distance between pairs of points.

The evolution from an infinitesimal circular cross-section orthogonal to the flow lines to an
elliptical one of the same area is brought about by shear. Moving the cross-section along the flow does
not change the number of geodesics. However, due to the increase in the mean-distance between the
geodesics when transforming from a circular to an elliptical cross-section, there is a diverging tendency
of the geodesics moving along the flow. That implies, according to our proposed definition of entropy
as the mean distance between geodesics in a bundle, that the evolution in the presence of shear exhibits
an increase of entropy.
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